Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 136
1.
Mar Drugs ; 22(4)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38667783

The nutritional and bioactive value of seaweeds is widely recognized, making them a valuable food source. To use seaweeds as food, drying and thermal treatments are required, but these treatments may have a negative impact on valuable bioactive compounds. In this study, the effects of dehydration, rehydration, and thermal treatment on the bioactive compounds (carotenoids, phycobiliproteins, total phenolic content (TPC), total flavonoids content (TFC)), antioxidant (ABTS and DPPH radical scavenging activities) and anti-Alzheimer's (Acetylcholinesterase (AchE) inhibitory activities, and color properties of Porphyra umbilicalis and Porphyra linearis seaweeds were evaluated. The results revealed significant reductions in carotenoids, TPC, TFC, and antioxidant activities after the seaweeds' processing, with differences observed between species. Thermal treatment led to the most pronounced reductions in bioactive compound contents and antioxidant activity. AchE inhibitory activity remained relatively high in all samples, with P. umbilicalis showing higher activity than P. linearis. Changes in color (ΔE) were significant after seaweeds' dehydration, rehydration and thermal treatment, especially in P. umbilicalis. Overall, optimizing processing methods is crucial for preserving the bioactive compounds and biological activities of seaweeds, thus maximizing their potential as sustainable and nutritious food sources or as nutraceutical ingredients.


Antioxidants , Cholinesterase Inhibitors , Edible Seaweeds , Phenols , Porphyra , Seaweed , Antioxidants/chemistry , Carotenoids/chemistry , Cholinesterase Inhibitors/chemistry , Desiccation , Flavonoids/chemistry , Hot Temperature , Phenols/chemistry , Phycobiliproteins , Porphyra/chemistry , Seaweed/chemistry
2.
J Food Sci ; 89(2): 998-1011, 2024 Feb.
Article En | MEDLINE | ID: mdl-38161275

Effects of light or dark storage condition on the profile changes of volatile and non-volatile compounds were evaluated in dried and baked laver for 60 days. Volatile and non-volatile compounds were analyzed using gas chromatography-mass selective detection and high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry, respectively. Baked laver stored in light conditions for 60 days produced the most volatile compounds, whereas dried laver stored in the dark produced the least volatile compounds. Total 11 classes of volatile compounds were detected, including alkanes, alkenes, and ketones, with aldehydes being most abundant in dried laver stored under light. Metabolite analysis of non-volatile compounds led to the selection of 12 compounds with a higher variable importance projection (VIP) value of >1.0: 6 fatty acids (VIP 1.2-2.0), 2 flavanols (VIP 1.3-1.8), hydroxybenzoic acid (VIP 1.5), hydroxycinnamic acid (VIP 2.3), a phenolic acid ester (VIP 1.9), and phloroglucinol (VIP 1.2). Generally, levels of these compounds decreased more following storage in the light than under dark, irrespective of laver preparation. The content of linolenic acid was particularly affected by storage conditions, with light conditions causing a fourfold reduction in linolenic acid level compared with dark conditions, which could result in an increased formation of aldehydes. Gallic acid and sinapinic acid were detected in dried but not baked laver, as they are destroyed by heat treatment. Therefore, laver should be baked and stored in dark conditions to prevent the development of rancidity. PRACTICAL APPLICATION: Laver is one of the representative seaweeds, and the popularity among consumers increases. Although commercially available laver is prepared in dried or baked condition, scientific studies on the changes of metabolites, including volatile and non-volatile compounds during storage, are scarce. The results of this study can be applied to improve proper storage methods to maintain the quality of laver, which can be beneficial for consumers and food industry.


