Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.954
Filtrar
1.
Nature ; 632(8027): 1092-1100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048016

RESUMEN

Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACC→Pn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACC→Pn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACC→Pn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.


Asunto(s)
Vías Nerviosas , Percepción del Dolor , Dolor , Efecto Placebo , Animales , Femenino , Masculino , Ratones , Analgesia , Anticipación Psicológica/fisiología , Señalización del Calcio , Cerebelo/citología , Cerebelo/fisiología , Cognición/fisiología , Electrofisiología , Perfilación de la Expresión Génica , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Ratones Endogámicos C57BL , Neuronas/fisiología , Dolor/fisiopatología , Dolor/prevención & control , Dolor/psicología , Manejo del Dolor/métodos , Manejo del Dolor/psicología , Manejo del Dolor/tendencias , Percepción del Dolor/fisiología , Umbral del Dolor/fisiología , Umbral del Dolor/psicología , Puente/citología , Puente/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células de Purkinje/fisiología , Receptores Opioides/metabolismo , Transmisión Sináptica
2.
Cell ; 187(18): 5102-5117.e16, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39043179

RESUMEN

Neurons produce and release neuropeptides to communicate with one another. Despite their importance in brain function, circuit-based mechanisms of peptidergic transmission are poorly understood, primarily due to the lack of tools for monitoring and manipulating neuropeptide release in vivo. Here, we report the development of two genetically encoded tools for investigating peptidergic transmission in behaving mice: a genetically encoded large dense core vesicle (LDCV) sensor that detects presynaptic neuropeptide release and a genetically encoded silencer that specifically degrades neuropeptides inside LDCVs. Using these tools, we show that neuropeptides, not glutamate, encode the unconditioned stimulus in the parabrachial-to-amygdalar threat pathway during Pavlovian threat learning. We also show that neuropeptides play important roles in encoding positive valence and suppressing conditioned threat response in the amygdala-to-parabrachial endogenous opioidergic circuit. These results show that our sensor and silencer for presynaptic peptidergic transmission are reliable tools to investigate neuropeptidergic systems in awake, behaving animals.


Asunto(s)
Miedo , Neuropéptidos , Animales , Neuropéptidos/metabolismo , Ratones , Miedo/fisiología , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Transmisión Sináptica , Masculino , Ratones Endogámicos C57BL , Puente/metabolismo , Puente/fisiología , Condicionamiento Clásico , Terminales Presinápticos/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo
3.
Respir Physiol Neurobiol ; 327: 104281, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38768741

RESUMEN

Shape and size of the nasopharyngeal airway is controlled by muscles innervated facial, glossopharyngeal, vagal, and hypoglossal cranial nerves. Contrary to brainstem networks that drive facial, vagal and hypoglossal nerve activities (FNA, VNA, HNA) the discharge patterns and origins of glossopharyngeal nerve activity (GPNA) remain poorly investigated. Here, an in situ perfused brainstem preparation (n=19) was used for recordings of GPNA in relation to phrenic (PNA), FNA, VNA and HNA. Brainstem transections were performed (n=10/19) to explore the role of pontomedullary synaptic interactions in generating GPNA. GPNA generally mirrors FNA and HNA discharge patterns and displays pre-inspiratory activity relative to the PNA, followed by robust inspiratory discharge in coincidence with PNA. Postinspiratory (early expiratory) discharge was, contrary to VNA, generally absent in FNA, GPNA or HNA. As described previously FNA and HNA discharge was virtually eliminated after pontomedullary transection while an apneustic inspiratory motor discharge was maintained in PNA, VNA and GPNA. After brainstem transection GPNA displayed an increased tonic activity starting during mid-expiration and thus developed prolonged pre-inspiratory activity compared to control. In conclusion respiratory GPNA reflects FNA and HNA which implies similar function in controlling upper airway patency during breathing. That GPNA preserved its pre-inspiratory/inspiratory discharge pattern in relation PNA after pontomedullary transection suggest that GPNA premotor circuits may have a different anatomical distribution compared HNA and FNA and thus may therefore hold a unique role in preserving airway patency.


