Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 777
1.
Viruses ; 16(5)2024 05 10.
Article En | MEDLINE | ID: mdl-38793634

Avian influenza viruses (AIVs) of the H5 subtype rank among the most serious pathogens, leading to significant economic losses in the global poultry industry and posing risks to human health. Therefore, rapid and accurate virus detection is crucial for the prevention and control of H5 AIVs. In this study, we established a novel detection method for H5 viruses by utilizing the precision of CRISPR/Cas12a and the efficiency of RT-RPA technologies. This assay facilitates the direct visualization of detection results through blue light and lateral flow strips, accurately identifying H5 viruses with high specificity and without cross-reactivity against other AIV subtypes, NDV, IBV, and IBDV. With detection thresholds of 1.9 copies/µL (blue light) and 1.9 × 103 copies/µL (lateral flow strips), our method not only competes with but also slightly surpasses RT-qPCR, demonstrating an 80.70% positive detection rate across 81 clinical samples. The RT-RPA/CRISPR-based detection method is characterized by high sensitivity, specificity, and independence from specialized equipment. The immediate field applicability of the RT-RPA/CRISPR approach underscores its importance as an effective tool for the early detection and management of outbreaks caused by the H5 subtype of AIVs.


CRISPR-Cas Systems , Influenza in Birds , Sensitivity and Specificity , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Poultry/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Chickens/virology , Birds/virology
2.
Viruses ; 16(5)2024 05 16.
Article En | MEDLINE | ID: mdl-38793677

Avian reovirus (ARV) infection can cause significant losses to the poultry industry. Disease control has traditionally been attempted mainly through vaccination. However, the increase in clinical outbreaks in the last decades demonstrated the poor effectiveness of current vaccination approaches. The present study reconstructs the evolution and molecular epidemiology of different ARV genotypes using a phylodynamic approach, benefiting from a collection of more than one thousand sigma C (σC) sequences sampled over time at a worldwide level. ARVs' origin was estimated to occur several centuries ago, largely predating the first clinical reports. The origins of all genotypes were inferred at least one century ago, and their emergence and rise reflect the intensification of the poultry industry. The introduction of vaccinations had only limited and transitory effects on viral circulation and further expansion was observed, particularly after the 1990s, likely because of the limited immunity and the suboptimal and patchy vaccination application. In parallel, strong selective pressures acted with different strengths and directionalities among genotypes, leading to the emergence of new variants. While preventing the spread of new variants with different phenotypic features would be pivotal, a phylogeographic analysis revealed an intricate network of viral migrations occurring even over long distances and reflecting well-established socio-economic relationships.


Genotype , Orthoreovirus, Avian , Phylogeny , Phylogeography , Poultry Diseases , Reoviridae Infections , Orthoreovirus, Avian/genetics , Orthoreovirus, Avian/classification , Animals , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Reoviridae Infections/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Evolution, Molecular , Molecular Epidemiology , Poultry/virology , Genetic Variation
3.
J Virol Methods ; 327: 114942, 2024 Jun.
Article En | MEDLINE | ID: mdl-38670532

H5, H7 and H9 are the major subtypes of avian influenza virus (AIV) that cause economic losses in the poultry industry and sporadic zoonotic infection. Early detection of AIV is essential for preventing disease spread. Therefore, molecular diagnosis and subtyping of AIV via real-time RT-PCR (rRT-PCR) is preferred over other classical diagnostic methods, such as egg inoculation, RT-PCR and HI test, due to its high sensitivity, specificity and convenience. The singleplex rRT-PCRs for the Matrix, H5 and H7 gene used for the national surveillance program in Korea have been developed in 2017; however, these methods were not designed for multiplexing, and does not reflect the sequences of currently circulating strains completely. In this study, the multiplex H5/7/9 rRT-PCR assay was developed with sets of primers and probe updated or newly designed to simultaneously detect the H5, H7 and H9 genes. Multiplex H5/7/9 rRT-PCR showed 100% specificity without cross-reactivity with other subtypes of AIVs and avian disease-causing viruses or bacteria, and the limit of detection was 1-10 EID50/0.1 ml (50% egg infectious dose). Artificial mixed infections with the three different subtypes could be detected accurately with high analytical sensitivity even under highly biased relative molecular ratios by balancing the reactivities of each subtype by modifying the concentration of the primers and probes. The multiplex H5/7/9 rRT-PCR assay developed in this study could be a useful tool for large-scale surveillance programs for viral detection as well as subtyping due to its high specificity, sensitivity and robustness in discriminating viruses in mixed infections, and this approach would greatly decrease the time, cost, effort and chance of cross-contamination compared to the conventional method of testing three subtypes by different singleplex rRT-PCR methods in parallel or in series.


