Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.611
1.
J Orthop Surg Res ; 19(1): 300, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760821

BACKGROUND: Despite advancements in school scoliosis screening (SSS), there are still no effective indicators to estimate the severity of spinal curvature. We aim to investigate the association between incorrect postures and curve magnitude of adolescent idiopathic scoliosis (AIS) among Chinese adolescents. METHODS: In this SSS program, we examined the incorrect posture, Adam's forward bending test (FBT) results, and angle of trunk rotation (ATR) in adolescents. Those with suspected scoliosis were referred for a standing anteroposterior whole-spine radiography as outpatients. The radiographic data of 426 students with lateral Cobb angles were collected from 2016 to 2022 and the associations were studied using logistic regression (LR) models and receiver operating characteristic (ROC) curves. RESULTS: Univariate LR revealed that female gender [odds ratio (OR) = 2.92, 95% confidence interval (CI) 1.67-5.09, P < 0.001], age 16-19y (OR = 2.83, 95%CI 1.10-7.28, P = 0.031), right shoulder height (OR = 2.15, 95%CI 1.23-3.75, P = 0.007), right scapula tilt (OR = 2.03, 95%CI 1.18-3.50, P = 0.010), right rib hump (OR = 1.88, 95%CI 1.23-2.85, P = 0.003), right thoracic rotation ≥ 5° (OR = 2.14, 95%CI 1.43-3.20, P < 0.001), and left thoracolumbar kyphosis (OR = 3.79, 95%CI 1.06-13.56, P = 0.041) were all significantly associated with the severity of the curve magnitude. Multivariate LR showed that female gender [adjusted OR (AOR) = 3.23, 95%CI 1.81-5.73, P < 0.001], those aged 16-19y (AOR = 5.08, 95%CI 1.86-13.91, P = 0.002), and with a right rib hump (AOR = 1.72, 95%CI 1.11-2.64, P = 0.015) presented with a higher risk of severe curve magnitude than men, those aged 7-12y, and without a rib hump, respectively. ROC curves further proved that sex, age, shoulder-height difference, scapula tilt, flat back, rib hump, angle of thoracic rotation were the risk predictors for curve magnitude. CONCLUSION: Incorrect posture and ATR, especially the right rib hump, were significantly associated with the curve magnitude of AIS. Early screening for incorrect postures and ATR could be an effective and economical strategy to predict the severity of AIS through SSS in Chinese adolescents.


Posture , Scoliosis , Humans , Scoliosis/diagnostic imaging , Scoliosis/physiopathology , Adolescent , Female , Male , China/epidemiology , Posture/physiology , Young Adult , Severity of Illness Index , Radiography
2.
J Bodyw Mov Ther ; 38: 100-105, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763548

BACKGROUND: The impact of computer typing in a slump posture on pain, proprioception and muscle recruitment has not been extensively investigated. Therefore, the purpose of this study was to evaluate the extent of pain, proprioception and muscle activity resulting from computer typing in a slump posture in women who already suffer from chronic neck pain. METHODS: This cross-sectional study was conducted between May 20 to July 10, 2021. A total of 15 female 42-(±4.96)-year-old office workers with chronic non-specific neck pain participated in this study. Before and after 60 min of computer typing in a slump posture, proprioception and pain were measured using an inclinometer and visual analog scale (VAS), respectively. The activity of the cervical erector spine (CES) and upper trapezius (UT) muscle was also measured before and after the slump-posture computer typing, in upright, forward, and slump postures. RESU: lts: Paired-samples t-tests showed that pain was increased and proprioception in all directions (flexion, extension, right and left lateral flexion, and right, and left rotation) was less accurate (P < 0.05) after 60 min computer typing. The CES and UT muscle activity were elevated more in the forward head and slump posture than in the upright posture (P < 0.05). CONCLUSION: Sixty minutes computer typing in a slump posture increased neck pain, resulted in a decreased proprioception in the neck and was accompanied by an increased activity of the neck musculature.