Asunto(s)
Nervio Glosofaríngeo , Animales , Nervio Glosofaríngeo/fisiología , Bulbo Raquídeo/fisiología , Puente/fisiología , Nervio Frénico/fisiología , Respiración , Nervio Hipogloso/fisiología , Masculino , Potenciales de Acción/fisiología
4.
Proc Natl Acad Sci U S A ; 121(9): e2320276121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38381789

RESUMEN

Neuropeptide S (NPS) was postulated to be a wake-promoting neuropeptide with unknown mechanism, and a mutation in its receptor (NPSR1) causes the short sleep duration trait in humans. We investigated the role of different NPS+ nuclei in sleep/wake regulation. Loss-of-function and chemogenetic studies revealed that NPS+ neurons in the parabrachial nucleus (PB) are wake-promoting, whereas peri-locus coeruleus (peri-LC) NPS+ neurons are not important for sleep/wake modulation. Further, we found that a NPS+ nucleus in the central gray of the pons (CGPn) strongly promotes sleep. Fiber photometry recordings showed that NPS+ neurons are wake-active in the CGPn and wake/REM-sleep active in the PB and peri-LC. Blocking NPS-NPSR1 signaling or knockdown of Nps supported the function of the NPS-NPSR1 pathway in sleep/wake regulation. Together, these results reveal that NPS and NPS+ neurons play dichotomous roles in sleep/wake regulation at both the molecular and circuit levels.


Asunto(s)
Neuropéptidos , Sueño , Humanos , Sueño/fisiología , Puente/fisiología , Locus Coeruleus/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Nature ; 625(7996): 743-749, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233522

RESUMEN

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.


Asunto(s)
Reacción de Prevención , Núcleo Amigdalino Central , Vías Nerviosas , Neuronas , Reacción de Prevención/fisiología , Núcleo Amigdalino Central/citología , Núcleo Amigdalino Central/fisiología , Neuronas/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Vías Nerviosas/fisiología , Calcio/análisis , Electrofisiología , Puente/citología , Puente/fisiología
6.
Respir Physiol Neurobiol ; 320: 104201, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043841

RESUMEN

Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GGEMG). Blockade of the α1 adrenergic receptors (α1-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GGEMG without affecting inspiratory cessation. In contrast, blockade of α2-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GGEMG activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α1 and α2 adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.


Asunto(s)
Bulbo Raquídeo , Respiración , Ratas , Animales , Masculino , Ratas Wistar , Frecuencia Respiratoria , Puente/fisiología , Receptores Adrenérgicos
7.
Sleep ; 46(9)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37478470

RESUMEN

Ponto-geniculo-occipital or pontine (P) waves have long been recognized as an electrophysiological signature of rapid eye movement (REM) sleep. However, P-waves can be observed not just during REM sleep, but also during non-REM (NREM) sleep. Recent studies have uncovered that P-waves are functionally coupled with hippocampal sharp wave ripples (SWRs) during NREM sleep. However, it remains unclear to what extent P-waves during NREM sleep share their characteristics with P-waves during REM sleep and how the functional coupling to P-waves modulates SWRs. Here, we address these issues by performing multiple types of electrophysiological recordings and fiber photometry in both sexes of mice. P-waves during NREM sleep share their waveform shapes and local neural ensemble dynamics at a short (~100 milliseconds) timescale with their REM sleep counterparts. However, the dynamics of mesopontine cholinergic neurons are distinct at a longer (~10 seconds) timescale: although P-waves are accompanied by cholinergic transients, the cholinergic tone gradually reduces before P-wave genesis during NREM sleep. While P-waves are coupled to hippocampal theta rhythms during REM sleep, P-waves during NREM sleep are accompanied by a rapid reduction in hippocampal ripple power. SWRs coupled with P-waves are short-lived and hippocampal neural firing is also reduced after P-waves. These results demonstrate that P-waves are part of coordinated sleep-related activity by functionally coupling with hippocampal ensembles in a state-dependent manner.