Chickens , Influenza A virus , Influenza in Birds , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Influenza in Birds/virology , Influenza in Birds/diagnosis , Animals , Multiplex Polymerase Chain Reaction/methods , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Chickens/virology , Republic of Korea , Poultry Diseases/virology , Poultry Diseases/diagnosis , DNA Primers/genetics , Poultry/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology
4.
Viruses ; 16(4)2024 03 26.
Article En | MEDLINE | ID: mdl-38675851

Avian metapneumovirus (aMPV), classified within the Pneumoviridae family, wreaks havoc on poultry health. It typically causes upper respiratory tract and reproductive tract infections, mainly in turkeys, chickens, and ducks. Four subtypes of AMPV (A, B, C, D) and two unclassified subtypes have been identified, of which subtypes A and B are widely distributed across the world. In January 2024, an outbreak of severe respiratory disease occurred on turkey and chicken farms across different states in the US. Metagenomics sequencing of selected tissue and swab samples confirmed the presence of aMPV subtype B. Subsequently, all samples were screened using an aMPV subtype A and B multiplex real-time RT-PCR kit. Of the 221 farms, 124 (56%) were found to be positive for aMPV-B. All samples were negative for subtype A. Six whole genomes were assembled, five from turkeys and one from chickens; all six assembled genomes showed 99.29 to 99.98% nucleotide identity, indicating a clonal expansion event for aMPV-B within the country. In addition, all six sequences showed 97.74 to 98.58% nucleotide identity with previously reported subtype B sequences, e.g., VCO3/60616, Hungary/657/4, and BR/1890/E1/19. In comparison to these two reference strains, the study sequences showed unique 49-62 amino acid changes across the genome, with maximum changes in glycoprotein (G). One unique AA change from T (Threonine) to I (Isoleucine) at position 153 in G protein was reported only in the chicken aMPV sequence, which differentiated it from turkey sequences. The twelve unique AA changes along with change in polarity of the G protein may indicate that these unique changes played a role in the adaptation of this virus in the US poultry. This is the first documented report of aMPV subtype B in US poultry, highlighting the need for further investigations into its genotypic characterization, pathogenesis, and evolutionary dynamics.


Genome, Viral , Metapneumovirus , Paramyxoviridae Infections , Phylogeny , Poultry Diseases , Turkeys , Animals , Metapneumovirus/genetics , Metapneumovirus/classification , Metapneumovirus/isolation & purification , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Paramyxoviridae Infections/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Turkeys/virology , United States/epidemiology , Chickens/virology , Poultry/virology , Metagenomics , Disease Outbreaks/veterinary
5.
Vet Res ; 55(1): 54, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671518

This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.


Poultry Diseases , Virus Diseases , Animals , Poultry/virology , Poultry Diseases/virology , Skin/virology , Virus Diseases/veterinary , Virus Diseases/virology
6.
Emerg Microbes Infect ; 13(1): 2343912, 2024 Dec.
Article En | MEDLINE | ID: mdl-38629574

Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.