Edible Seaweeds , Porphyra , Volatile Organic Compounds , Porphyra/chemistry , Aldehydes/analysis , Linolenic Acids , Volatile Organic Compounds/chemistry
3.
Ultrason Sonochem ; 102: 106727, 2024 Jan.
Article En | MEDLINE | ID: mdl-38113584

This study first employed ultrasonic-assisted fermentation of seaweed foot material with Lactiplantibacillus plantarum to produce Porphyra yezoensis sauce. The aim was to examine L. plantarum's growth and metabolism of nutritional components at different growth stages under low- (133.99 W/L) and high-ultrasonic power densities (169.17 W/L). After 24-h fermentation, L. plantarum exhibited a 21.32 % increase in the sonicated P. yezoensis sauce at 133.99 W/L and the logarithmic growth phase compared to that at 169.17 W/L. In addition, compared to the non-sonicated sauce, total phenolic and flavonoid contents increased by around 58 % and 27 % in sonicated sauce at 133.99 W/L, reaching 92.38 mg GEA/g DW and 111.08 mg RE/g DW, respectively. Principal Component Analysis (PCA) of the evaluation criteria for different fermentation stages under 133.99 W/L power ultrasonication revealed that the P. yezoensis sauce generated more phenolic compounds and exhibited stronger antioxidant capabilities in the sonicated sample at the logarithmic phase of L. plantarum. Compared to the traditional treated P. yezoensis sauce, the content of free amino acids was significantly increased in sonicated sauce, especially for logarithmic phase. Finally, GC-IMS analysis demonstrated that the ultrasonication at logarithmic phase released more volatile compounds compared to the non-sonicated sauce. This led to a reduction in the fishy odour of the Porphyra yezoensis sauce and an improved release of favourable flavour compounds.


Edible Seaweeds , Porphyra , Seaweed , Fermentation , Porphyra/chemistry , Porphyra/metabolism , Food , Seaweed/chemistry
4.
J Agric Food Chem ; 71(44): 16763-16776, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37877414

A novel antidiabetic glycoprotein (PG) was isolated and purified from Porphyra haitanensis, and its structure and inhibiting activity on α-amylase and α-glucosidase were analyzed. The purity of the PG was 95.29 ± 0.21%, and its molecular weight was 163.024 ± 5.55 kDa. The PG had a tetramer structure with α- and ß-subunits, and it contained 54.12 ± 0.86% protein (with highly hydrophobic amino acids) and 41.19% ± 0.64% carbohydrate (composed of galactose). The PG was linked via an O-glycosidic bond, exhibiting an α-helical structure and high stability. In addition, the PG inhibited the activities of α-amylase and α-glucosidase, by changing the enzyme's structure toward the PG's structure in a noncompetitive inhibition mode. Molecular docking results showed that the PG inhibited α-amylase activity by hydrophobic interaction, whereas it inhibited α-glucosidase activity by hydrogen bonds and hydrophobic interaction. Overall, the PG was linked to polysaccharides via O-glycosidic bonds, showing an α-helical configuration and a hydrophobic effect, which altered the configuration of α-amylase and α-glucosidase and exerted hypoglycemic activity. This study provides insights into analyzing the structure and antidiabetic activity of glycoproteins.


Hypoglycemic Agents , Porphyra , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Porphyra/chemistry , alpha-Glucosidases , Molecular Docking Simulation , alpha-Amylases , Glycoproteins/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry
5.
Food Chem ; 426: 136669, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37352716

This study aimed to purify, characterise and stabilise the natural food colourant, R-phycocyanin (R-PC), from the red algae Porphyra spp. (Nori). We purified R-PC from dried Nori flakes with a high purity ratio (A618/A280 ≥ 3.4) in native form (α-helix content 53%). SAXS measurements revealed that R-PC is trimeric ((αß)3) in solution. The thermal denaturation of α-helix revealed one transition (Tm at 52 °C), while the pH stability study showed R-PC is stable in the pH range 4-8. The thermal treatment of R-PC at 60 °C has detrimental and irreversible effects on R-PC colour and antioxidant capacity (22 % of residual capacity). However, immobilisation of R-PC within calcium alginate beads completely preserves R-PC colour and mainly retains its antioxidant ability (78 % of residual capacity). Results give new insights into the stability of R-PC and preservation of its purple colour and bioactivity by encapsulation in calcium alginate beads.