Neck Pain , Posture , Proprioception , Humans , Neck Pain/physiopathology , Female , Cross-Sectional Studies , Posture/physiology , Proprioception/physiology , Adult , Retrospective Studies , Pain Measurement , Chronic Pain/physiopathology , Superficial Back Muscles/physiopathology , Superficial Back Muscles/physiology , Electromyography , Neck Muscles/physiology , Neck Muscles/physiopathology , Middle Aged
3.
J Bodyw Mov Ther ; 38: 133-142, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763552

INTRODUCTION: Posture is a facet of clinical assessment in several rehabilitative disciplines. Despite extensive clinical focus, the precision with which posture can be evaluated and intervened upon is limited by the very general terms used to describe it. The purpose of this crossover trial was to quantify the effects of targeted postural intervention motivated by theoretical sagittal gravitational collapsing (SGC) tendencies on: 1) distance from SGC, 2) intermuscular coherence (iCOH), and 3) kinematic chain connectivity. METHODS: Ten healthy adults (24.50 ± 1.18 years, 172.72 ± 10.19 cm, 76.47 ± 14.60 kg) completed pre- and post-intervention testing on two occasions involving contrasting interventions: promote postural muscle (PPM) vs. reduce compensatory muscle (RCM) engagement. Distance from SGC, iCOH, and kinematic chain connectivity were quantified from electromyography and/or kinematic data acquired during tests administered before and after interventions. Effects of Treatment [PPM, RCM] and Time [Pre, Post] were tested with linear mixed models. RESULTS: A Treatment*Time interaction was observed for distance from SGC. Post-intervention distance from SGC was greater following PPM only (p < 0.01). A Treatment*Time interaction was observed for hi-frequency trunk muscle iCOH, with a post-intervention increase corresponding to the RCM intervention (p < 0.007). Additional iCOH effects did not differ by intervention. CONCLUSION: Distance from SGC is acutely modifiable and increases following exercises to facilitate anti-SGC muscles. Convergent findings related to kinematic chain connectivity and prescriptive neural binding were not observed. These observations suggest that it may be possible to describe, evaluate, and intervene upon posture in reference to a specific, mechanistic theory regarding the function of postural alignment.


Cross-Over Studies , Electromyography , Muscle, Skeletal , Posture , Humans , Male , Young Adult , Adult , Muscle, Skeletal/physiology , Female , Biomechanical Phenomena/physiology , Posture/physiology , Postural Balance/physiology , Gravitation
4.
J Bodyw Mov Ther ; 38: 18-23, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763560

BACKGROUND: Poor posture and sedentary lifestyle cause Forward Head Posture (FHP). To correct this, a Posture Correction Band (PCB) is commonly used. However, the efficacy of PCB vs. McKenzie's Exercises on pulmonary function and chest expansion in asymptomatic individuals with FHP was not known. OBJECTIVE: This study aimed to determine the efficacy of PCB vs. McKenzie's Exercises on the Pulmonary function and chest expansion in asymptomatic population with FHP. METHODOLOGY: A Randomized control trial was conducted on forty-two subjects with FHP. Subjects were divided in two groups. G1 group was educated as per McKenzie's exercises to perform once daily for a month. The Pulmonary function test and chest expansion of this group was performed before and after the McKenzie exercises. G2 group wore PCB for 2 h daily for a month and their PFT and chest expansion was recorded before and after the trial. FVC, FEV1, FEV1/FVC ratio, PEFR and Chest expansion were measured. RESULTS: The P-value of FVC, FEV1, FEV1/FVC ratio and PEFR between the groups (treatment group) was significant as 0.000, 0.000, 0.000 and 0.02 respectively. The chest expansion was non-significant between the groups (treatment group) with P-value as 0.553, 0.493 and 0.699 at axillary, 4th intercostal and xiphisternum level respectively. The P-value of FVC, FEV1, FEV1/FVC ratio and PEFR between the groups (control group) was non-significant as 0.682, 0.149, 0.424 and 0.414 respectively. The chest expansion was also non-significant between the groups (control group) with P-value as 0.853, 0.651 and 0.763 at axillary, 4th intercostal and xiphisternum level. CONCLUSION: The study concluded that there were significant effects of both Posture Correction Band and Mc'Kenzie exercises on pulmonary function with greater difference seen with PCB and non-significant effects on chest expansion in terms of P-values in treatment group.