Chickens , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Vaccination , Animals , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Chickens/virology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza in Birds/virology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Mice , Humans , China , Evolution, Molecular , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/immunology , Mice, Inbred BALB C , Virulence , Phylogeny , Female , Poultry Diseases/virology , Poultry Diseases/prevention & control , Poultry/virology
7.
Virus Res ; 344: 199348, 2024 06.
Article En | MEDLINE | ID: mdl-38467378

Avian influenza virus subtype H9N2 is endemic in commercial poultry in Tunisia. This subtype affects poultry and wild birds in Tunisia and poses a potential zoonotic risk. Tunisian H9N2 strains carry, in their hemagglutinins, the human-like marker 226 L that is most influential in avian-to-human viral transmission. For a better understanding of how ecological aspects of the H9N2 virus and its circulation in poultry, migratory birds and environment shapes the spread of the dissemination of H9N2 in Tunisia, herein, we investigate the epidemiological, evolutionary and zoonotic potential of seven H9N2 poultry isolates and sequence their whole genome. Phylogeographic and phylodymanic analysis were used to examine viral spread within and among wild birds, poultry and environment at geographical scales. Genetic evolution results showed that the eight gene sequences of Tunisian H9N2 AIV were characterized by molecular markers involved with virulence and mammalian infections. The geographical distribution of avian influenza virus appears as a network interconnecting countries in Europe, Asia, North Africa and West Africa. The spatiotemporal dynamics analysis showed that the H9N2 virus was transmitted from Tunisia to neighboring countries notably Libya and Algeria. Interestingly, this study also revealed, for the first time, that there was a virus transmission between Tunisia and Morocco. Bayesian analysis showed exchanges between H9N2 strains of Tunisia and those of the Middle Eastern countries, analysis of host traits showed that duck, wild birds and environment were ancestry related to chicken. The subtypes phylodynamic showed that PB1 segment was under multiple inter-subtype reassortment events with H10N7, H12N5, H5N2 and H6N1 and that PB2 was also a subject of inter-subtype reassortment with H10N4.


Influenza A Virus, H9N2 Subtype , Influenza in Birds , Phylogeny , Phylogeography , Animals , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/isolation & purification , Tunisia/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Poultry/virology , Evolution, Molecular , Poultry Diseases/virology , Poultry Diseases/epidemiology , Genome, Viral , Animals, Wild/virology , Birds/virology , Chickens/virology
8.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38305155

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N6 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Parainfluenza Virus 5 , Animals , Humans , Mice , Ferrets/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Cellular , Immunity, Humoral , Immunity, Mucosal , Influenza A Virus, H5N1 Subtype/chemistry , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N6 Subtype/chemistry , Influenza A Virus, H5N6 Subtype/classification , Influenza A Virus, H5N6 Subtype/genetics , Influenza A Virus, H5N6 Subtype/immunology , Influenza in Birds/immunology , Influenza in Birds/prevention & control , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Pandemic Preparedness/methods , Parainfluenza Virus 5/genetics , Parainfluenza Virus 5/immunology , Parainfluenza Virus 5/metabolism , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Administration, Intranasal , Poultry/virology , Immunoglobulin A/immunology , T-Lymphocytes/immunology
9.
Nature ; 622(7984): 810-817, 2023 Oct.
Article En | MEDLINE | ID: mdl-37853121

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Birds , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Internationality , Animals , Africa/epidemiology , Animals, Wild/virology , Asia/epidemiology , Birds/virology , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , Disease Outbreaks/veterinary , Europe/epidemiology , Evolution, Molecular , Host Specificity , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/mortality , Influenza in Birds/transmission , Influenza in Birds/virology , Mammals/virology , Mutation , Phylogeny , Poultry/virology
10.
J Virol ; 97(11): e0137023, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37877722

