Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.042
1.
Virology ; 595: 110083, 2024 Jul.
Article En | MEDLINE | ID: mdl-38696887

Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.


Down-Regulation , Histocompatibility Antigens Class I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , beta 2-Microglobulin , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Cell Line , CD8-Positive T-Lymphocytes/immunology , Mutation
2.
Vet Immunol Immunopathol ; 271: 110754, 2024 May.
Article En | MEDLINE | ID: mdl-38613865

In this computational study, we advanced the understanding of the antigenic properties of the NADC-34-like isolate of the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), named YC-2020, relevant in veterinary pathology. We utilized sequence comparison analyses of the M and N proteins, comparing them with those of NADC34, identifying substantial amino acid homology that allowed us to highlight conserved epitopes and crucial variants. Through the application of Clustal Omega for multiple sequence alignment and platforms like Vaxijen and AllerTOP for predicting antigenic and allergenic potential, our analyses revealed important insights into the conservation and variation of epitopes essential for the development of effective diagnostic tools and vaccines. Our findings, aligned with initial experimental studies, underscore the importance of these epitopes in the development of targeted immunodiagnostic platforms and significantly contribute to the management and control of PRRSV. However, further studies are required to validate the computational predictions of antigenicity for this new viral isolate. This approach underscores the potential of computational models to enable ongoing monitoring and control of PRRSV evolution in swine. While this study provides valuable insights into the antigenic properties of the novel PRRSV isolate YC-2020 through computational analysis, it is important to acknowledge the limitations inherent to in silico predictions, specifically, the absence of laboratory validation.


Antigens, Viral , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Antigens, Viral/immunology , Amino Acid Sequence , Computational Biology , Epitopes/immunology , Sequence Alignment/veterinary
3.
Viruses ; 16(4)2024 03 30.
Article En | MEDLINE | ID: mdl-38675887

PRRS is a viral disease that profoundly impacts the global swine industry, causing significant economic losses. The development of a novel and effective vaccine is crucial to halt the rapid transmission of this virus. There have been several vaccination attempts against PRRSV using both traditional and alternative vaccine design development approaches. Unfortunately, there is no currently available vaccine that can completely control this disease. Thus, our study aimed to develop an mRNA vaccine using the antigens expressed by single or fused PRRSV structural proteins. In this study, the nucleotide sequence of the immunogenic mRNA was determined by considering the antigenicity of structural proteins and the stability of spatial structure. Purified GP5 protein served as the detection antigen in the immunological evaluation. Furthermore, cellular mRNA expression was detected by immunofluorescence and western blotting. In a mice experiment, the Ab titer in serum and the activation of spleen lymphocytes triggered by the antigen were detected by ELISA and ICS, respectively. Our findings demonstrated that both mRNA vaccines can significantly stimulate cellular and humoral immune responses. More specifically, the GP5-mRNA exhibited an immunological response that was similar to that of the commercially available vaccine when administered in high doses. To conclude, our vaccine may show promising results against the wild-type virus in a natural host.


Antibodies, Viral , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Envelope Proteins , Viral Vaccines , mRNA Vaccines , Animals , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/genetics , Mice , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine Reproductive and Respiratory Syndrome/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Swine , Female , Viral Structural Proteins/immunology , Viral Structural Proteins/genetics , RNA, Messenger/genetics
4.
Virol Sin ; 39(2): 264-276, 2024 Apr.
Article En | MEDLINE | ID: mdl-38272236

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major economically devastating pathogen that has evolved various strategies to evade innate immunity. Downregulation of antiviral interferon largely promotes PRRSV immunoevasion by utilizing cytoplasmic melanoma differentiation-associated gene 5 (MDA5), a receptor that senses viral RNA. In this study, the downregulated transcription and expression levels of porcine MDA5 in PRRSV infection were observed, and the detailed mechanisms were explored. We found that the interaction between P62 and MDA5 is enhanced due to two factors: the phosphorylation modification of the autophagic receptor P62 by the upregulated kinase CK2α and the K63 ubiquitination of porcine MDA5 catalyzed by the E3 ubiquitinase TRIM21 in PRRSV-infected cells. As a result of these modifications, the classic P62-mediated autophagy is triggered. Additionally, porcine MDA5 interacts with the chaperonin containing TCP1 subunit 2 (CCT2), which is enhanced by PRRSV nsp3. This interaction promotes the aggregate formation and autophagic clearance of MDA5-CCT2-nsp3 independently of ubiquitination. In summary, enhanced MDA5 degradation occurs in PRRSV infection via two autophagic pathways: the binding of MDA5 with the autophagy receptor P62 and the aggrephagy receptor CCT2, leading to intense innate immune suppression. The research reveals a novel mechanism of immune evasion in PRRSV infection and provides fundamental insights for the development of new vaccines or therapeutic strategies.