Food Coloring Agents , Porphyra , Phycocyanin/chemistry , Porphyra/chemistry , Antioxidants , Scattering, Small Angle , X-Ray Diffraction , Vegetables
6.
Int J Biol Macromol ; 242(Pt 2): 125003, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37217048

This study was to investigate the structure and antioxidant activity of Porphyra haitanensis polysaccharides (PHPs) extracted by different methods, including water extraction (PHP), ultra-high pressure (UHP-PHP), ultrasonic (US-PHP) and microwave assisted water extraction (M-PHP). Compared with water extraction, the total sugar, sulfate and uronic acid contents of PHPs was enhanced by ultra-high pressure, ultrasonic and microwave assisted treatments, especially those of UHP-PHP were increased by 24.35 %, 12.84 % and 27.51 %, respectively (p < 0.05). Meanwhile, these assisted treatments affected the monosaccharide ratio of polysaccharides and significantly reduced the protein content, molecular weight as well as particle size of PHPs (p < 0.05), and resulted in a loose microstructure with more porosity and fragments. PHP, UHP-PHP, US-PHP, and M-PHP all possessed in vitro antioxidant capacity. Among them, UHP-PHP had the strongest oxygen radical absorbance capacity, DPPH and ·OH radicals scavenging capacities, which increased by 48.46 %, 116.24 %, and 14.98 % respectively. Moreover, PHPs particularly UHP-PHP effectively increased the cell viability and reduced ROS levels of H2O2 induced RAW264.7 cells (p < 0.05), indicating their good effects against cell oxidative damage. The findings suggested that PHPs with ultra-high pressure assisted treatments has the better potential to develop natural antioxidant.


Antioxidants , Porphyra , Antioxidants/chemistry , Porphyra/chemistry , Hydrogen Peroxide/metabolism , Polysaccharides/chemistry , Water/metabolism
7.
J Sci Food Agric ; 103(11): 5277-5287, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37016843

BACKGROUND: Oxidation has been reported as the one of the deterioration reactions of proteins in aquatic products. Searching for new bioactive substances from marine algae has been one of the main areas in food science and additives. RESULTS: In this study, a novel protein from the red alga Porphyra haitanensis was determined after ammonium sulfate precipitation and gel filtration chromatography. It closely corresponded to the antioxidant activity and was identified as an uncharacterized protein with a molecular mass of 43 kDa, designated Ph43. Bioinformatic analysis revealed that Ph43 is a novel protein of non-phycobiliprotein family with putative chordin domains and rich in α-helical conformation. Recombinant protein (rPh43) was expressed in Escherichia coli as a Hig-tagged protein using a pET-22b vector system and purified by affinity high-performance liquid chromatography. Spectroscopy analysis revealed that there were no structural differences between rPh43 and natural recovered Ph43. Moreover, rPh43 showed equal/higher antioxidant activity compared with Ph43. rPh43 has the potential for application as a natural antioxidant for food stabilization. CONCLUSION: Our results identified a novel antioxidant protein with molecular mass of 43 kDa derived from Porphyra haitanensis that belongs to the non-phycobiliprotein family. © 2023 Society of Chemical Industry.


Antioxidants , Porphyra , Antioxidants/chemistry , Porphyra/chemistry , Molecular Weight , Chromatography, Gel
8.
Food Funct ; 13(19): 10034-10045, 2022 Oct 03.
Article En | MEDLINE | ID: mdl-36069516