Posture , Respiratory Function Tests , Humans , Posture/physiology , Male , Female , Adult , Respiratory Function Tests/methods , Exercise Therapy/methods , Thorax/physiology , Lung/physiology , Head/physiology , Young Adult , Middle Aged
5.
J Bodyw Mov Ther ; 38: 175-179, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763559

AIMS: This study evaluated the activities of the Rectus Abdominis (RA) and Transversus Abdominis (TrA) muscles during abdominal bracing exercises (ABE) in different body positions. METHODOLOGY: Electrical activities of both components of the RA and TrA muscles were assessed respectively in 25 obese females via surface electromyography during ABE in four (4) different body positions (crook lying, side lying, standing, and sitting). Each trial lasted for five (5) seconds with an hour rest period between trials. RESULTS: Electrical activities of each of the right RA (p = 0.008) and TrA (p = 0.001) muscles significantly varied across the four trials. For the left components of the RA (p = 0.243) and TrA (p = 0.332) muscles, no significant differences were observed across trials. The highest muscular activities were recorded during the standing trial while the crook lying position resulted in the least muscular activities. CONCLUSION: For the best results, abdominal bracing exercises should be performed in a standing position. The efficacy of adopting these body positions for long-term rehabilitation purposes should be investigated in future studies.


Abdominal Muscles , Electromyography , Obesity , Posture , Humans , Female , Abdominal Muscles/physiology , Adult , Obesity/physiopathology , Obesity/therapy , Posture/physiology , Young Adult , Rectus Abdominis/physiology , Exercise Therapy/methods
6.
J Bodyw Mov Ther ; 38: 384-390, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763583

BACKGROUND: The static sitting position contributes to increased pressure on the lumbar intervertebral disc, which can lead to dehydration and decreased disc height. OBJECTIVE: To systematically investigate the of sitting posture on degeneration of the lumbar intervertebral disc. MATERIALS AND METHODS: One researcher carried out a systematic literature search of articles with no language or time limits. Studies from 2006 to 2018 were found. The searches in all databases were carried out on January 28, 2022, using the following databases: Pubmed, Scopus, Embase, Cochrane, and Physiotherapy Evidence Database (PEDro) databases, and for the grey literature: Google scholar, CAPES Thesis and Dissertation Bank, and Open Grey. The acronym PECOS was used to formulate the question focus of this study: P (population) - male and female subjects; E (exposure) - sitting posture; C (comparison) - other posture or sitting posture in different periods; O (outcomes) - height and degeneration of the lumbar intervertebral disc(s), imaging exam; and S (study) - cross-sectional and case control. RESULTS: The risk of bias was in its moderate totality in its outcome: height and degeneration of the lumbar intervertebral disc(s) - imaging. Of the four selected studies, three found a decrease in the height of the disc(s) in sitting posture. CONCLUSION: The individual data from the manuscripts suggest that the sitting posture causes a reduction in the height of the lumbar intervertebral disc. It was also concluded that there is a need for new primary studies with a more in-depth design and sample size.


Intervertebral Disc Degeneration , Intervertebral Disc , Lumbar Vertebrae , Sitting Position , Humans , Lumbar Vertebrae/physiology , Lumbar Vertebrae/physiopathology , Intervertebral Disc/physiology , Biomechanical Phenomena/physiology , Intervertebral Disc Degeneration/physiopathology , Posture/physiology , Male
7.
J Bodyw Mov Ther ; 38: 406-416, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763586

The purpose of this paper is to further understand current literature on prolonged sitting, sitting posture and active sitting solutions. This paper is divided into three sections: The first section (Part I) is a comprehensive overview of the literature on how a static prolonged seated posture can affect: spinal health, trunk posture, contact pressure/discomfort development and vascular issues. The second section (Part II) reviews and qualitatively compares the four working postures recognized in ANSI/HFES 100-2007: reclined sitting, upright sitting, declined sitting and standing. The final section (Part III) is a summary of research on active chairs that revolves around the two types of movement patterns: 1- sustaining continual movement over a range of postures, occasionally reaching neutral lordosis, and 2- maintaining high frequency and duration of daily light contractile activity in the legs (or lower limbs).