The H6 subtype of avian influenza virus (AIV) is a pervasive subtype that is ubiquitously found in both wild bird and poultry populations across the globe. Recent investigations have unveiled its capacity to infect mammals, thereby expanding its host range beyond that of other subtypes and potentially facilitating its global transmission. This heightened breadth also endows H6 AIVs with the potential to serve as a genetic reservoir for the emergence of highly pathogenic avian influenza strains through genetic reassortment and adaptive mutations. Furthermore, alterations in key amino acid loci within the H6 AIV genome foster the evolution of viral infection mechanisms, which may enable the virus to surmount interspecies barriers and infect mammals, including humans, thus posing a potential threat to human well-being. In this review, we summarize the origins, dissemination patterns, geographical distribution, cross-species transmission dynamics, and genetic attributes of H6 influenza viruses. This study holds implications for the timely detection and surveillance of H6 AIVs.


Birds , Host Specificity , Influenza A virus , Influenza in Birds , Mammals , Viral Zoonoses , Animals , Humans , Birds/virology , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza in Birds/transmission , Influenza in Birds/virology , Mammals/virology , Poultry/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology
11.
Viruses ; 15(7)2023 07 21.
Article En | MEDLINE | ID: mdl-37515281

We isolated 77 highly pathogenic avian influenza viruses during routine surveillance in live poultry markets in northern provinces of Vietnam from 2018 to 2021. These viruses are of the H5N6 subtype and belong to HA clades 2.3.4.4g and 2.3.4.4h. Interestingly, we did not detect viruses of clade 2.3.4.4b, which in recent years have dominated in different parts of the world. The viruses isolated in this current study do not encode major determinants of mammalian adaptation (e.g., PB2-E627K or PB1-D701N) but possess amino acid substitutions that may affect viral receptor-binding, replication, or the responses to human antiviral factors. Several of the highly pathogenic H5N6 virus samples contained other influenza viruses, providing an opportunity for reassortment. Collectively, our study demonstrates that the highly pathogenic H5 viruses circulating in Vietnam in 2018-2021 were different from those in other parts of the world, and that the Vietnamese H5 viruses continue to evolve through mutations and reassortment.


Influenza A virus , Influenza in Birds , Animals , Chickens , Influenza A virus/genetics , Influenza in Birds/epidemiology , Phylogeny , Poultry/virology , Vietnam/epidemiology
12.
Viruses ; 15(5)2023 04 29.
Article En | MEDLINE | ID: mdl-37243179

Routine surveillance in live poultry markets in the northern regions of Vietnam from 2016 to 2017 resulted in the isolation of 27 highly pathogenic avian H5N1 and H5N6 viruses of 3 different clades (2.3.2.1c, 2.3.4.4f, and 2.3.4.4g). Sequence and phylogenetic analysis of these viruses revealed reassortment with various subtypes of low pathogenic avian influenza viruses. Deep-sequencing identified minor viral subpopulations encoding variants that may affect pathogenicity and sensitivity to antiviral drugs. Interestingly, mice infected with two different clade 2.3.2.1c viruses lost body weight rapidly and succumbed to virus infection, whereas mice infected with clade 2.3.4.4f or 2.3.4.4g viruses experienced non-lethal infections.


Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Mice , Chickens/virology , Influenza in Birds/epidemiology , Phylogeny , Poultry/virology , Vietnam/epidemiology
13.
J Virol ; 96(10): e0024122, 2022 05 25.
Article En | MEDLINE | ID: mdl-35510864