Polysaccharides are a major functional component of seaweeds with various biological activities. Porphyra haitanensis is usually harvested in different growth periods, but how the harvest periods influence the Porphyra haitanensis polysaccharide (PHP) activity is unclear. This work aimed to evaluate the anti-allergic activity of PHP from different harvest periods and investigate the potential structure-activity relationship. The water-soluble polysaccharide of P. haitanensis from three different harvest periods was purified and administered to an ovalbumin-sensitized food allergy mouse model. Results showed that PHPs significantly alleviated the allergic symptoms and reduced the production of histamine and allergen-specific IgE. Further experiments elucidated that PHPs suppressed the allergic activity of intestinal epithelial cells, dendritic cells, and Th2 cells and downregulated the proportion of Th2 cells. Noticeably, the molecular weight and sulfate content gradually decreased as the harvest period was delayed; simultaneously, the anti-allergic activity gradually increased, implying a relationship between the harvest period, structure, and anti-allergic activity of PHPs. This work elucidated the anti-allergic activity of PHPs from different harvest periods, facilitated the deep-processing and efficient application of Porphyra haitanensis, and shed light on the development of novel anti-allergic functional foods.


Anti-Allergic Agents , Porphyra , Rhodophyta , Allergens , Animals , Anti-Allergic Agents/pharmacology , Histamine , Immunoglobulin E , Mice , Ovalbumin , Polysaccharides/chemistry , Polysaccharides/pharmacology , Porphyra/chemistry , Sulfates , Water
9.
Mar Drugs ; 20(7)2022 Jun 30.
Article En | MEDLINE | ID: mdl-35877732

To evaluate the biological effects of Porphyra tenera (P. tenera), we tried to confirm the possibility that the intake of P. tenera could modulate cognitive and intestinal functions in PM2.5-induced cognitive decline mice. P. tenera attenuated PM2.5-induced learning and memory impairment through antioxidant and anti-inflammatory effects by regulating the mitochondrial function and TLR-initiated NF-κB signaling. In addition, P. tenera effectively alleviated Aß production/tau phosphorylation by inhibiting the JNK phosphorylation. Also, the bioactive constituents of P. tenera determined the sulfated galactan, mycosporine-like amino acids (MAAs), and chlorophyll derivatives. Moreover, the bioactive compounds of P. tenera by gut fermentation protected against gut dysbiosis and intestinal tight junction damage with a decrease in inflammatory response and short-chain fatty acid production. Based on these results, our findings suggest that P. tenera with sulfated galactan and MAAs is a potential material for cognitive function improvement.


Cognitive Dysfunction , Porphyra , Rhodophyta , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Cyclohexanones/pharmacology , Galactans , Glycine , Mice , Particulate Matter , Porphyra/chemistry
10.
Food Chem ; 397: 133636, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-35901612

This study is aimed to explore the impact of fermentation temperature on laver kombucha by profiling the accumulation and degradation of metabolites and elucidating their related pathways of metabolism. Laver kombucha was produced through ultrasound-assisted extraction and fermentation using a biofilm called SCOBY at 25 and 30 °C (hereafter named K-25 and K-30, respectively) for 14 days. Overall, organic acids, soluble sugars, amino acids, and phenolic compounds were found to participate in the biosynthesis pathway. The level of amino acids showed a decreasing trend, except taurine in the K-30. At day 14, phenolic compounds (pyrogallol, ρ-hydroxybenzoic acid, ρ-coumaric acid, salicylic acid, rutin, and naringin) were accumulated in both samples. Although it showed a similar trend, K-25 exhibited a higher metabolite accumulation tendency than K-30. This comprehensive characterization of the dynamic changes of metabolites and pathway prediction can pinpoint the influence of the fermentation conditions on the biosynthesis of secondary metabolites.


Porphyra , Antioxidants , Fermentation , Phenols , Porphyra/chemistry , Temperature
11.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article En | MEDLINE | ID: mdl-35216471