Sitting Position , Workplace , Humans , Posture/physiology , Movement/physiology , Standing Position , Interior Design and Furnishings , Ergonomics/methods
8.
J Bodyw Mov Ther ; 38: 47-53, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763595

INTRODUCTION: Low back pain (LBP) is an economic and physically disabling burden on individuals and society. With 70% of cases classed as non-specific, there is a need for further research into the causes and consequences associated. The involvement of postural balance in musculoskeletal conditions is gaining increasing interest in research and health practice. However, there is a lack of literature surrounding LBP and posture in distal segments of the body. OBJECTIVE: The current study investigated scapula positioning in those with non-specific LBP. METHODS: Scapula angle of rotation, scapula protraction, and scapula elevation were assessed in nine participants with chronic non-specific LBP and compared with that of nine asymptomatic controls (aged 18-60 years). The degree of pelvic tilt was assessed across both groups as a secondary outcome measure. RESULTS: No difference was identified between the two sample groups for scapula angle of rotation (p = 0.707), protraction (p = 0.755), or elevation (p = 0.691). Anterior pelvic tilt was greater in those with LBP (p = 0.046), supporting previous literature. CONCLUSION: The findings for the scapula position are novel, given that research in this field is limited. It is concluded that there is no change in scapula positioning in those with non-specific LBP, but there is an increased anterior pelvic tilt.


Low Back Pain , Scapula , Humans , Low Back Pain/physiopathology , Scapula/physiopathology , Scapula/physiology , Adult , Male , Female , Middle Aged , Young Adult , Adolescent , Posture/physiology , Rotation , Postural Balance/physiology , Biomechanical Phenomena
9.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38732796

Gait speed and timed-up-and-go (TUG) predict cognitive decline, falls, and mortality. Dual-tasks may be useful in cognitive screening among people living with dementia (PWD), but more evidence is needed. This cross-sectional study aimed to compare single- and dual-task performance and determine the influence of dementia severity on dual-task performance and interference. Thirty PWD in two residential care facilities (Age: 81.3 ± 7.1 years; Montreal Cognitive Assessment: 10.4 ± 6.0 points) completed two trials of single- (feet apart) and dual-task posture (feet apart while counting backward), single- (walk 4 m) and dual-task gait (walk 4m while naming words), and single- (timed-up-and-go (TUG)), and dual-task functional mobility (TUG while completing a category task) with APDM inertial sensors. Dual-tasks resulted in greater sway frequency, jerk, and sway area; slower gait speed; greater double limb support; shorter stride length; reduced mid-swing elevation; longer TUG duration; reduced turn angle; and slower turn velocity than single-tasks (ps < 0.05). Dual-task performance was impacted (reduced double limb support, greater mid-swing elevation), and dual-task interference (greater jerk, faster gait speed) was related to moderate-to-severe compared to mild PWD. Moderate-to-severe PWD had poorer dynamic stability and a reduced ability to appropriately select a cautious gait during dual-tasks than those with mild PWD, indicating the usefulness of dual-tasks for cognitive screening.


Dementia , Gait , Posture , Humans , Male , Dementia/physiopathology , Pilot Projects , Gait/physiology , Female , Aged , Aged, 80 and over , Cross-Sectional Studies , Posture/physiology , Task Performance and Analysis , Residential Facilities , Postural Balance/physiology , Severity of Illness Index , Accidental Falls/prevention & control
10.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38732825

This study aimed to investigate the effects of wearing virtual reality (VR) with a head-mounted display (HMD) on body sway in younger and older adults. A standing posture with eyes open without an HMD constituted the control condition. Wearing an HMD and viewing a 30°-tilt image and a 60°-tilt image in a resting standing position were the experimental conditions. Measurements were made using a force plate. All conditions were performed three times each and included the X-axis trajectory length (mm), Y-axis trajectory length (mm), total trajectory length (mm), trajectory length per unit time (mm/s), outer peripheral area (mm2), and rectangular area (mm2). The results showed a significant interaction between generation and condition in Y-axis trajectory length (mm) and total trajectory length (mm), with an increased body center-of-gravity sway during the viewing of tilted VR images in older adults than in younger adults in both sexes. The results of this study show that body sway can be induced by visual stimulation alone with VR without movement, suggesting the possibility of providing safe and simple balance training to older adults.