Asunto(s)
Movimientos Oculares , Lóbulo Occipital , Masculino , Femenino , Animales , Ratones , Lóbulo Occipital/fisiología , Cuerpos Geniculados/fisiología , Sueño/fisiología , Hipocampo/fisiología , Puente/fisiología
8.
Nat Commun ; 14(1): 3922, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400467

RESUMEN

Rapid-eye-movement (REM) sleep is a distinct behavioral state associated with vivid dreaming and memory processing. Phasic bursts of electrical activity, measurable as spike-like pontine (P)-waves, are a hallmark of REM sleep implicated in memory consolidation. However, the brainstem circuits regulating P-waves, and their interactions with circuits generating REM sleep, remain largely unknown. Here, we show that an excitatory population of dorsomedial medulla (dmM) neurons expressing corticotropin-releasing-hormone (CRH) regulates both REM sleep and P-waves in mice. Calcium imaging showed that dmM CRH neurons are selectively activated during REM sleep and recruited during P-waves, and opto- and chemogenetic experiments revealed that this population promotes REM sleep. Chemogenetic manipulation also induced prolonged changes in P-wave frequency, while brief optogenetic activation reliably triggered P-waves along with transiently accelerated theta oscillations in the electroencephalogram (EEG). Together, these findings anatomically and functionally delineate a common medullary hub for the regulation of both REM sleep and P-waves.


Asunto(s)
Electroencefalografía , Sueño REM , Ratones , Animales , Sueño REM/fisiología , Electroencefalografía/métodos , Puente/fisiología , Bulbo Raquídeo , Neuronas , Hormona Liberadora de Corticotropina , Sueño/fisiología
9.
Elife ; 122023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314062

RESUMEN

Opioids depress breathing by inhibition of interconnected respiratory nuclei in the pons and medulla. Mu opioid receptor (MOR) agonists directly hyperpolarize a population of neurons in the dorsolateral pons, particularly the Kölliker-Fuse (KF) nucleus, that are key mediators of opioid-induced respiratory depression. However, the projection target and synaptic connections of MOR-expressing KF neurons are unknown. Here, we used retrograde labeling and brain slice electrophysiology to determine that MOR-expressing KF neurons project to respiratory nuclei in the ventrolateral medulla, including the preBötzinger complex (preBötC) and rostral ventral respiratory group (rVRG). These medullary-projecting, MOR-expressing dorsolateral pontine neurons express FoxP2 and are distinct from calcitonin gene-related peptide-expressing lateral parabrachial neurons. Furthermore, dorsolateral pontine neurons release glutamate onto excitatory preBötC and rVRG neurons via monosynaptic projections, which is inhibited by presynaptic opioid receptors. Surprisingly, the majority of excitatory preBötC and rVRG neurons receiving MOR-sensitive glutamatergic synaptic input from the dorsolateral pons are themselves hyperpolarized by opioids, suggesting a selective opioid-sensitive circuit from the KF to the ventrolateral medulla. Opioids inhibit this excitatory pontomedullary respiratory circuit by three distinct mechanisms-somatodendritic MORs on dorsolateral pontine and ventrolateral medullary neurons and presynaptic MORs on dorsolateral pontine neuron terminals in the ventrolateral medulla-all of which could contribute to opioid-induced respiratory depression.


Asunto(s)
Analgésicos Opioides , Bulbo Raquídeo , Analgésicos Opioides/farmacología , Bulbo Raquídeo/fisiología , Neuronas/fisiología , Puente/fisiología , Respiración
10.
J Neurophysiol ; 130(2): 278-290, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37377198