Algae are underexplored resources in Western countries and novel approaches are needed to boost their industrial exploitation. In this work, eight edible seaweeds were subjected to their valorization in terms of nutritional characterization, thermochemical properties, and bioactive profile. Our results suggest that seaweeds present a rich nutritional profile, in which carbohydrates are present in high proportions, followed by a moderate protein composition and a valuable content of ω-3 polyunsaturated fatty acids. The thermochemical characterization of seaweeds showed that some macroalgae present a low ash content and high volatile matter and carbon fixation rates, being promising sources for alternative biofuel production. The bioactive profile of seaweeds was obtained from their phenolic and carotenoid content, together with the evaluation of their associated bioactivities. Among all the species analyzed, Porphyra purpurea presented a balanced composition in terms of carbohydrates and proteins and the best thermochemical profile. This species also showed moderate anti-inflammatory activity. Additionally, Himanthalia elongata extracts showed the highest contents of total phenolics and a moderate carotenoid content, which led to the highest rates of antioxidant activity. Overall, these results suggest that seaweeds can be used as food or functional ingredient to increase the nutritional quality of food formulations.


Biofuels , Nutritive Value , Phytochemicals/pharmacology , Seaweed/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Porphyra/chemistry
12.
Glycoconj J ; 38(5): 573-583, 2021 10.
Article En | MEDLINE | ID: mdl-34515910

To explore effect of the structural properties of porphyra haitanensis polysaccharide on its biological activity, degraded porphyra polysaccharides were separated and purified by Cellulose DEAE-52 and Sephadex G-100 chromatography, obtaining three purified components (P1, P2 and P3). All the three components were sulfate polysaccharides containing the repeating units of → 3) ß-D-galactose (1 → 4) 3,6-anhydro-α-L-galactose (1 →, and → 3) ß-D-galactose (1 → 4) α-L-galactose-6-S (1 →, and → 3) 6-O-methyl-ß-D-galactose (1 → 4) 3,6-anhydro-α-L-galactose (1 →. The molecular weight of the three fractions was measured to be 300.3, 130.4 and 115.1 kDa, respectively. Their antioxidant activity was investigated by the determination of the free radical scavenging effect and ferric reducing power. It was found that P1, P2 and P3 possessed marked antioxidant activity. It was also found that they appreciably enhanced the proliferation, phagocytic ability and nitric oxide secretion in RAW264.7 cells. Lower molecular weight and higher sulfate content were beneficial to bioactivities of P. haitanensis polysaccharides. Overall, P2 and P3 possess superior immuno-modulatory activity to that of P1 and PHP. Thus, the current work will provide the basis for the better utilization of P. haitanensis to develop the related functional foods.


Antioxidants/chemistry , Antioxidants/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Porphyra/chemistry , Animals , Biphenyl Compounds , Carbohydrate Conformation , Macrophages/drug effects , Macrophages/immunology , Mice , Molecular Weight , Nitric Oxide/metabolism , Picrates , RAW 264.7 Cells
13.
Molecules ; 26(10)2021 May 14.
Article En | MEDLINE | ID: mdl-34068969

The chemical modification of porphyran hydrocolloid is attempted, with the objective of enhancing its antioxidant and antimicrobial activities. Sulfated galactan porphyran is obtained from commercial samples of the red algae Porphyra dioica using Soxhlet extraction with water at 100 °C and precipitation with isopropyl alcohol. The extracted porphyran is then treated with modified L-tyrosines in aqueous medium in the presence of NaOH, at ca. 70 °C. The modified tyrosines L1 and L2 are prepared through a Mannich reaction with either thymol or 2,4-di-tert-butylphenol, respectively. While the reaction with 2,4-di-tert-butylphenol yields the expected tyrosine derivative, a mixture of products is obtained with thymol. The resulting polysaccharides are structurally characterized and the respective antioxidant and antimicrobial activities are determined. Porphyran treated with the N-(2-hydroxy-3,5-di-tert-butyl-benzyl)-L-tyrosine derivative, POR-L2, presents a noticeable superior radical scavenging and antioxidant activity compared to native porphyran, POR. Furthermore, it exhibited some antimicrobial activity against S. aureus. The surface morphology of films prepared by casting with native and modified porphyrans is studied by SEM/EDS. Both POR and POR-L2 present potential applicability in the production of films and washable coatings for food packaging with improved protecting characteristics.