Postural Balance , Standing Position , Virtual Reality , Humans , Male , Female , Postural Balance/physiology , Aged , Adult , Young Adult , Middle Aged , Adaptation, Physiological/physiology , Posture/physiology
11.
Sensors (Basel) ; 24(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732909

(1) Background: Home sleep apnea testing, known as polysomnography type 3 (PSG3), underestimates respiratory events in comparison with in-laboratory polysomnography type 1 (PSG1). Without head electrodes for scoring sleep and arousal, in a home environment, patients feel unfettered and move their bodies more naturally. Adopting a natural position may decrease obstructive sleep apnea (OSA) severity in PSG3, independently of missing hypopneas associated with arousals. (2) Methods: Patients with suspected OSA performed PSG1 and PSG3 in a randomized sequence. We performed an additional analysis, called reduced polysomnography, in which we blindly reassessed all PSG1 tests to remove electroencephalographic electrodes, electrooculogram, and surface electromyography data to estimate the impact of not scoring sleep and arousal-based hypopneas on the test results. A difference of 15 or more in the apnea-hypopnea index (AHI) between tests was deemed clinically relevant. We compared the group of patients with and without clinically relevant differences between lab and home tests (3) Results: As expected, by not scoring sleep, there was a decrease in OSA severity in the lab test, similar to the home test results. The group of patients with clinically relevant differences between lab and home tests presented more severe OSA in the lab compared to the other group (mean AHI, 42.5 vs. 20.2 events/h, p = 0.002), and this difference disappeared in the home test. There was no difference between groups in the shift of OSA severity by abolishing sleep scoring in the lab. However, by comparing lab and home tests, there were greater variations in supine AHI and time spent in the supine position in the group with a clinically relevant difference, either with or without scoring sleep, showing an impact of the site of the test on body position during sleep. These variations presented as a marked increase or decrease in supine outcomes according to the site of the test, with no particular trend. (4) Conclusions: In-lab polysomnography may artificially increase OSA severity in a subset of patients by inducing marked changes in body position compared to home tests. The location of the sleep test seems to interfere with the evaluation of patients with more severe OSA.


Polysomnography , Sleep Apnea, Obstructive , Humans , Polysomnography/methods , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/physiopathology , Male , Female , Middle Aged , Posture/physiology , Adult , Electroencephalography/methods , Aged
12.
Sensors (Basel) ; 24(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38733018

Traditionally, angle measurements have been performed using a goniometer, but the complex motion of shoulder movement has made these measurements intricate. The angle of rotation of the shoulder is particularly difficult to measure from an upright position because of the complicated base and moving axes. In this study, we attempted to estimate the shoulder joint internal/external rotation angle using the combination of pose estimation artificial intelligence (AI) and a machine learning model. Videos of the right shoulder of 10 healthy volunteers (10 males, mean age 37.7 years, mean height 168.3 cm, mean weight 72.7 kg, mean BMI 25.6) were recorded and processed into 10,608 images. Parameters were created using the coordinates measured from the posture estimation AI, and these were used to train the machine learning model. The measured values from the smartphone's angle device were used as the true values to create a machine learning model. When measuring the parameters at each angle, we compared the performance of the machine learning model using both linear regression and Light GBM. When the pose estimation AI was trained using linear regression, a correlation coefficient of 0.971 was achieved, with a mean absolute error (MAE) of 5.778. When trained with Light GBM, the correlation coefficient was 0.999 and the MAE was 0.945. This method enables the estimation of internal and external rotation angles from a direct-facing position. This approach is considered to be valuable for analyzing motor movements during sports and rehabilitation.


Artificial Intelligence , Machine Learning , Range of Motion, Articular , Shoulder Joint , Humans , Male , Adult , Shoulder Joint/physiology , Range of Motion, Articular/physiology , Female , Rotation , Posture/physiology , Computers, Handheld
13.
Sensors (Basel) ; 24(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38733035

Posture analysis is important in musculoskeletal disorder prevention but relies on subjective assessment. This study investigates the applicability and reliability of a machine learning (ML) pose estimation model for the human posture assessment, while also exploring the underlying structure of the data through principal component and cluster analyses. A cohort of 200 healthy individuals with a mean age of 24.4 ± 4.2 years was photographed from the frontal, dorsal, and lateral views. We used Student's t-test and Cohen's effect size (d) to identify gender-specific postural differences and used the Intraclass Correlation Coefficient (ICC) to assess the reliability of this method. Our findings demonstrate distinct sex differences in shoulder adduction angle (men: 16.1° ± 1.9°, women: 14.1° ± 1.5°, d = 1.14) and hip adduction angle (men: 9.9° ± 2.2°, women: 6.7° ± 1.5°, d = 1.67), with no significant differences in horizontal inclinations. ICC analysis, with the highest value of 0.95, confirms the reliability of the approach. Principal component and clustering analyses revealed potential new patterns in postural analysis such as significant differences in shoulder-hip distance, highlighting the potential of unsupervised ML for objective posture analysis, offering a promising non-invasive method for rapid, reliable screening in physical therapy, ergonomics, and sports.