RESUMEN

The anterior lateral motor cortex (ALM) is critical to subsequent correct movements and plays a vital role in predicting specific future movements. Different descending pathways of the ALM are preferentially involved in different roles in movements. However, the circuit function mechanisms of these different pathways may be concealed in the anatomy circuit. Clarifying the anatomy inputs of these pathways should provide some helpful information for elucidating these function mechanisms. Here, we used a retrograde trans-synaptic rabies virus to systematically generate, analyze, and compare whole brain maps of inputs to the thalamus (TH)-, medulla oblongata (Med)-, superior colliculus (SC)-, and pontine nucleus (Pons)-projecting ALM neurons in C57BL/6J mice. Fifty-nine separate regions from nine major brain areas projecting to the descending pathways of the ALM were identified. Brain-wide quantitative analyses revealed identical whole brain input patterns between these descending pathways. Most inputs to the pathways originated from the ipsilateral side of the brain, with most innervations provided by the cortex and TH. The contralateral side of the brain also sent sparse projections, but these were rare, emanating only from the cortex and cerebellum. Nevertheless, the inputs received by TH-, Med-, SC-, and Pons-projecting ALM neurons had different weights, potentially laying an anatomical foundation for understanding the diverse functions of well-defined descending pathways of the ALM. Our findings provide anatomical information to help elucidate the precise connections and diverse functions of the ALM.NEW & NOTEWORTHY Distinct descending pathways of anterior lateral motor cortex (ALM) share common inputs. These inputs are with varied weights. Most inputs were from the ipsilateral side of brain. Preferential inputs were provided by cortex and thalamus (TH).


Asunto(s)
Corteza Motora , Ratones , Animales , Corteza Motora/fisiología , Ratones Endogámicos C57BL , Puente/fisiología , Tálamo/fisiología , Neuronas Motoras/fisiología , Vías Nerviosas/fisiología
11.
BMC Biol ; 21(1): 135, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280580

RESUMEN

BACKGROUND: Based on their anatomical location, rostral projections of nuclei are classified as ascending circuits, while caudal projections are classified as descending circuits. Upper brainstem neurons participate in complex information processing and specific sub-populations preferentially project to participating ascending or descending circuits. Cholinergic neurons in the upper brainstem have extensive collateralizations in both ascending and descending circuits; however, their single-cell projection patterns remain unclear because of the lack of comprehensive characterization of individual neurons. RESULTS: By combining fluorescent micro-optical sectional tomography with sparse labeling, we acquired a high-resolution whole-brain dataset of pontine-tegmental cholinergic neurons (PTCNs) and reconstructed their detailed morphology using semi-automatic reconstruction methods. As the main source of acetylcholine in some subcortical areas, individual PTCNs had abundant axons with lengths up to 60 cm and 5000 terminals and innervated multiple brain regions from the spinal cord to the cortex in both hemispheres. Based on various collaterals in the ascending and descending circuits, individual PTCNs were grouped into four subtypes. The morphology of cholinergic neurons in the pedunculopontine nucleus was more divergent, whereas the laterodorsal tegmental nucleus neurons contained richer axonal branches and dendrites. In the ascending circuits, individual PTCNs innervated the thalamus in three different patterns and projected to the cortex via two separate pathways. Moreover, PTCNs targeting the ventral tegmental area and substantia nigra had abundant collaterals in the pontine reticular nuclei, and these two circuits contributed oppositely to locomotion. CONCLUSIONS: Our results suggest that individual PTCNs have abundant axons, and most project to various collaterals in the ascending and descending circuits simultaneously. They target regions with multiple patterns, such as the thalamus and cortex. These results provide a detailed organizational characterization of cholinergic neurons to understand the connexional logic of the upper brainstem.


Asunto(s)
Axones , Tronco Encefálico , Tronco Encefálico/fisiología , Axones/fisiología , Puente/anatomía & histología , Puente/fisiología , Encéfalo , Neuronas Colinérgicas
12.
Neuron ; 111(9): 1353-1354, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37141860

RESUMEN

In this issue of Neuron, Xiao et al.1 reported that inhibitory and excitatory neurons in the pontine central gray encode and transmit opposite valences of sensory stimuli through parallel circuits to a distributed brain network.