Antioxidants/pharmacology , Sepharose/analogs & derivatives , Tyrosine/chemistry , Aerobiosis , Anti-Infective Agents/pharmacology , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Microbial Sensitivity Tests , Oxidation-Reduction , Picrates/chemistry , Porphyra/chemistry , Proton Magnetic Resonance Spectroscopy , Sepharose/chemistry , Sepharose/isolation & purification , Sepharose/pharmacology , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Sulfonic Acids/chemistry , Tyrosine/chemical synthesis
14.
J Sci Food Agric ; 101(15): 6452-6462, 2021 Dec.
Article En | MEDLINE | ID: mdl-33997981

BACKGROUND: The separation and purification of Porphyra haitanensis polysaccharide (PHP), and the determination of changes in molecular weight (Mw) and antioxidant capacity after in vitro digestion, were undertaken. RESULTS: Analysis of two polysaccharide fractions (PHP0.5-1-UF and PHP1.0-1-UF) by various techniques showed that they were very pure sulfated polysaccharides without pigment or protein. PHP0.5-1-UF was filamentous or 'tape-like' sheets, whereas PHP1.0-1-UF had some filaments and large numbers of rounded aggregates. The Mw of PHP, PHP0.5-1-UF and PHP1.0-1-UF was 2.06 × 106 (±2.02%), 6.68 × 106 (±3.17%), and 1.14 × 106 (±3.44%) (g mol-1 ), respectively. After in vitro digestion, the Mw of PHP, PHP0.5-1-UF, and PHP1.0-1-UF decreased. Their antioxidant capacities were markedly higher than before digestion, especially PHP0.5-1-UF and its digestion products, which might be related to the reductions in Mw. CONCLUSION: These findings provide a greater understanding of the separation and purification of sulfated polysaccharides and the influence of digestion on biological activity. They also contribute to the practical application of sulfated polysaccharides in functional foods. © 2021 Society of Chemical Industry.


Antioxidants/chemistry , Plant Extracts/isolation & purification , Polysaccharides/isolation & purification , Porphyra/chemistry , Antioxidants/isolation & purification , Molecular Weight , Plant Extracts/chemistry , Polysaccharides/chemistry , Spectrum Analysis , Sulfates/chemistry , X-Ray Diffraction
15.
Food Funct ; 12(10): 4707-4719, 2021 May 21.
Article En | MEDLINE | ID: mdl-33929475

We previously described that Porphyra haitanensis sulfated polysaccharide (PHSP) maintains the balance of pro-inflammation and immunosuppression. However, it is unclear whether degraded PHSP (DPHSP) still shows the immunomodulatory activity. Here, we degraded PHSP by four different methods alone or combined in pairs, and the results showed that the molecular weight and viscosity of DPHSP were significantly decreased, while the main chemical bonds and functional structure were consistent with those of PHSP. We then investigated the immunomodulatory function of DPHSP in vitro and in vivo. Actually, DPHSP enhances the inhibitory effects on mast cell activation and improves the suppression activity of PHSP on the food anaphylactic response. In an ovalbumin-induced food allergy mouse model, the production of allergic mediators and cytokines (interleukin-4 and 13, and interferon-γ) was inhibited by DPHSP. Meanwhile, DPHSP had a stronger ability to up-regulate the differentiation of regulatory T (Treg) cells and its related cytokines. These results suggested that DPHSP showed a better anti-food allergic ability than PHSP by regulating T helper cell balance and promoting Treg cell differentiation, which indicates that DPHSP is a novel potential nutrient component against food allergy.