Machine Learning , Posture , Humans , Female , Male , Posture/physiology , Adult , Biomechanical Phenomena/physiology , Young Adult , Reproducibility of Results , Principal Component Analysis , Cluster Analysis , Shoulder/physiology
14.
Sensors (Basel) ; 24(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38733046

Incorrect sitting posture, characterized by asymmetrical or uneven positioning of the body, often leads to spinal misalignment and muscle tone imbalance. The prolonged maintenance of such postures can adversely impact well-being and contribute to the development of spinal deformities and musculoskeletal disorders. In response, smart sensing chairs equipped with cutting-edge sensor technologies have been introduced as a viable solution for the real-time detection, classification, and monitoring of sitting postures, aiming to mitigate the risk of musculoskeletal disorders and promote overall health. This comprehensive literature review evaluates the current body of research on smart sensing chairs, with a specific focus on the strategies used for posture detection and classification and the effectiveness of different sensor technologies. A meticulous search across MDPI, IEEE, Google Scholar, Scopus, and PubMed databases yielded 39 pertinent studies that utilized non-invasive methods for posture monitoring. The analysis revealed that Force Sensing Resistors (FSRs) are the predominant sensors utilized for posture detection, whereas Convolutional Neural Networks (CNNs) and Artificial Neural Networks (ANNs) are the leading machine learning models for posture classification. However, it was observed that CNNs and ANNs do not outperform traditional statistical models in terms of classification accuracy due to the constrained size and lack of diversity within training datasets. These datasets often fail to comprehensively represent the array of human body shapes and musculoskeletal configurations. Moreover, this review identifies a significant gap in the evaluation of user feedback mechanisms, essential for alerting users to their sitting posture and facilitating corrective adjustments.


Sitting Position , Humans , Neural Networks, Computer , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Posture/physiology
15.
IEEE Trans Image Process ; 33: 3285-3300, 2024.
Article En | MEDLINE | ID: mdl-38709601

We live in a 3D world where people interact with each other in the environment. Learning 3D posed humans therefore requires us to perceive and interpret these interactions. This paper proposes LEAPSE, a novel method that learns salient instance affordances for estimating a posed body from a single RGB image in a non-parametric manner. Existing methods mostly ignore the environment and estimate the human body independently from the surroundings. We capture the influences of non-contact and contact instances on a posed body as an adequate representation of the "environment affordances". The proposed method learns the global relationships between 3D joints, body mesh vertices, and salient instances as environment affordances on the human body. LEAPSE achieved state-of-the-art results on the 3DPW dataset with many affordance instances, and also demonstrated excellent performance on Human3.6M dataset. We further demonstrate the benefit of our method by showing that the performance of existing weak models can be significantly improved when combined with our environment affordance module.


Algorithms , Imaging, Three-Dimensional , Posture , Humans , Imaging, Three-Dimensional/methods , Posture/physiology , Databases, Factual , Machine Learning
16.
Ann Plast Surg ; 92(6): 614-620, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38768021