Autophagy , Immunity, Innate , Interferon-Induced Helicase, IFIH1 , Porcine respiratory and reproductive syndrome virus , Animals , Cell Line , Host-Pathogen Interactions/immunology , Immune Evasion , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Phosphorylation , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine respiratory and reproductive syndrome virus/immunology , Swine , Ubiquitination , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Humans
5.
Front Immunol ; 14: 1201973, 2023.
Article En | MEDLINE | ID: mdl-37600784

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a leading cause of economic loss in pig farming worldwide. Existing commercial vaccines, all based on modified live or inactivated PRRSV, fail to provide effective immunity against the highly diverse circulating strains of both PRRSV-1 and PRRSV-2. Therefore, there is an urgent need to develop more effective and broadly active PRRSV vaccines. In the absence of neutralizing antibodies, T cells are thought to play a central role in controlling PRRSV infection. Herpesvirus-based vectors are novel vaccine platforms capable of inducing high levels of T cells against encoded heterologous antigens. Therefore, the aim of this study was to assess the immunogenicity and efficacy of an attenuated herpesvirus-based vector (bovine herpesvirus-4; BoHV-4) expressing a fusion protein comprising two well-characterized PRRSV-1 T-cell antigens (M and NSP5). Prime-boost immunization of pigs with BoHV-4 expressing the M and NSP5 fusion protein (vector designated BoHV-4-M-NSP5) induced strong IFN-γ responses, as assessed by ELISpot assays of peripheral blood mononuclear cells (PBMC) stimulated with a pool of peptides representing PRRSV-1 M and NSP5. The responses were closely mirrored by spontaneous IFN-γ release from unstimulated cells, albeit at lower levels. A lower frequency of M and NSP5 specific IFN-γ responding cells was induced following a single dose of BoHV-4-M-NSP5 vector. Restimulation using M and NSP5 peptides from PRRSV-2 demonstrated a high level of cross-reactivity. Vaccination with BoHV-4-M-NSP5 did not affect viral loads in either the blood or lungs following challenge with the two heterologous PRRSV-1 strains. However, the BoHV-4-M-NSP5 prime-boost vaccination showed a marked trend toward reduced lung pathology following PRRSV-1 challenge. The limited effect of T cells on PRRSV-1 viral load was further examined by analyzing local and circulating T-cell responses using intracellular cytokine staining and proliferation assays. The results from this study suggest that vaccine-primed T-cell responses may have helped in the control of PRRSV-1 associated tissue damage, but had a minimal, if any, effect on controlling PRRSV-1 viral loads. Together, these results indicate that future efforts to develop effective PRRSV vaccines should focus on achieving a balanced T-cell and antibody response.


Herpesvirus Vaccines , Immunogenicity, Vaccine , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Matrix Proteins , Viral Nonstructural Proteins , Herpesvirus Vaccines/immunology , Vaccines, Attenuated/immunology , T-Lymphocytes/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Genetic Vectors , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Animals , Swine , Viral Matrix Proteins/immunology
6.
J Virol ; 96(18): e0115422, 2022 09 28.
Article En | MEDLINE | ID: mdl-36073922

Long noncoding RNAs (lncRNAs) have increasingly been recognized as being integral to cellular processes, including the antiviral immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is costly to the global swine industry. To identify PRRSV-related lncRNAs, we performed RNA deep sequencing and compared the profiles of lncRNAs in PRRSV-infected and uninfected Marc-145 cells. We identified a novel lncRNA called MAHAT (maintaining cell morphology-associated and highly conserved antiviral transcript; LTCON_00080558) that inhibits PRRSV replication. MAHAT binds and negatively regulates ZNF34 expression by recruiting and binding DDX6, an RNA helicase forming a complex with ZNF34. Inhibition of ZNF34 expression results in increased type I interferon expression and decreased PRRSV replication. This finding reveals a novel mechanism by which PRRSV evades the host antiviral innate immune response by downregulating the MAHAT-DDX6-ZNF34 pathway. MAHAT could be a host factor target for antiviral therapies against PRRSV infection. IMPORTANCE Long noncoding RNAs (lncRNAs) play important roles in viral infection by regulating the transcription and expression of host genes, and interferon signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses in the swine industry worldwide, but the mechanisms of its pathogenesis and immunology are not fully understood. Here, a new lncRNA, designated MAHAT, was identified as a regulator of host innate immune responses. MAHAT negatively regulates the expression of its target gene, ZNF34, by recruiting and binding DDX6, an RNA helicase, forming a complex with ZNF34. Inhibition of ZNF34 expression increases type I interferon expression and decreases PRRSV replication. This finding suggests that MAHAT has potential as a new target for developing antiviral drugs against PRRSV infection.