Asunto(s)
Puente , Tegmento Pontino , Puente/fisiología , Neuronas/fisiología , Núcleos Cerebelosos
13.
J Neurophysiol ; 128(5): 1117-1132, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36197016

RESUMEN

Opioids suppress breathing through actions in the brainstem, including respiratory-related areas of the dorsolateral pons, which contain multiple phenotypes of respiratory patterned neurons. The discharge identity of dorsolateral pontine neurons that are impacted by opioids is unknown. To address this, single neuronal units were recorded in the dorsolateral pons of arterially perfused in situ rat preparations that were perfused with an apneic concentration of the opioid agonist fentanyl, followed by the opioid antagonist naloxone (NLX). Dorsolateral pontine neurons were categorized based on respiratory-associated discharge patterns, which were differentially affected by fentanyl. Inspiratory neurons and a subset of inspiratory/expiratory phase-spanning neurons were either silenced or had reduced firing frequency during fentanyl-induced apnea, which was reversed upon administration of naloxone. In contrast, the majority of expiratory neurons continued to fire tonically during fentanyl-induced apnea, albeit with reduced firing frequency. In addition, pontine late-inspiratory and postinspiratory neuronal activity were absent from apneustic-like breaths during the transition to fentanyl-induced apnea and the naloxone-mediated transition to recovery. Thus, opioid-induced deficits in respiratory patterning may occur due to reduced activity of pontine inspiratory neurons, whereas apnea occurs with loss of all phasic pontine activity and sustained tonic expiratory neuron activity.NEW & NOTEWORTHY Opioids can suppress breathing via actions throughout the brainstem, including the dorsolateral pons. The respiratory phenotype of dorsolateral pontine neurons inhibited by opioids is unknown. Here, we describe the effect of the highly potent opioid fentanyl on the firing activity of these dorsolateral pontine neurons. Inspiratory neurons were largely silenced by fentanyl, whereas expiratory neurons were not. We provide a framework whereby this differential sensitivity to fentanyl can contribute to respiratory pattern deficits and apnea.


Asunto(s)
Analgésicos Opioides , Apnea , Ratas , Animales , Analgésicos Opioides/farmacología , Fentanilo/farmacología , Puente/fisiología , Neuronas/fisiología , Respiración , Naloxona/farmacología
14.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R512-R531, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993562

RESUMEN

In mammals, the pontine noradrenergic system influences nearly every aspect of central nervous system function. A subpopulation of pontine noradrenergic neurons, called A5, are thought to be important in the cardiovascular response to physical stressors, yet their function is poorly defined. We hypothesized that activation of A5 neurons drives a sympathetically mediated increase in blood pressure (BP). To test this hypothesis, we conducted a comprehensive assessment of the cardiovascular effects of chemogenetic stimulation of A5 neurons in male and female adult rats using intersectional genetic and anatomical targeting approaches. Chemogenetic stimulation of A5 neurons in freely behaving rats elevated BP by 15 mmHg and increased cardiac baroreflex sensitivity with a negligible effect on resting HR. Importantly, A5 stimulation had no detectable effect on locomotor activity, metabolic rate, or respiration. Under anesthesia, stimulation of A5 neurons produced a marked elevation in visceral sympathetic nerve activity (SNA) and no change in skeletal muscle SNA, showing that A5 neurons preferentially stimulate visceral SNA. Interestingly, projection mapping indicates that A5 neurons target sympathetic preganglionic neurons throughout the spinal cord and parasympathetic preganglionic neurons throughout in the brainstem, as well as the nucleus of the solitary tract, and ventrolateral medulla. Moreover, in situ hybridization and immunohistochemistry indicate that a subpopulation of A5 neurons coreleases glutamate and monoamines. Collectively, this study suggests A5 neurons are a central modulator of autonomic function with a potentially important role in sympathetically driven redistribution of blood flow from the visceral circulation to critical organs and skeletal muscle.