BACKGROUND: Surgeons are at risk for musculoskeletal disorders from ergonomic strain in the operating room. These deficits may stem from neuromuscular control deficits. Neuromuscular activation exercises (NMEs) may strengthen the brain-muscle connection. This study aimed to assess the utility of a surgeon-oriented NME protocol on posture. METHODS: Surgeons, operating room staff, and medical students completed a professionally established NME routine. An electronic application, PostureScreen®, assessed participants' posture. A long-term cohort was assessed before and after a 2 to 6-week routine. A short-term cohort was assessed immediately before and after completion. All participants additionally completed a postintervention survey. RESULTS: After intervention, the short-term cohort (n = 47) had significantly reduced frontal and sagittal postural deviation (P < 0.05). A significant decrease in effective head weight was additionally demonstrated with decreased neck flexion and increased cerebral-cervical symmetry (P < 0.05).The long-term cohort (n = 6) showed a significant postintervention decrease in lateral and anterior shoulder translation (P < 0.05). Total anterior translational deviations demonstrated trend-level decrease (P = 0.078). This demonstrates that after intervention, participants' shoulders were more centered with the spine as opposed to shifted right or left. Survey results showed participants favored exercises that immediately brought relief of tension. CONCLUSIONS: A decrease in postural deviations associated with NME in both cohorts demonstrates NME as a potential mechanism to protect surgeon musculoskeletal health and improve well-being. Survey results demonstrate areas of refinement for NME protocol design.


Posture , Surgeons , Humans , Posture/physiology , Male , Female , Adult , Occupational Diseases/prevention & control , Musculoskeletal Diseases/prevention & control , Ergonomics , Middle Aged , Exercise Therapy/methods , Operating Rooms
17.
Fluids Barriers CNS ; 21(1): 44, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773608

OBJECTIVE: Optimizing the treatment of several neurosurgical and neurological disorders relies on knowledge of the intracranial pressure (ICP). However, exploration of normal ICP and intracranial pressure pulse wave amplitude (PWA) values in healthy individuals poses ethical challenges, and thus the current documentation remains scarce. This study explores ICP and PWA values for healthy adults without intracranial pathology expected to influence ICP. METHODS: Adult patients (age > 18 years) undergoing surgery for an unruptured intracranial aneurysm without any other neurological co-morbidities were included. Patients had a telemetric ICP sensor inserted, and ICP was measured in four different positions: supine, lateral recumbent, standing upright, and 45-degree sitting, at day 1, 14, 30, and 90 following the surgery. RESULTS: ICP in each position did not change with time after surgery. Median ICP was 6.7 mmHg and median PWA 2.1 mmHg in the supine position, while in the upright standing position median ICP was - 3.4 mmHg and median PWA was 1.9 mmHg. After standardization of the measurements from the transducer site to the external acoustic meatus, the median ICPmidbrain was 8.3 mmHg in the supine position and 1.2 mmHg in the upright standing position. CONCLUSION: Our study provides insights into normal ICP dynamics in healthy adults following a uncomplicated surgery for an unruptured aneurysm. These results suggest a slightly wider normal reference range for invasive intracranial pressure than previously suggested, and present the first normal values for PWA in different positions. Further studies are, however, essential to enhance our understanding of normal ICP. Trial registration The study was preregistered at www. CLINICALTRIALS: gov (NCT03594136) (11 July 2018).


Intracranial Aneurysm , Intracranial Pressure , Humans , Intracranial Aneurysm/surgery , Intracranial Aneurysm/physiopathology , Intracranial Pressure/physiology , Male , Female , Middle Aged , Adult , Aged , Posture/physiology , Neurosurgical Procedures , Pulse Wave Analysis
18.
J Foot Ankle Res ; 17(2): e12014, 2024 Jun.
Article En | MEDLINE | ID: mdl-38773711

BACKGROUND: Patellofemoral pain (PFP) is characterized by chronic pain in the anterior aspect of the knee during loading activities. Many studies investigating muscle morphology changes for individuals with PFP focus on the proximal joints, however, few studies have investigated muscles of the foot and ankle complex. This study aimed to explore the differences in peroneal muscle size and activation between individuals with PFP and healthy controls using ultrasound imaging in weight-bearing. METHODS: A case-control study in a university lab setting was conducted. Thirty individuals with PFP (age: 20.23 ± 3.30 years, mass: 74.70 ± 27.63 kgs, height: 161.32 ± 11.72 cm) and 30 healthy individuals (age: 20.33 ± 3.37 years, mass: 64.02 ± 11.00 kgs, height: 169.31 ± 9.30 cm) participated. Cross-sectional area (CSA) images of the peroneal muscles were taken in non-weight bearing and weight-bearing positions. The functional activation ratio from lying to single-leg standing (SLS) was calculated. RESULTS: There was a statistically significant (p = 0.041) group (PFP, healthy) by position (non-weight-bearing, weight-bearing) interaction for the peroneal muscle CSA with a Cohen's d effect size of 0.2 in non-weight-bearing position and 0.7 in weight-bearing position. The functional activation ratio for the healthy group was significantly more (p = 0.01) than the PFP group. CONCLUSION: Peroneal muscles were found to be smaller in size in those with PFP compared to the healthy subjects in the weight-bearing SLS position. This study found that those with PFP have lower activation of peroneal muscles in functional position.