Immunity, Innate , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA, Long Noncoding , Virus Replication , Animals , Cell Line , DEAD-box RNA Helicases/metabolism , Immunity, Innate/genetics , Interferon Type I/genetics , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Swine , Transcription Factors, General/metabolism , Virus Replication/genetics
7.
J Virol ; 96(7): e0000322, 2022 04 13.
Article En | MEDLINE | ID: mdl-35293774

MicroRNAs (miRNAs) play an important role in the virus-host interaction. Our previous work has indicated that the expression level of miR-10a increased in porcine alveolar macrophages (PAMs) during porcine reproductive and respiratory syndrome virus (PRRSV) infection and further inhibited viral replication through downregulates the expression of host molecule signal-recognition particle 14 (SRP14) protein. However, the molecular mechanism of miR-10a increased after PRRSV infection remains unknown. In the present study, transcription factor interferon regulatory factor 8 (IRF8) was identified as a negative regulator of miR-10a. PRRSV infection decreases the expression level of IRF8 in PAMs, leading to upregulating miR-10a expression to play an anti-PRRSV role. Meanwhile, this work first proved that IRF8 promoted PRRSV replication in an miR-10a-dependent manner. Further, we explained that SRP14, the target gene of miR-10a, promotes the synthesis of the PRRSV genome by interacting with the viral components Nsp2, thus facilitating PRRSV replication. In conclusion, we identified a novel IRF8-miR-10a-SRP14 regulatory pathway against PRRSV infection, which provides new insights into virus-host interactions and suggests potential new antiviral strategies to control PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has rapidly spread to the global pig industry and caused incalculable economic damage since first discovered in the 1980s. However, conventional vaccines do not provide satisfactory protection. Understanding the molecular mechanisms of host resistance to PRRSV infection is necessary to develop safe and effective strategies to control PRRSV. During viral infection, miRNAs play vital roles in regulating the expression of viral or host genes at the posttranscriptional level. The significance of our study is that we revealed the transcriptional regulation mechanism of the antiviral molecule miR-10a after PRRSV infection. Moreover, our research also explained the mechanism of host molecule SRP14, the target gene of miR-10a regulating PRRSV replication. Thus, we report a novel regulatory pathway of IRF8-miR-10a-SRP14 against PRRSV infection, which provides new insights into virus-host interactions and suggests potential new control measures for future PRRSV outbreaks.


MicroRNAs , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Antiviral Agents/metabolism , Cell Line , Gene Expression Regulation/immunology , Host Microbial Interactions/immunology , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Macrophages, Alveolar , MicroRNAs/genetics , MicroRNAs/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/immunology , Swine , Virus Replication/genetics
8.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article En | MEDLINE | ID: mdl-35217603

Recent breakthroughs in gene-editing technologies that can render individual animals fully resistant to infections may offer unprecedented opportunities for controlling future epidemics in farm animals. Yet, their potential for reducing disease spread is poorly understood as the necessary theoretical framework for estimating epidemiological effects arising from gene-editing applications is currently lacking. Here, we develop semistochastic modeling approaches to investigate how the adoption of gene editing may affect infectious disease prevalence in farmed animal populations and the prospects and time scale for disease elimination. We apply our models to the porcine reproductive and respiratory syndrome (PRRS), one of the most persistent global livestock diseases to date. Whereas extensive control efforts have shown limited success, recent production of gene-edited pigs that are fully resistant to the PRRS virus have raised expectations for eliminating this deadly disease. Our models predict that disease elimination on a national scale would be difficult to achieve if gene editing was used as the only disease control. However, from a purely epidemiological perspective, disease elimination may be achievable within 3 to 6 y, if gene editing were complemented with widespread and sufficiently effective vaccination. Besides strategic distribution of genetically resistant animals, several other key determinants underpinning the epidemiological impact of gene editing were identified.


Gene Editing , Livestock/genetics , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/genetics , Vaccination , Animals , CRISPR-Cas Systems , Porcine respiratory and reproductive syndrome virus/immunology , Proof of Concept Study , Swine
9.
Front Immunol ; 12: 758368, 2021.
Article En | MEDLINE | ID: mdl-34858411

The porcine respiratory disease complex (PRDC) is responsible for significant economic losses in the pig industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza virus are major viral contributors to PRDC. Vaccines are cost-effective measures for controlling PRRS, however, their efficacy in the context of co-infections has been poorly investigated. In this study, we aimed to determine the effect of PRRSV-2 and swine influenza H3N2 virus co-infection on the efficacy of PRRSV modified live virus (MLV) vaccination, which is widely used in the field. Following simultaneous challenge with contemporary PRRSV-2 and H3N2 field isolates, we found that the protective effect of PRRS MLV vaccination on clinical disease and pathology was abrogated, although viral load was unaffected and antibody responses were enhanced. In contrast, co-infection in non-immunized animals reduced PRRSV-2 viremia and H3N2 virus load in the upper respiratory tract and potentiated T cell responses against both PRRSV-2 and H3N2 in the lung. Further analysis suggested that an upregulation of inhibitory cytokines gene expression in the lungs of vaccinated pigs may have influenced responses to H3N2 and PRRSV-2. These findings provide important insights into the effect of viral co-infections on PRRS vaccine efficacy that may help identify more effective vaccination strategies against PRDC in the field.