Asunto(s)
Neuronas Adrenérgicas , Neuronas Adrenérgicas/fisiología , Animales , Presión Sanguínea/fisiología , Femenino , Glutamatos/farmacología , Masculino , Mamíferos , Puente/fisiología , Ratas , Sistema Nervioso Simpático/fisiología
15.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35262177

RESUMEN

Axonal projections from layer V neurons of distinct neocortical areas are topographically organized into discrete clusters within the pontine nuclei during the establishment of voluntary movements. However, the molecular determinants controlling corticopontine connectivity are insufficiently understood. Here, we show that an intrinsic cortical genetic program driven by Nr2f1 graded expression is directly implicated in the organization of corticopontine topographic mapping. Transgenic mice lacking cortical expression of Nr2f1 and exhibiting areal organization defects were used as model systems to investigate the arrangement of corticopontine projections. By combining three-dimensional digital brain atlas tools, Cre-dependent mouse lines and axonal tracing, we show that Nr2f1 expression in postmitotic neurons spatially and temporally controls somatosensory topographic projections, whereas expression in progenitor cells influences the ratio between corticopontine and corticospinal fibres passing the pontine nuclei. We conclude that cortical gradients of area-patterning genes are directly implicated in the establishment of a topographic somatotopic mapping from the cortex onto pontine nuclei.


Asunto(s)
Mapeo Encefálico , Puente , Animales , Axones , Corteza Cerebral , Ratones , Vías Nerviosas/fisiología , Neuronas , Puente/fisiología
17.
J Comp Neurol ; 530(10): 1658-1699, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35134251

RESUMEN

Diverse neurons in the parabrachial nucleus (PB) communicate with widespread brain regions. Despite evidence linking them to a variety of homeostatic functions, it remains difficult to determine which PB neurons influence which functions because their subpopulations intermingle extensively. An improved framework for identifying these intermingled subpopulations would help advance our understanding of neural circuit functions linked to this region. Here, we present the foundation of a developmental-genetic ontology that classifies PB neurons based on their intrinsic, molecular features. By combining transcription factor labeling with Cre fate-mapping, we find that the PB is a blend of two, developmentally distinct macropopulations of glutamatergic neurons. Neurons in the first macropopulation express Lmx1b (and, to a lesser extent, Lmx1a) and are mutually exclusive with those in a second macropopulation, which derive from precursors expressing Atoh1. This second, Atoh1-derived macropopulation includes many Foxp2-expressing neurons, but Foxp2 also identifies a subset of Lmx1b-expressing neurons in the Kölliker-Fuse nucleus (KF) and a population of GABAergic neurons ventrolateral to the PB ("caudal KF"). Immediately ventral to the PB, Phox2b-expressing glutamatergic neurons (some coexpressing Lmx1b) occupy the KF, supratrigeminal nucleus, and reticular formation. We show that this molecular framework organizes subsidiary patterns of adult gene expression (including Satb2, Calca, Grp, and Pdyn) and predicts output projections to the amygdala (Lmx1b), hypothalamus (Atoh1), and hindbrain (Phox2b/Lmx1b). Using this molecular ontology to organize, interpret, and communicate PB-related information could accelerate the translation of experimental findings from animal models to human patients.


Asunto(s)
Núcleo de Kölliker-Fuse , Núcleos Parabraquiales , Animales , Encéfalo/metabolismo , Neuronas GABAérgicas/metabolismo , Humanos , Hipotálamo/metabolismo , Puente/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Brain Res ; 1777: 147754, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34929182

RESUMEN

A long-standing observation is that the micturition reflex receives supraspinal descending control. Although one supraspinal nucleus (Barrington's nucleus) is identified as the pontine micturition center, it remains largely unknown whether and how other supraspinal tracts are involved in micturition control. Here, we focused on the role of lumbosacral projecting neurons located in the Locus Coeruleus (LC) in modulating micturition, since previous studies indicated that the LC is involved in controlling bladder contraction. First, by performing an AAV mediated retrograde labeling using a TH-iCre mouse line, we demonstrated specific targeting of LC noradrenergic neurons innervating the lumbosacral spinal cord with high efficiency. Next, by lumbosacral injection of a retro-AAV carrying Cre-dependent human diphtheria toxin receptors (DTR), we achieved specific ablation of LC NA+ neurons with lumbosacral projections upon the administration of diphtheria toxin. Our results showed that specific ablation of theseneurons led to overflow incontinence leaks and lower void efficiency. Mechanistically, by performing the urodynamics analysis, we showed that ablation of lumbosacral innervating NAneurons resulted in detrusor-sphincter dyssynergia. Taken together, our study provided novel insights into the underlying mechanisms of supraspinal control of micturition reflex and thus shed light on developing novel treatment to improve micturition control in patients with SCI or lower urinary tract symptoms.