Muscle, Skeletal , Patellofemoral Pain Syndrome , Ultrasonography , Weight-Bearing , Humans , Weight-Bearing/physiology , Case-Control Studies , Male , Female , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Muscle, Skeletal/pathology , Young Adult , Patellofemoral Pain Syndrome/physiopathology , Patellofemoral Pain Syndrome/diagnostic imaging , Patellofemoral Pain Syndrome/pathology , Adult , Adolescent , Foot/physiopathology , Foot/diagnostic imaging , Foot/pathology , Posture/physiology
19.
Behav Processes ; 218: 105041, 2024 May.
Article En | MEDLINE | ID: mdl-38692460

A previous study demonstrated that rodents on an inclined square platform traveled straight vertically or horizontally and avoided diagonal travel. Through behavior they aligned their head with the horizontal plane, acquiring similar bilateral vestibular cues - a basic requirement for spatial orientation and a salient feature of animals in motion. This behavior had previously been shown to be conspicuous in Tristram's jirds. Here, therefore jirds were challenged by testing their travel behavior on a circular arena inclined at 0°-75°. Our hypothesis was that if, as typical to rodents, the jirds would follow the curved arena wall, they would need to display a compensating mechanism to enable traveling in such a path shape, which involves a tilted frontal head axis and unbalanced bilateral vestibular cues. We found that with the increase in inclination, the jirds remained more in the lower section of the arena (geotaxis). When tested on the steep inclinations, however, their travel away from the arena wall was strictly straight up or down, in contrast to the curved paths that followed the circular arena wall. We suggest that traveling along a circular path while maintaining contact with the wall (thigmotaxis), provided tactile information that compensated for the unbalanced bilateral vestibular cues present when traveling along such curved inclined paths. In the latter case, the frontal plane of the head was in a diagonal posture in relation to gravity, a posture that was avoided when traveling away from the wall.


Cues , Orientation, Spatial , Vestibule, Labyrinth , Animals , Vestibule, Labyrinth/physiology , Orientation, Spatial/physiology , Male , Touch/physiology , Posture/physiology , Touch Perception/physiology
20.
Sci Rep ; 14(1): 11084, 2024 05 15.
Article En | MEDLINE | ID: mdl-38744916

In order to solve the difficult portability problem of traditional non-invasive sleeping posture recognition algorithms arising from the production cost and computational cost, this paper proposes a sleeping posture recognition model focusing on human body structural feature extraction and integration of feature space and algorithms based on a specific air-spring mattress structure, called SPR-DE (SPR-DE is the Sleep Posture Recognition-Data Ensemble acronym form). The model combines SMR (SMR stands for Principle of Spearman Maximal Relevance) with horizontal and vertical division based on the barometric pressure signals in the human body's backbone region to reconstruct the raw pressure data into strongly correlated non-image features of the sleep postures in different parts and directions and construct the feature set. Finally, the recognit-ion of the two sleep postures is accomplished using the AdaBoost-SVM integrated classifier. SPR-DE is compared with the base and integrated classifiers to verify its performance. The experimental results show that the amount of significant features helps the algorithm to classify different sleeping patterns more accurately, and the f1 score of the SPR-DE model determined by the comparison experiments is 0.998, and the accuracy can reach 99.9%. Compared with other models, the accuracy is improved by 2.9% ~ 7.7%, and the f1-score is improved by 0.029 ~ 0.076. Therefore, it is concluded that the SMR feature extraction strategy in the SPR-DE model and the AdaBoost-SVM can achieve high accuracy and strong robustness in the task of sleep posture recognition in a small area, low-density air-pressure mattress, taking into account the comfort of the mattress structural design and the sleep posture recognition, integrated with the mattress adaptive adjustment system.


Algorithms , Beds , Posture , Sleep , Humans , Posture/physiology , Sleep/physiology , Pressure , Male , Adult
...