In this study, 232 class I Newcastle disease viruses (NDVs) were identified from multiple bird species at nationwide live bird markets (LBMs) from 2017 to 2019 in China. Phylogenetic analysis indicated that all 232 isolates were clustered into genotype 1.1.2 of class I on the basis of the fusion (F) gene sequences, which were distinct from the genotypes identified in other countries. Most of the isolates (212/232) were shown to have the typical F gene molecular characteristics of class I NDVs, while a few (20/232) contained mutations at the site of the conventional start codon of the F gene, which resulted in open reading frames (ORFs) altered in length. The isolates with ACG, CTA, and ATA mutations showed different levels of increased virulence and replication capacity, suggesting that these viruses may be transitional types during the evolution of class I NDVs from avirulent to virulent. Further evaluation of biological characteristics with recombinant viruses obtained by reverse genetics demonstrated that the ATG located at genomic positions 4523 to 4525 was the authentic start codon in the F gene of class I NDV, and the specific ATA mutations which contributed to the expression of F protein on the surface of infected cells were the key determinants of increased replication capacity and virulence. Interestingly, the mutation at the corresponding site of genotype II LaSota of class II had no effects on the virulence and replication capacity in chickens. Our results suggest that the alteration of virulence and replication capacity caused by specific mutations in the F gene could be a specific characteristic of class I NDVs and indicate the possibility of the emergence of virulent NDVs due to the persistent circulation of class I NDVs. IMPORTANCE The available information on the distribution, genetic diversity, evolution, and biological characteristics of class I Newcastle disease viruses (NDVs) in domestic poultry is currently very limited. Here, identification of class I NDVs at nationwide live bird markets (LBMs) in China was performed and representative isolates were characterized. A widespread distribution of genotype 1.1.2 of class I NDVs was found in multiple bird species at LBMs in China. Though most isolates demonstrated typical molecular characteristics of class I NDVs, a few that contained specific mutations at the site of the conventional start codon of the fusion gene with increased virulence and replication capacity were identified for the first time. Our findings indicate that the virulence of class I NDVs could have evolved, and the widespread transmission and circulation of class I NDVs may represent a potential threat for disease outbreaks in poultry.


Newcastle Disease , Poultry Diseases , Animals , Chickens/virology , China/epidemiology , Codon, Initiator , Commerce , Epidemiological Monitoring/veterinary , Genotype , Newcastle Disease/epidemiology , Newcastle disease virus/genetics , Phylogeny , Poultry/virology , Poultry Diseases/epidemiology , Virulence/genetics
14.
Vet Med Sci ; 8(4): 1570-1577, 2022 07.
Article En | MEDLINE | ID: mdl-35451231

INTRODUCTION: Avian influenza viruses (AIV) cause significant economic losses to poultry farmers worldwide. These viruses have the ability to spread rapidly, infect entire poultry flocks, and can pose a threat to human health. The National Influenza Centre (NIC) at the Noguchi Memorial Institute for Medical Research in collaboration with the Ghana Armed forces (GAF) and the U.S. Naval Medical Research Unit No. 3, Ghana Detachment (NAMRU-3) performs biannual surveillance for influenza viruses among poultry at military barracks throughout Ghana. This study presents poultry surveillance data from the years 2017 to 2019. METHODOLOGY: Tracheal and cloacal swabs from sick and healthy poultry were collected from the backyards of GAF personnel living quarters and transported at 4°C to the NIC. Viral ribonucleic acid (RNA) was isolated and analyzed for the presence of influenza viruses using real-time polymerase chain reaction (PCR) assays. Viral nucleic acids extracted from influenza A-positive specimens were sequenced using universal influenza A-specific primers. RESULTS: Influenza A H9N2 virus was detected in 11 avian species out of 2000 samples tested. Phylogenetic analysis of viral haemagglutinin (HA) protein confirms the possibility of importation of viruses from North Africa and Burkina Faso. Although the detected viruses possess molecular markers of virulence and mammalian host adaptation, the HA cleavage site anlaysis confirmed low pathogenicity of the viruses. CONCLUSIONS: These findings confirm the ongoing spread of H9 viruses among poultry in Ghana. Poultry farmers need to be vigilant for sick birds and take the appropriate public health steps to limit the spread to other animals and spillover to humans.