Cell Differentiation/drug effects , Food Hypersensitivity/drug therapy , Ovalbumin/adverse effects , Polysaccharides/pharmacology , Porphyra/chemistry , Sulfates/pharmacology , T-Lymphocytes, Helper-Inducer/drug effects , Anaphylaxis/drug therapy , Animals , Anti-Allergic Agents/pharmacology , Antibodies/blood , Cytokines/metabolism , Female , Histamine/blood , Mice , Mice, Inbred BALB C , Polysaccharides/chemistry , Sulfates/chemistry , T-Lymphocytes, Regulatory
16.
Oxid Med Cell Longev ; 2021: 6463281, 2021.
Article En | MEDLINE | ID: mdl-33763169

The protective effects of Porphyra yezoensis polysaccharides (PYPs) with molecular weights of 576.2 (PYP1), 105.4 (PYP2), 22.47 (PYP3), and 3.89 kDa (PYP4) on the oxidative damage of human kidney proximal tubular epithelial (HK-2) cells and the differences in adherence and endocytosis of HK-2 cells to calcium oxalate monohydrate crystals before and after protection were investigated. Results showed that PYPs can effectively reduce the oxidative damage of oxalic acid to HK-2 cells. Under the preprotection of PYPs, cell viability increased, cell morphology improved, reactive oxygen species levels decreased, mitochondrial membrane potential increased, S phase cell arrest was inhibited, the cell apoptosis rate decreased, phosphatidylserine exposure reduced, the number of crystals adhered to the cell surface reduced, but the ability of cells to endocytose crystals enhanced. The lower the molecular weight, the better the protective effect of PYP. The results in this article indicated that PYPs can reduce the risk of kidney stone formation by protecting renal epithelial cells from oxidative damage and reducing calcium oxalate crystal adhesion, and PYP4 with the lowest molecular weight may be a potential drug for preventing kidney stone formation.


Calcium Oxalate/toxicity , Endocytosis/drug effects , Epithelial Cells/pathology , Kidney/pathology , Nanoparticles/chemistry , Oxidative Stress/drug effects , Polysaccharides/pharmacology , Porphyra/chemistry , Protective Agents/pharmacology , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Line , Cell Shape/drug effects , Cell Survival/drug effects , Crystallization , Epithelial Cells/drug effects , G1 Phase/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Models, Biological , Phosphatidylserines/metabolism , Reactive Oxygen Species/metabolism , S Phase/drug effects
17.
Mol Nutr Food Res ; 65(9): e2000869, 2021 05.
Article En | MEDLINE | ID: mdl-33783973

INTRODUCTION: Degraded porphyran is a bioactive polysaccharide extracted from Porphyra haitanensis (P. haitanensis). According to the previous studies, it produced anti-inflammatory activity, but little is known about its effects on depression. METHODS AND RESULTS: As inflammation is one of the critical factors involved in the development of depression, this study aims to elucidate the potential antidepressant-like effects of degraded porphyran. The results show that acute porphyran treatment decreased the immobility time in despair tests. In addition, subchronic porphyran administration reverses depressive-like behaviors in lipopolysaccharide (LPS)-treated mice. Meanwhile, porphyran inhibits NF-κB/NLRP3 signaling, proinflammatory cytokine release, and microglial activation in the hippocampus. Moreover, chronic porphyran treatment activates hippocampal brain derived neurotrophic factor (BDNF)/TrkB/ERK/CREB signaling pathway in chronic unpredictable mild stress (CUMS) in mice. As a result, neurogenesis and spinogenesis are maintained. CONCLUSIONS: The findings of the present study indicate that degraded porphyran intake provides a potential strategy for depression treatment, which is mediated by the inhibition of neuroinflammation and the enhancement of neurogenesis and spinogenesis in the central nervous systems.


Antidepressive Agents/pharmacology , Porphyra/chemistry , Sepharose/analogs & derivatives , Animals , Brain-Derived Neurotrophic Factor/physiology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Molecular Docking Simulation , Neurogenesis/drug effects , Neuroinflammatory Diseases/drug therapy , Sepharose/pharmacology , Toll-Like Receptor 4/physiology
18.
Food Chem ; 349: 129209, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33588184