Coinfection/veterinary , Influenza A Virus, H3N2 Subtype/immunology , Orthomyxoviridae Infections/immunology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/biosynthesis , Coinfection/immunology , Coinfection/virology , Cytokines/biosynthesis , Cytokines/genetics , Datasets as Topic , Dogs , Female , Madin Darby Canine Kidney Cells , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/virology , Porcine Reproductive and Respiratory Syndrome/virology , Swine , Vaccination/veterinary , Vaccine Efficacy , Vaccines, Attenuated/immunology , Viral Load , Viremia/prevention & control , Viremia/virology
10.
Front Immunol ; 12: 765667, 2021.
Article En | MEDLINE | ID: mdl-34912338

The use of frozen peripheral blood mononuclear cells (PBMC) is common in immunological studies. The impact of freezing PBMC has been assessed using human and mice cells, but little information is available regarding domestic animals. In the present study, the phenotype and functionality of frozen porcine PBMC were examined. In a preliminary experiment, three freezing media: fetal bovine serum plus 10% dimethyl sulfoxide, PSC cryopreservation kit, and Cryostor CS10, were compared regarding the preservation of cell viability and the response of PBMC to mitogens after thawing. After being stored one month in liquid nitrogen, cell viability was above 89% for all freezing media. The ELISPOT IFN-gamma (IFN-γ) results in response to PHA and of IgG ELISPOT in response to R848+IL-2 were similar to those obtained using fresh PBMC. In the second set of experiments, PBMC were obtained from five pigs vaccinated against Porcine reproductive and respiratory syndrome virus (PRRSV) and then frozen using Cryostor CS10. Recovered cells were phenotyped by flow cytometry using anti-CD3, CD4, CD8, and CD21 antibodies and were used to assess the PRRSV-specific responses in a proliferation experiment, an IFN-γ ELISPOT, and an IgG ELISPOT, and compared to the results obtained with fresh cells. The antigen-specific responses of frozen cells were significantly (p<0.05) impaired in the proliferation assay, particularly for CD4/CD8 double-positive T-cells and for CD21+ cells. Freezing resulted in decreased proliferation when Con A, but not PHA, was used. In ELISPOT, cryopreservation resulted in a decreased frequency of IFN-γ-secreting cells in response to PRRSV (p<0.05) but the response to PHA was not affected. No differences were observed in the IgG ELISPOT after polyclonal activation. Taken together, cryopreservation of porcine PBMC had a significant impact on the magnitude of recall antigen responses and therefore, it may affect the response of effector/memory cells but seems not to have a major impact on naïve T-cells. These results may help to the better use of frozen porcine PBMC, and to the interpretation of the results obtained from them.


Cryopreservation , Leukocytes, Mononuclear , Animals , Cell Proliferation , Cell Survival , Culture Media , Immunization , Immunoglobulin G/immunology , Interferon-gamma/immunology , Phenotype , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/immunology , Swine , Viral Vaccines/administration & dosage
11.
Viruses ; 13(11)2021 10 27.
Article En | MEDLINE | ID: mdl-34834975

Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A virus (swIAV) are major pathogens of the porcine respiratory disease complex, but little is known on their interaction in super-infected pigs. In this study, we investigated clinical, virological and immunological outcomes of successive infections with PRRSV-1 and H1N2 swIAV. Twenty-four specific pathogen-free piglets were distributed into four groups and inoculated either with PRRSV at study day (SD) 0, or with swIAV at SD8, or with PRRSV and swIAV one week apart at SD0 and SD8, respectively, or mock-inoculated. In PRRSV/swIAV group, the clinical signs usually observed after swIAV infection were attenuated while higher levels of anti-swIAV antibodies were measured in lungs. Concurrently, PRRSV multiplication in lungs was significantly affected by swIAV infection, whereas the cell-mediated immune response specific to PRRSV was detected earlier in blood, as compared to PRRSV group. Moreover, levels of interferon (IFN)-α measured from SD9 in the blood of super-infected pigs were lower than those measured in the swIAV group, but higher than in the PRRSV group at the same time. Correlation analyses suggested an important role of IFN-α in the two-way interference highlighted between both viral infections.


Influenza A Virus, H1N2 Subtype/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral , Immunity , Influenza A virus/immunology , Interferon-alpha , Lung/immunology , Orthomyxoviridae Infections/virology , Specific Pathogen-Free Organisms , Swine , Swine Diseases/virology
12.
BMC Vet Res ; 17(1): 355, 2021 Nov 19.
Article En | MEDLINE | ID: mdl-34798885

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry globally. Evaluation of antibody responses and neutralizing antibody titers is the most effective method for vaccine evaluation. In this study, the B cell line epitopes of PRRSV M protein were predicted, and two peptide ELISA assays were established (M-A110-129 ELISA, M-A148-174 ELISA) to detect antibodies against PRRSV M protein. Field serum samples collected from pig farms were used to validate the peptide ELISA and compare it with an indirect immunofluorescence assay. RESULTS: The sensitivity and specificity of M-A110-129 ELISA and M-A148-174 ELISA were (111/125) 88.80%, (69/70) 98.57% and (122/125) 97.60%, (70/70) 100%, relative to indirect immunofluorescence assay. This peptide ELISA could detect antibodies against different genotypes of PRRSV including type 1 PRRSV, classical PRRSV, HP-PRRSV, and NADC30 like PRRSV, but not antibodies against other common swine viruses. The results of ROC analysis showed that the area under the curve (AUC) of the M-A110-129 ELISA and M-A148-174 ELISA were 0.967 and 0.996, respectively. Compared the concordance of results using two peptide ELISA assays, the IDEXX PRRSV X3 Ab ELISA and a virus neutralization test, were assessed using a series of 147 sera from pigs vaccinated with the NADC30-like PRRSV inactivated vaccine. The M-A148-174 ELISA had the best consistency, with a Cohen's kappa coefficient of 0.8772. The concordance rates of the Hipra PRRSV ELISA kit, M-A110-129 ELISA and M-A148-174 ELISA in the field seropositive detection results were 91.08, 86.32 and 95.35%, relative to indirect immunofluorescence assay. CONCLUSIONS: In summary, compared with M-A110-129 ELISA, the PRRSV M-A148-174 ELISA is of value for detecting antibodies against PRRSV and the evaluation of the NADC30-like PRRSV inactivated vaccine, but the advantage is insufficient in serological early diagnosis.


Enzyme-Linked Immunosorbent Assay/veterinary , Porcine Reproductive and Respiratory Syndrome/immunology , Vaccines, Inactivated/immunology , Viral Matrix Proteins/immunology , Animals , Antibodies, Neutralizing , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique, Indirect/veterinary , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine respiratory and reproductive syndrome virus/immunology , Sensitivity and Specificity , Swine
13.
Vet Microbiol ; 261: 109216, 2021 Oct.
Article En | MEDLINE | ID: mdl-34481271

Porcine reproductive and respiratory syndrome (PRRS) is a serious infectious disease in the swine industry, which causes severe economic losses to current swine production worldwide. There are no effective antiviral strategies for preventing this disease. Previous studies showed that microRNAs (miRNAs) play important role in virus-host interactions. In this study, we demonstrated that the expression level of ssc-miR-124a was significantly downregulated during both high and low pathogenic PRRSV infection. Overexpression of ssc-miR-124a markedly inhibits PRRSV replication in PAMs. Luciferase reporter experiments and RISC immunoprecipitation assay were used to identify the ssc-miR-124a could directly target the 3'UTR of pig CD163 mRNA in a sequence-specific manner and that CD163 mRNA and protein levels were reduced in PAMs overexpressing ssc-miR-124a. These data not only provide new insights into virus-host interactions during PRRSV infection, but also suggest potential new antiviral strategies against PRRSV infection in the future.


Antigens, CD/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Gene Expression Regulation/immunology , Host Microbial Interactions/genetics , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Receptors, Cell Surface/genetics , Animals , Porcine respiratory and reproductive syndrome virus/immunology , Swine
14.
Viruses ; 13(9)2021 09 14.
Article En | MEDLINE | ID: mdl-34578409

Porcine reproductive and respiratory syndrome virus (PRRSV) modulates host innate immunity which plays a key role against PRRSV infection. As a RNA virus, PRRSV is mainly sensed by innate immune RNA receptors, whereas the role of innate immune DNA sensors in the PRRSV infection has not been elucidated. Here, we investigated the roles of DNA sensing cGAS-STING pathway in both PRRSV infected Marc-145 cells and porcine macrophages. The results show that in Marc-145 cells, the stable expression of STING with or without stimulations exhibited anti-PRRSV activity, and STING knockout heightened PRRSV infection. In CD163-3D4/21 porcine macrophages, either expression of STING or stimulation of cGAS-STING signaling obviously suppressed PRRSV infection, whereas in STING knockdown macrophages, the PRRSV infection was upregulated. Our results clearly demonstrate that the host cGAS-STING signal exerts an important antiviral role in PRRSV infection.