Influenza A Virus, H9N2 Subtype , Influenza in Birds , Phylogeny , Animals , Chickens/virology , Farms , Ghana/epidemiology , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Poultry/virology , Viral Proteins
16.
Viruses ; 14(1)2022 01 10.
Article En | MEDLINE | ID: mdl-35062320

The past two decades have seen the emergence of highly pathogenic avian influenza (HPAI) infections that are characterized as extremely contagious, with a high fatality rate in chickens, and humans; this has sparked considerable concerns for global health. Generally, the new variant of the HPAI virus crossed into various countries through wild bird migration, and persisted in the local environment through the interactions between wild and farmed birds. Nevertheless, no studies have found informative cases associated with connecting local persistence and long-range dispersal. During the 2016-2017 HPAI H5N6 epidemic in South Korea, we observed several waterfowls with avian influenza infection under telemetric monitoring. Based on the telemetry records and surveillance data, we conducted a case study to test hypotheses related to the transmission pathway between wild birds and poultry. One sedentary wildfowl naturally infected with HPAI H5N6, which overlapped with the home range of one migratory bird with H5-specific antibody-positive, showed itself to be phylogenetically close to the isolates from a chicken farm located within its habitat. Our study is the first observational study that provides scientific evidence supporting the hypothesis that the HPAI spillover into poultry farms is caused by local persistence in sedentary birds, in addition to its long-range dispersal by sympatric migratory birds.


Disease Outbreaks/veterinary , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry Diseases/epidemiology , Poultry Diseases/virology , Animals , Animals, Wild/virology , Chickens , Epidemics , Farms , Humans , Influenza A virus/classification , Phylogeny , Poultry/virology , Republic of Korea/epidemiology
17.
Transbound Emerg Dis ; 69(4): e1153-e1159, 2022 Jul.
Article En | MEDLINE | ID: mdl-34812579

The effects of flock size of European starlings (Sturnus vulgaris) was experimentally manipulated to assess the potential of influenza A virus (IAV; H4N6) transmission from a flocking passerine to bobwhite quail (Colinus virginianus) through shared food and water resources to mimic starling intrusions into free-range and backyard poultry operations. Of the three starling flock sizes tested (n = 30, n = 20 and n = 10), all successfully transmitted the virus to all or most of the quail in each animal room (6/6, 6/6 and 5/6) by the end of the experimental period, as determined by seroconversion and/or viral RNA shedding. Although starlings have been shown to be inconsistent shedders of IAVs and when they do replicate and subsequently shed virus they typically do so at low to moderate levels, this study has provided evidence that relatively small flocks (i.e., 10 or possibly a smaller number) of this species can collectively transmit the virus to a highly susceptible gallinaceous bird species. Future work should assess if starlings can transmit IAVs to additional poultry species commonly found in backyard or free-range settings.


Influenza A virus , Influenza in Birds , Poultry , Starlings , Animals , Influenza in Birds/transmission , Influenza in Birds/virology , Poultry/virology , Starlings/virology , Virus Shedding
18.
Emerg Microbes Infect ; 11(1): 73-82, 2022 Dec.
Article En | MEDLINE | ID: mdl-34825854

Highly pathogenic influenza A(H5N8) viruses have caused several worldwide outbreaks in birds and are able cross the species barrier to infect humans, posing a substantial threat to public health. After the first detection of H5N8 viruses in deceased swans in Inner Mongolia, we performed early warning and active monitoring along swan migration routes in central China. We isolated and sequenced 42 avian influenza viruses, including 40 H5N8 viruses, 1 H5N2 virus, and 1 H9N2 virus, in central China. Our H5N8 viruses isolated in swan stopover sites and wintering grounds showed high nucleotide homologies in the whole genome, revealing a common evolutionary source. Phylogenetic analysis revealed that the H5 viruses of clade 2.3.4.4b prevalent in 2020 have further diverged into two sub-clades: b1 and b2. The phylogeographic analysis also showed that the viruses of sub-clade b2 most likely originated from poultry in Russia. Notably, whooper swans were found to be responsible for the introduction of sub-clade b2 viruses in central China; whooper and tundra swans play a role in viral spread in the Yellow River Basin and the Yangtze River Basin, respectively. Our findings highlight swans as an indicator species for transborder spreading and monitoring of the H5N8 virus.