Porphyra is one of the most economically important red algae in the world. The functional components extracted from Porphyra such as porphyrans, proteins, lipids, and minerals have strong physiological activities. Porphyran, a sulfated galactan, is composed of alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked ß-d-galactopyranose (G). Porphyran and oligo-porphyran have a series of pharmacological and biological functions, such as antioxidation, anticancer, antiaging, antiallergic, immunomodulatory, hypoglycaemic, and hypolipidemic effects. Thus, red algae Porphyra-derived porphyran and oligo-porphyran have various potential applications in food, medicine, and cosmetic fields. For better application, this review introduces and summarizes the structure and source of porphyran as well as the preparation methods, biological activities, and potential applications of porphyran and oligo-porphyran. Moreover, the future research directions and emphasis of porphyran and oligo-porphyran preparation as well as their functional activities and applications are highlighted and prospected.


Polymerization , Porphyra/chemistry , Sepharose/analogs & derivatives , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Sepharose/chemistry , Sepharose/isolation & purification , Sepharose/pharmacology
19.
Food Chem ; 344: 128694, 2021 May 15.
Article En | MEDLINE | ID: mdl-33277121

A novel aptamer-modified Copper @ Gold nanoclusters (apt-Cu@Au NCs) based ratiometric fluorescent probe was developed for mercury ions (Hg2+) determination in Porphyra. The apt-Cu@Au NCs were well dispersed in solution without Hg2+ but combined together for the formation of thymidine-Hg-thymidine structure with the addition of Hg2+, which further caused the changes in their fluorescence intensities owing to fluorescence resonance energy transfer. Along with that, the changes in fluorescent colors are visible to the naked eye. Accordingly, Hg2+ were determined ranging from 0.1 to 9.0 µM by fluorescence analysis with the detection limit of 4.92 nM. Moreover, a homemade device utilizing smartphone and microfluidic chip was designed for colorimetric determination of Hg2+ ranging from 0.5 to 7.0 µM with good portability and usefulness. The proposed methods were used for Hg2+ detection in Porphyra with the recoveries of 101.83-114.00%, suggesting the considerable potential for evaluating Hg2+ levels in aquatic products.


Aptamers, Nucleotide/chemistry , Copper/chemistry , Gold/chemistry , Mercury/analysis , Metal Nanoparticles/chemistry , Porphyra/chemistry , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Ions/chemistry , Microscopy, Electron, Transmission , Porphyra/metabolism , Reproducibility of Results
20.
J Sci Food Agric ; 101(7): 2930-2939, 2021 May.
Article En | MEDLINE | ID: mdl-33155677

BACKGROUND: Porphyra haitanensis now faces serious heavy metal pollution problems. Natural deep eutectic solvents (NADESs) have been recognized as a novel class of sustainable solvents, which can be used for heavy metal removal. In this study, 28 kinds of NADESs were prepared and investigated as eluent in the removal of lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and copper (Cu) from P. haitanensis for the first time, and the adsorption mechanism of NADESs was also studied. RESULTS: The removals were greatly improved by NADESs compared with control where the removal rates of Pb, Cd, Cr, As and Cu were 17.4-87.54%, 57.54-100%, 9.8-48.59%, 21.32-78.24% and 11.68-79.73%, respectively. The optimal condition was 10% water content and solid-liquid ratio of 1:20. Moreover, the addition of 20% natural surfactant arabic gum can further increase the heavy metals removal rates of NADESs. The adsorption mechanism experiments showed that the pseudo second-order model and the Freundlich adsorption model can better explain the adsorption mechanism of NADESs on heavy metals removal. CONCLUSION: Taken together, a green and efficient method for removing heavy metals from P. haitanensis was established. © 2020 Society of Chemical Industry.


Green Chemistry Technology/methods , Metals, Heavy/isolation & purification , Porphyra/chemistry , Adsorption , Cadmium/analysis , Cadmium/isolation & purification , Chromium/isolation & purification , Copper/analysis , Copper/isolation & purification , Green Chemistry Technology/instrumentation , Lead/analysis , Lead/isolation & purification , Metals, Heavy/analysis , Solvents/chemistry
...