Immunity, Innate , Macrophages/virology , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/physiology , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Nucleotidyltransferases/metabolism , Receptors, Pattern Recognition/metabolism , Swine , Virus Replication/immunology
15.
J Virol ; 95(22): e0111921, 2021 10 27.
Article En | MEDLINE | ID: mdl-34468170

Monocyte chemotactic protein-induced protein 1 (MCPIP1) is an inflammatory regulator in immune response and has broad antiviral effects by targeting viral RNA. Porcine reproductive and respiratory syndrome virus (PRRSV), a major viral pathogen in pigs, causes immune suppression leading to coinfection of swine pathogens, but the mechanisms are not fully clarified. In this study, MCPIP1 expression was found to be significantly upregulated in lungs of PRRSV-infected piglets, as well as in Marc-145 and porcine pulmonary alveolar macrophage (PAM) cells upon PRRSV stimulation. MCPIP1 overexpression significantly inhibited PRRSV replication, while MCPIP1 knockdown increased the virus titer. Various mutations in RNase functional domains of MCPIP1 impaired the inhibitory activity against PRRSV, while those in deubiquitinase domains failed to do so. MCPIP1 expression started to decrease from 60 h after PRRSV infection in PAMs. Meanwhile, infection with higher dose of PRRSV further downregulated MCPIP1, indicating the antagonizing effects from PRRSV against MCPIP1. Moreover, it was confirmed that MCPIP1 expression was downregulated in 3D4 cells with either interleukin-17 (IL-17) or nsp11 overexpression, while IL-17 inhibitor abolished the decrease of MCPIP1 caused by nsp11, indicating nsp11 employs IL-17 induction to inhibit MCPIP1. Furthermore, the PRRSV nsp11 mutant with a deficiency in IL-17 induction showed the recovered expression of MCPIP1 in infected cells, inspiring a strategy for virus attenuation. This is the first report about the role of MCPIP1 against PRRSV and the function of PRRSV nsp11 against innate immunity to facilitate virus replication via IL-17. The study not only illuminates PRRSV infection machinery but also enlightens alternative antiviral strategies, such as vaccine candidates. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the innate immunity and leads to coinfection of swine pathogens. Monocyte chemotactic protein-induced protein 1 (MCPIP1) is a broad-spectrum host antiviral protein. Therefore, to further clarify the mechanism of PRRSV against innate immunity, we explored the relationship between MCPIP1 and PRRSV infection. The results showed that MCPIP1 inhibited PRRSV infection in the early stage of virus infection. Importantly, PRRSV nsp11 subsequently employed IL-17 induction to suppress MCPIP1 expression and antagonized anti-PRRSV effects. Furthermore, PRRSV with mutation of nsp11 S74A failed to induce MCPIP1 reduction. These findings confirmed the function of MCPIP1 against PRRSV and revealed that PRRSV nsp11 plays an important role in virus against innate immunity. This study enlightens a new strategy to develop safer attenuated vaccines against PRRSV by nsp11 mutation.


Antiviral Restriction Factors/immunology , Chemokine CCL2/immunology , Interleukin-17/immunology , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus/immunology , Virus Replication/immunology , Animals , Cell Line , Haplorhini , Humans , Immunity, Innate , Macrophages, Alveolar , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Swine
16.
Front Immunol ; 12: 712109, 2021.
Article En | MEDLINE | ID: mdl-34394113

Dendritic cells (DCs) are the most potent antigen-presenting cells, unique to initiate and coordinate the adaptive immune response. In pigs, conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs) have been described in blood and tissues. Different pathogens, such as viruses, could infect these cells, and in some cases, compromise their response. The understanding of the interaction between DCs and viruses is critical to comprehend viral immunopathological responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important respiratory pathogen in the global pig population. Different reports support the notion that PRRSV modulates pig immune response in addition to their genetic and antigenic variability. The interaction of PRRSV with DCs is a mostly unexplored area with conflicting results and lots of uncertainties. Among the scarce certainties, cDCs and pDCs are refractory to PRRSV infection in contrast to moDCs. Additionally, response of DCs to PRRSV can be different depending on the type of DCs and maybe is related to the virulence of the viral isolate. The precise impact of this virus-DC interaction upon the development of the specific immune response is not fully elucidated. The present review briefly summarizes and discusses the previous studies on the interaction of in vitro derived bone marrow (bm)- and moDCs, and in vivo isolated cDCs, pDCs, and moDCs with PRRSV1 and 2.


Dendritic Cells/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Antigen Presentation , Antigens, Viral/immunology , Bone Marrow , Dendritic Cells/classification , Forecasting , Monocytes , Porcine respiratory and reproductive syndrome virus/pathogenicity , Swine , T-Lymphocytes, Regulatory/immunology , Viral Vaccines , Virulence
17.
Int J Biol Macromol ; 187: 683-689, 2021 Sep 30.
Article En | MEDLINE | ID: mdl-34333004

Glycoprotein 3 (GP3), a highly glycosylated membrane protein, is a protective antigen and minor structural protein of porcine reproductive and respiratory syndrome virus (PRRSV), and plays a crucial role in virus assembly and infection. In the present study, we synthesized 23 overlapping peptides span GP3 protein sequence and used pig anti-PRRSV serums to identify immunodominant peptides by indirect ELISA. Five immunodominant peptides GP3-P3, P4, P5, P6 and P7 were identified and GP3-P4 (P55LCPTRQAAAEILEPGKS72) was conjugated to carrier protein BSA. One mAb 1E5 against GP3 was generated from BALB/c mice immunized with the conjugates BSA-P4. The Characterization of mAb was identified by Western blot, Dot-ELISA, IPMA and IFA. We found that mAb 1E5 can specifically react with HP-PRRSV strains but not C-PRRSV or NADC30-like PRRSV strains tested in this study. Site-directed alanine substitution analysis revealed that 8 amino acid residues were involved in antibody binding, among them E65, L67 and P69 were critical residue recognized by mAb 1E5. Taken together, this study provided a novel strategy for generating specific mAbs against virus proteins by using immunodominant peptides as targets, and the mAb 1E5 may be useful for development of rapid differential detection method differentiating HP-PRRSV from C-PRRSV and NADC30-like PRRSV.


Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Glycoproteins/immunology , Immunodominant Epitopes , Peptide Fragments/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Viral Proteins/immunology , Animals , Antibody Specificity , Antigens, Viral/administration & dosage , Antigens, Viral/genetics , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Female , Glycoproteins/administration & dosage , Glycoproteins/genetics , Immunization , Mice, Inbred BALB C , Peptide Fragments/administration & dosage , Peptide Fragments/genetics , Porcine respiratory and reproductive syndrome virus/genetics , Sus scrofa , Viral Proteins/administration & dosage , Viral Proteins/genetics
18.
J Virol ; 95(21): e0105221, 2021 10 13.
Article En | MEDLINE | ID: mdl-34379512

Porcine alveolar macrophage (PAM) is one of the primary cellular targets for porcine reproductive and respiratory syndrome virus (PRRSV), but less than 2% of PAMs are infected with the virus during the acute stage of infection. To comparatively analyze the host transcriptional response between PRRSV-infected PAMs and bystander PAMs that remained uninfected but were exposed to the inflammatory milieu of an infected lung, pigs were infected with a PRRSV strain expressing green fluorescent protein (PRRSV-GFP), and GFP+ (PRRSV infected) and GFP- (bystander) cells were sorted for RNA sequencing (RNA-seq). Approximately 4.2% of RNA reads from GFP+ and 0.06% reads from GFP- PAMs mapped to the PRRSV genome, indicating that PRRSV-infected PAMs were effectively separated from bystander PAMs. Further analysis revealed that inflammatory cytokines, interferon-stimulated genes, and antiviral genes were highly upregulated in GFP+ compared to GFP- PAMs. Importantly, negative immune regulators, including NF-κB inhibitors (NFKBIA, NFKBID, NFKBIZ, and TNFAIP3) and T-cell exhaustion markers (programmed death ligand-1 [PD-L1], PD-L2, interleukin-10 [IL-10], IDO1, and transforming growth factor ß2 [TGFB2]) were highly upregulated in GFP+ cells compared to GFP- cells. By using an in situ hybridization assay, RNA transcripts of tumor necrosis factor (TNF) and NF-κB inhibitors were detected in PRRSV-infected PAMs cultured ex vivo and lung sections of PRRSV-infected pigs during the acute stage of infection. Collectively, the results suggest that PRRSV infection upregulates expression of negative immune regulators and T-cell exhaustion markers in PAMs to modulate the host immune response. Our findings provide further insight into PRRSV immunopathogenesis. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is widespread in many swine-producing countries, causing substantial economic losses to the swine industry. Porcine alveolar macrophage (PAM) is considered the primary target for PRRSV replication in pigs. However, less than 2% of PAMs from acutely infected pigs are infected with the virus. In the present study, we utilized a PRRSV strain expressing green fluorescent protein to infect pigs and sorted infected and bystander PAMs from the pigs during the acute stage of infection for transcriptome analysis. PRRSV-infected PAMs showed a distinctive gene expression profile and contained many uniquely activated pathways compared to bystander PAMs. Interestingly, upregulated expression of NF-κB signaling inhibitors and T-cell exhaustion molecules were observed in PRRSV-infected PAMs. Our findings provide additional knowledge on the mechanisms that PRRSV employs to modulate the host immune system.


Immunity/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Porcine Reproductive and Respiratory Syndrome/physiopathology , Porcine respiratory and reproductive syndrome virus/immunology , T-Lymphocytes/immunology , Animals , Gene Expression Profiling , Lung/immunology , Lung/pathology , Lung/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Sequence Analysis, RNA , Signal Transduction , Swine , Transcriptome , Up-Regulation
19.
Front Immunol ; 12: 691145, 2021.
Article En | MEDLINE | ID: mdl-34381448

Porcine reproductive and respiratory syndrome (PRRS) is considered one of the most relevant diseases of swine. The condition is caused by PRRS virus (PRRSV), an extremely variable virus of the Arteriviridae family. Its heterogeneity can be responsible, at least partially, of the poor cross-protection observed between PRRSV isolates. Neutralizing antibodies (NAs), known to play a role in protection, usually poorly recognize heterologous PRRSV isolates, indicating that most NAs are strain-specific. However, some pigs develop broadly reactive NAs able to recognize a wide range of heterologous isolates. The aim of this study was to determine whether PRRSV isolates that induce broadly reactive NAs as determined in vitro are able to confer a better protection in vivo. For this purpose two in vivo experiments were performed. Initially, 40 pigs were immunized with a PRRSV-1 isolate known to induce broadly reactive NAs and 24 additional pigs were used as controls. On day 70 after immunization, the pigs were divided into eight groups composed by five immunized and three control pigs and exposed to one of the eight different heterologous PRRSV isolates used for the challenge. In the second experiment, the same experimental design was followed but the pigs were immunized with a PRRSV-1 isolate, which is known to generate mostly strain-specific NAs. Virological parameters, specifically viremia and the presence of challenge virus in tonsils, were used to determine protection. In the first experiment, sterilizing immunity was obtained in three groups, prevention of viremia was observed in two additional groups, although the challenge virus was detected occasionally in the tonsils of immunized pigs, and partial protection, understood as a reduction in the frequency of viremia compared with controls, was recorded in the remaining three groups. On the contrary, only partial protection was observed in all groups in the second experiment. The results obtained in this study confirm that PRRSV-1 isolates differ in their ability to induce cross-reactive NAs and, although other components of the immune response might have contributed to protection, pigs with cross-reactive NAs at the time of challenge exhibited better protection, indicating that broadly reactive NAs might play a role in protection against heterologous reinfections.


Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , Immunoglobulin G/blood , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Cross Protection , Cross Reactions , Palatine Tonsil/virology , Porcine Reproductive and Respiratory Syndrome/blood , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/isolation & purification , Reinfection/prevention & control , Swine , Vaccination
20.
BMC Vet Res ; 17(1): 260, 2021 Jul 31.
Article En | MEDLINE | ID: mdl-34332554

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) infection can cause severe reproductive failure in sows and respiratory distress in pigs of all ages, leading to major economic losses. To date, there are still no effective strategies to prevent and control PRRSV. Antibody-dependent enhancement (ADE), a phenomenon in which preexisting non-neutralizing antibodies or sub-neutralizing antibodies facilitate virus entry and replication, may be a significant obstacle in the development of effective vaccines for many viruses, including PRRSV. However, the contribution of ADE to PRRSV infection remains controversial, especially in vivo. Whether attenuated PRRSV vaccines prevent or worsen subsequent disease in pigs infected by novel PRRSV strains requires more research. In the present study, in vivo experiments were conducted to evaluate ADE under different immune statuses, which were produced by waiting different lengths of time after vaccination with a commercially available attenuated highly pathogenic PRRSV (HP-PRRSV) vaccine (JXA1-R) before challenging the pigs with a novel heterologous NADC30-like strain. RESULTS: Piglets that were vaccinated before being challenged with PRRSV exhibited lower mortality rates, lower body temperatures, higher bodyweight gain, and lower viremia. These results demonstrate that vaccination with JXA1-R alleviated the clinical signs of PRRSV infection in all vaccinated groups. CONCLUSIONS: The obtained data indicate that the attenuated vaccine test here provided partial protection against the NADC30-like strain HNhx. No signs of enhanced PRRSV infection were observed under the applied experimental conditions. Our results provide some insight into the molecular mechanisms underlying vaccine-induced protection or enhancement in PRRSV.


Antibody-Dependent Enhancement , Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/classification , Viral Vaccines/standards , Animals , Porcine respiratory and reproductive syndrome virus/immunology , Swine , Vaccination/veterinary , Vaccines, Attenuated , Viral Vaccines/immunology , Viremia
...