Anseriformes/virology , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza in Birds/epidemiology , Animal Migration , Animals , Anseriformes/physiology , China/epidemiology , Evolution, Molecular , Genome, Viral , Influenza A Virus, H5N2 Subtype/classification , Influenza A Virus, H5N2 Subtype/genetics , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza in Birds/transmission , Influenza in Birds/virology , Phylogeny , Phylogeography , Poultry/virology , Prevalence , Russia , Whole Genome Sequencing
19.
Sci Rep ; 11(1): 24163, 2021 12 17.
Article En | MEDLINE | ID: mdl-34921165

Highly pathogenic avian influenza (HPAI) in poultry holdings commonly spreads through animal trade, and poultry production and health-associated vehicle (PPHaV) movement. To effectively control the spread of disease, it is essential that the contact structure via those movements among farms is thoroughly explored. However, few attempts have been made to scrutinize PPHaV movement compared to poultry trade. Therefore, our study aimed to elucidate the role of PPHaV movement on HPAI transmission. We performed network analysis using PPHaV movement data based on a global positioning system, with phylogenetic information of the isolates during the 2016-2017 HPAI H5N6 epidemic in the Republic of Korea. Moreover, the contribution of PPHaV movement to the spread of HPAI was estimated by Bayesian modeling. The network analysis revealed that there was the relationship between phylogenetic clusters and the contact network via PPHaV movement. Furthermore, the similarity of farm poultry species and the shared integrators between inter-linked infected premises (IPs) were associated with ties within the same phylogenetic clusters. Additionally, PPHaV movement among phylogenetically clustered IPs was estimated to contribute to approximately 30% of HPAI H5N6 infections in IPs on average. This study provides insight into how HPAI spread via PPHaV movement and scientific basis for control strategies.


Farms , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Models, Biological , Poultry Diseases , Poultry/virology , Animals , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/genetics , Influenza in Birds/transmission , Influenza in Birds/virology , Poultry Diseases/epidemiology , Poultry Diseases/virology , Republic of Korea/epidemiology
20.
Sci Rep ; 11(1): 23223, 2021 12 01.
Article En | MEDLINE | ID: mdl-34853356

Low pathogenic avian influenza viruses (LPAIVs) have been widespread in poultry and wild birds throughout the world for many decades. LPAIV infections are usually asymptomatic or cause subclinical symptoms. However, the genetic reassortment of LPAIVs may generate novel viruses with increased virulence and cross-species transmission, posing potential risks to public health. To evaluate the epidemic potential and infection landscape of LPAIVs in Guangxi Province, China, we collected and analyzed throat and cloacal swab samples from chickens, ducks and geese from the live poultry markets on a regular basis from 2016 to 2019. Among the 7,567 samples, 974 (12.87%) were LPAIVs-positive, with 890 single and 84 mixed infections. Higher yearly isolation rates were observed in 2017 and 2018. Additionally, geese had the highest isolation rate, followed by ducks and chickens. Seasonally, spring had the highest isolation rate. Subtype H3, H4, H6 and H9 viruses were detected over prolonged periods, while H1 and H11 viruses were detected transiently. The predominant subtypes in chickens, ducks and geese were H9, H3, and H6, respectively. The 84 mixed infection samples contained 22 combinations. Most mixed infections involved two subtypes, with H3 + H4 as the most common combination. Our study provides important epidemiological data regarding the isolation rates, distributions of prevalent subtypes and mixed infections of LPAIVs. These results will improve our knowledge and ability to control epidemics, guide disease management strategies and provide early awareness of newly emerged AIV reassortants with pandemic potential.


Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry/virology , Animals , Chickens/virology , China/epidemiology , Ducks/virology , Epidemiological Monitoring , Geese/virology , Influenza A virus/genetics
...