Asunto(s)
Neuronas Adrenérgicas/fisiología , Médula Espinal/fisiología , Vejiga Urinaria/inervación , Micción/fisiología , Animales , Locus Coeruleus/fisiología , Ratones , Puente/fisiología , Reflejo/fisiología
19.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443190

RESUMEN

The release of urine, or micturition, serves a fundamental physiological function and, in many species, is critical for social communication. In mice, the pattern of urine release is modulated by external and internal factors and transmitted to the spinal cord via the pontine micturition center (PMC). Here, we exploited a behavioral paradigm in which mice, depending on strain, social experience, and sensory context, either vigorously cover an arena with small urine spots or deposit urine in a few isolated large spots. We refer to these micturition modes as, respectively, high and low territory-covering micturition (TCM) and find that the presence of a urine stimulus robustly induces high TCM in socially isolated mice. Comparison of the brain networks activated by social isolation and by urine stimuli to those upstream of the PMC identified the lateral hypothalamic area as a potential modulator of micturition modes. Indeed, chemogenetic manipulations of the lateral hypothalamus can switch micturition behavior between high and low TCM, overriding the influence of social experience and sensory context. Our results suggest that both inhibitory and excitatory signals arising from a network upstream of the PMC are integrated to determine context- and social-experience-dependent micturition patterns.


Asunto(s)
Hipotálamo/fisiología , Aislamiento Social/psicología , Micción/fisiología , Animales , Encéfalo/fisiología , Comunicación , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Puente/fisiología , Reflejo/fisiología , Médula Espinal/fisiología , Vejiga Urinaria/fisiología , Micción/genética
20.
J Comp Neurol ; 529(9): 2243-2264, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33340092

RESUMEN

Eupnea is generated by neural circuits located in the ponto-medullary brainstem, but can be modulated by higher brain inputs which contribute to volitional control of breathing and the expression of orofacial behaviors, such as vocalization, sniffing, coughing, and swallowing. Surprisingly, the anatomical organization of descending inputs that connect the forebrain with the brainstem respiratory network remains poorly defined. We hypothesized that descending forebrain projections target multiple distributed respiratory control nuclei across the neuroaxis. To test our hypothesis, we made discrete unilateral microinjections of the retrograde tracer cholera toxin subunit B in the midbrain periaqueductal gray (PAG), the pontine Kölliker-Fuse nucleus (KFn), the medullary Bötzinger complex (BötC), pre-BötC, or caudal midline raphé nuclei. We quantified the regional distribution of retrogradely labeled neurons in the forebrain 12-14 days postinjection. Overall, our data reveal that descending inputs from cortical areas predominantly target the PAG and KFn. Differential forebrain regions innervating the PAG (prefrontal, cingulate cortices, and lateral septum) and KFn (rhinal, piriform, and somatosensory cortices) imply that volitional motor commands for vocalization are specifically relayed via the PAG, while the KFn may receive commands to coordinate breathing with other orofacial behaviors (e.g., sniffing, swallowing). Additionally, we observed that the limbic or autonomic (interoceptive) systems are connected to broadly distributed downstream bulbar respiratory networks. Collectively, these data provide a neural substrate to explain how volitional, state-dependent, and emotional modulation of breathing is regulated by the forebrain.


Asunto(s)
Bulbo Raquídeo/fisiología , Mesencéfalo/fisiología , Neuronas/fisiología , Puente/fisiología , Prosencéfalo/fisiología , Mecánica Respiratoria/fisiología , Animales , Femenino , Masculino , Bulbo Raquídeo/química , Mesencéfalo/química , Microinyecciones/métodos , Vías Nerviosas/química , Vías Nerviosas/fisiología , Neuronas/química , Puente/química , Prosencéfalo/química , Trazadores Radiactivos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA