Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 932
2.
Cell Death Dis ; 15(5): 328, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734740

We created valrubicin-loaded immunoliposomes (Val-ILs) using the antitumor prodrug valrubicin, a hydrophobic analog of daunorubicin. Being lipophilic, valrubicin readily incorporated Val-lLs that were loaded with specific antibodies. Val-ILs injected intravenously rapidly reached the bone marrow and spleen, indicating their potential to effectively target cancer cells in these areas. Following the transplantation of human pediatric B-cell acute lymphoblastic leukemia (B-ALL), T-cell acute lymphoblastic leukemia (T-ALL), or acute myeloid leukemia (AML) in immunodeficient NSG mice, we generated patient-derived xenograft (PDX) models, which were treated with Val-ILs loaded with antibodies to target CD19, CD7 or CD33. Only a small amount of valrubicin incorporated into Val-ILs was needed to induce leukemia cell death in vivo, suggesting that this approach could be used to efficiently treat acute leukemia cells. We also demonstrated that Val-ILs could reduce the risk of contamination of CD34+ hematopoietic stem cells by acute leukemia cells during autologous peripheral blood stem cell transplantation, which is a significant advantage for clinical applications. Using EL4 lymphoma cells on immunocompetent C57BL/6 mice, we also highlighted the potential of Val-ILs to target immunosuppressive cell populations in the spleen, which could be valuable in impairing cancer cell expansion, particularly in lymphoma cases. The most efficient Val-ILs were found to be those loaded with CD11b or CD223 antibodies, which, respectively, target the myeloid-derived suppressor cells (MDSC) or the lymphocyte-activation gene 3 (LAG-3 or CD223) on T4 lymphocytes. This study provides a promising preclinical demonstration of the effectiveness and ease of preparation of Val-ILs as a novel nanoparticle technology. In the context of hematological cancers, Val-ILs have the potential to be used as a precise and effective therapy based on targeted vesicle-mediated cell death.


Liposomes , Animals , Humans , Mice , Xenograft Model Antitumor Assays , Cell Death/drug effects , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/immunology , Cell Line, Tumor , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
6.
Leukemia ; 38(5): 951-962, 2024 May.
Article En | MEDLINE | ID: mdl-38553571

Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1/LMO mouse models, double negative-3 (DN3; CD4-CD8-CD25+CD44-) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle-restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL/LMO patient samples revealed a similar pattern in CD7+CD1a- thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO-induced T-ALL and its clinical implications in therapy failure.


Adaptor Proteins, Signal Transducing , LIM Domain Proteins , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , T-Cell Acute Lymphocytic Leukemia Protein 1 , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Thymus Gland/metabolism , Thymus Gland/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
7.
Blood ; 143(21): 2166-2177, 2024 May 23.
Article En | MEDLINE | ID: mdl-38437728

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current treatments, based on intensive chemotherapy regimens provide overall survival rates of ∼85% in children and <50% in adults, calling the search of new therapeutic options. We previously reported that targeting the T-cell receptor (TCR) in T-ALL with anti-CD3 (αCD3) monoclonal antibodies (mAbs) enforces a molecular program akin to thymic negative selection, a major developmental checkpoint in normal T-cell development; induces leukemic cell death; and impairs leukemia progression to ultimately improve host survival. However, αCD3 monotherapy resulted in relapse. To find out actionable targets able to re-enforce leukemic cells' vulnerability to αCD3 mAbs, including the clinically relevant teplizumab, we identified the molecular program induced by αCD3 mAbs in patient-derived xenografts derived from T-ALL cases. Using large-scale transcriptomic analysis, we found prominent expression of tumor necrosis factor α (TNFα), lymphotoxin α (LTα), and multiple components of the "TNFα via NF-κB signaling" pathway in anti-CD3-treated T-ALL. We show in vivo that etanercept, a sink for TNFα/LTα, enhances αCD3 antileukemic properties, indicating that TNF/TNF receptor (TNFR) survival pathways interferes with TCR-induced leukemic cell death. However, suppression of TNF-mediated survival and switch to TNFR-mediated cell death through inhibition of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) with the second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant synergizes with αCD3 to impair leukemia expansion in a receptor-interacting serine/threonine-protein kinase 1-dependent manner and improve mice survival. Thus, our results advocate the use of either TNFα/LTα inhibitors, or birinapant/other SMAC mimetics to improve anti-CD3 immunotherapy in T-ALL.


CD3 Complex , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Tumor Necrosis Factor-alpha , Humans , Animals , Mice , CD3 Complex/immunology , CD3 Complex/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Immunotherapy/methods , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use
9.
J Hematop ; 17(2): 103-107, 2024 Jun.
Article En | MEDLINE | ID: mdl-38528212

Gamma delta (γδ) T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is a rare, aggressive subtype of T-lymphoid leukemia that accounts for only 9-12% of all T-ALL cases. Herein, we report the case of an 8-year-old boy who presented with facial swelling, shortness of breath, and progressive cervical and axillary lymphadenopathy. Pathological examination, flow cytometry (Navios, Beckman Coulter ClearLLab 10C 10-color T-cell panel [containing FITC-labeled TCR γδ antibody]), chromosomal analysis, interphase FISH, and targeted DNA-based NGS (34-gene Illumina TruSeq Myeloid Panel) were performed. Flow cytometry evaluation of a lymph node biopsy specimen revealed an immature T-cell population positive for CD4, CD3, CD2 (subset positive), CD5, CD7, CD38, CD1a, cytoplasmic terminal deoxynucleotidyl transferase (cyto-TdT), CD30 (subset positive), and T-cell receptor (TCR) gamma delta (γδ). Microscopic examination of an enlarged lymph node and bone marrow showed involvement by a dense, diffuse, neoplastic infiltrate. Interphase FISH revealed a copy number loss of PDGFRB (5q32) in 90.5% of interphase nuclei. Targeted DNA-based NGS detected a tier II oncogenic variant in NOTCH1 (c.7375C > T, p.Gln2459Ter) at a VAF of 21%. This case of γδ T-ALL highlights a rare entity and adds to the literature, albeit scant, which may aid in better recognition and classification.


Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Antigen, T-Cell, gamma-delta , Humans , Male , Child , Receptors, Antigen, T-Cell, gamma-delta/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Immunophenotyping , Lymph Nodes/pathology , Flow Cytometry
10.
Blood ; 143(20): 2053-2058, 2024 May 16.
Article En | MEDLINE | ID: mdl-38457359

ABSTRACT: Defining prognostic variables in T-lymphoblastic lymphoma (T-LL) remains a challenge. AALL1231 was a Children's Oncology Group phase 3 clinical trial for newly diagnosed patients with T acute lymphoblastic leukemia or T-LL, randomizing children and young adults to a modified augmented Berlin-Frankfurt-Münster backbone to receive standard therapy (arm A) or with addition of bortezomib (arm B). Optional bone marrow samples to assess minimal residual disease (MRD) at the end of induction (EOI) were collected in T-LL analyzed to assess the correlation of MRD at the EOI to event-free survival (EFS). Eighty-six (41%) of the 209 patients with T-LL accrued to this trial submitted samples for MRD assessment. Patients with MRD <0.1% (n = 75) at EOI had a superior 4-year EFS vs those with MRD ≥0.1% (n = 11) (89.0% ± 4.4% vs 63.6% ± 17.2%; P = .025). Overall survival did not significantly differ between the 2 groups. Cox regression for EFS using arm A as a reference demonstrated that MRD EOI ≥0.1% was associated with a greater risk of inferior outcome (hazard ratio, 3.73; 95% confidence interval, 1.12-12.40; P = .032), which was independent of treatment arm assignment. Consideration to incorporate MRD at EOI into future trials will help establish its value in defining risk groups. CT# NCT02112916.


Antineoplastic Combined Chemotherapy Protocols , Neoplasm, Residual , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Female , Male , Adolescent , Child, Preschool , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/administration & dosage , Bortezomib/therapeutic use , Young Adult , Disease-Free Survival , Adult , Infant , Prognosis
11.
Front Immunol ; 15: 1341255, 2024.
Article En | MEDLINE | ID: mdl-38464517

T-cell acute lymphoblastic leukemia (T-ALL)/T-cell lymphoblastic lymphoma (T-LBL) is an uncommon but highly aggressive hematological malignancy. It has high recurrence and mortality rates and is challenging to treat. This study conducted bioinformatics analyses, compared genetic expression profiles of healthy controls with patients having T-ALL/T-LBL, and verified the results through serological indicators. Data were acquired from the GSE48558 dataset from Gene Expression Omnibus (GEO). T-ALL patients and normal T cells-related differentially expressed genes (DEGs) were investigated using the online analysis tool GEO2R in GEO, identifying 78 upregulated and 130 downregulated genes. Gene Ontology (GO) and protein-protein interaction (PPI) network analyses of the top 10 DEGs showed enrichment in pathways linked to abnormal mitotic cell cycles, chromosomal instability, dysfunction of inflammatory mediators, and functional defects in T-cells, natural killer (NK) cells, and immune checkpoints. The DEGs were then validated by examining blood indices in samples obtained from patients, comparing the T-ALL/T-LBL group with the control group. Significant differences were observed in the levels of various blood components between T-ALL and T-LBL patients. These components include neutrophils, lymphocyte percentage, hemoglobin (HGB), total protein, globulin, erythropoietin (EPO) levels, thrombin time (TT), D-dimer (DD), and C-reactive protein (CRP). Additionally, there were significant differences in peripheral blood leukocyte count, absolute lymphocyte count, creatinine, cholesterol, low-density lipoprotein, folate, and thrombin times. The genes and pathways associated with T-LBL/T-ALL were identified, and peripheral blood HGB, EPO, TT, DD, and CRP were key molecular markers. This will assist the diagnosis of T-ALL/T-LBL, with applications for differential diagnosis, treatment, and prognosis.


Lymphoma, T-Cell , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Protein Interaction Maps/genetics , Transcriptome , Computational Biology/methods
12.
Indian J Pathol Microbiol ; 67(1): 141-144, 2024.
Article En | MEDLINE | ID: mdl-38358204

Distinguishing T-lymphoblastic leukemia/lymphoma (T-ALL/T-LBL) from thymomas (especially B1 or B2 type) can be challenging particularly in limited trucut biopsy material where appreciating architecture is difficult or the background epithelial component does not provide tangible evidence for definite diagnosis. As a pathologist, it is important to accurately diagnose these neoplasms because they have entirely distinct management protocols. Recent studies have reported that LIM Domain Only 2 (LMO2) is expressed in neoplastic lymphoblasts of T-ALL/T-LBL and is absent in thymocytes of normal thymuses or thymomas. An observational study was done to test the sensitivity and specificity of LMO2 in differentiating neoplastic lymphoblasts from thymocytes of thymomas/normal thymuses. Our study showed that LMO2 had sensitivity of 70% and specificity of 100% in diagnosing LBL. None of the thymomas (B1 or B2 type) showed expression of LMO2 in the neoplastic cells. LMO2 is a reliable marker of transformed T-cell precursors and should be routinely included in immunohistochemical panel when evaluating thymic/mediastinal neoplasms.


Lymphoma, T-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Thymoma , Thymus Neoplasms , Humans , Thymoma/diagnosis , Thymoma/pathology , Immunohistochemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Thymus Neoplasms/diagnosis , Thymus Neoplasms/pathology , Proto-Oncogene Proteins , Adaptor Proteins, Signal Transducing , LIM Domain Proteins/metabolism
13.
Rinsho Ketsueki ; 65(1): 47-51, 2024.
Article Ja | MEDLINE | ID: mdl-38311389

T-lymphoblastic leukemia/lymphoma (T-ALL/LBL) has a poor prognosis. Nelarabine has recently shown relatively good results in patients with relapsed or refractory T-ALL/LBL, but requires careful monitoring for neurological complications. A 50-year-old man with early recurrence of T-LBL after allogenic peripheral blood stem cell transplantation received nelarabine monotherapy and achieved complete remission after 1 cycle. He then received umbilical cord blood transplantation, and experienced sustained disturbance of consciousness. He later died of multiple organ failure, and autopsy suggested that nelarabine-induced leukoencephalopathy had caused the disturbance of consciousness. This case suggests that physicians should carefully monitor patients for neurological complications and consider imaging follow-up and consultation with a neurologist.


Cord Blood Stem Cell Transplantation , Hematopoietic Stem Cell Transplantation , Lymphoma, Non-Hodgkin , Lymphoma, T-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Male , Humans , Middle Aged , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Consciousness , Cord Blood Stem Cell Transplantation/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
14.
Neuroimmunomodulation ; 31(1): 51-61, 2024.
Article En | MEDLINE | ID: mdl-38272012

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by the transformation and uncontrolled proliferation of T-cell precursors. T-ALL is generally thought to originate in the thymus since lymphoblasts express phenotypic markers comparable to those described in thymocytes in distinct stages of development. Although around 50% of T-ALL patients present a thymic mass, T-ALL is characterized by peripheral blood and bone marrow involvement, and central nervous system (CNS) infiltration is one of the most severe complications of the disease. SUMMARY: The CNS invasion is related to the expression of specific adhesion molecules and receptors commonly expressed in developing T cells, such as L-selectin, CD44, integrins, and chemokine receptors. Furthermore, T-ALL blasts also express neurotransmitters, neuropeptides, and cognate receptors that are usually present in the CNS and can affect both the brain and thymus, participating in the crosstalk between the organs. KEY MESSAGES: This review discusses how the thymus-brain connections, mediated by innervation and common molecules and receptors, can impact the development and migration of T-ALL blasts, including CNS infiltration.


Brain , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Thymus Gland , Humans , Thymus Gland/pathology , Brain/pathology , Brain/metabolism , Brain/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals
15.
Arch Pathol Lab Med ; 148(4): 471-475, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37522711

CONTEXT.­: Unlike B-cell acute lymphoblastic leukemia/lymphoma (ALL/LBL), there have been few therapeutic advances in T-cell ALL (T-ALL)/LBL, an aggressive ALL/LBL subtype. OBJECTIVE.­: To perform a focused tissue array study to elucidate tumor markers of therapeutic potential in T-ALL/LBL. DESIGN.­: Using immunohistochemistry, we evaluated expression of leukemic antigens of interest, specifically CC-chemokine receptor 4 (CCR4), among others, on available remnant diagnostic material, including tumor tissue slides obtained from formalin-fixed, paraffin-embedded preserved tissues. RESULTS.­: Our analysis identified, for the first time, expression of CCR4 in T-ALL/LBL in 11 of 27 cases (40.7%) and confirmed common expression of BCL2, CD38, and CD47, as reported previously. We also identified the expression of CD123 in 4 of 26 cases (15.4%), whereas BCL6 and PDL1 were expressed in a small number of T-ALL/LBL cases. The potential novel target CCR4 was significantly more common in the Pre/Pro-T immunophenotypic subtype, 6 of 9 (66.7%, P = .01). No additional differences in clinical and epidemiologic variables were noted among positive or negative CCR4 cases. CONCLUSIONS.­: These findings support preclinical and clinical testing of therapies targeting CCR4, CD47, BCL2, CD38, and CD123 in T-ALL/LBL, and may help guide the development of targeted clinical trials in T-ALL/LBL, a rare disease in urgent need of novel therapies.


Lymphoma, B-Cell , Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , CD47 Antigen , Receptors, CCR4 , Interleukin-3 Receptor alpha Subunit , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , T-Lymphocytes/pathology , Proto-Oncogene Proteins c-bcl-2
16.
Oncology ; 102(1): 85-98, 2024.
Article En | MEDLINE | ID: mdl-37437551

INTRODUCTION: The prognosis of acute lymphoblastic leukemia (ALL) in adolescents and adults is poor, and recurrence is an important cause of their death. Changes of genetic information play a vital role in the pathogenesis and recurrence of ALL; however, the impact of molecular genetic mutations on disease diagnosis and prognosis remains unexplored. This study aimed to explore the frequency spectrum of gene mutations and their prognostic significance, along with the minimal residual disease (MRD) level and hematopoietic stem cell transplantation (HSCT), in adolescent and adult patients aged ≥15 years with ALL. METHODS: The basic characteristics, cytogenetics, molecular genetics, MRD level, treatment regimen, and survival outcome of patients with untreated ALL (≥15 years) were collected, and the correlation and survival analysis were performed using the SPSS 25.0 and R software. RESULTS: This study included 404 patients, of which 147 were selected for next-generation sequencing (NGS). NGS results revealed that 91.2% of the patients had at least one mutation, and 67.35% had multiple (≥2) mutations. NOTCH1, PHF6, RUNX1, PTEN, JAK3, TET2, and JAK1 were the most common mutations in T-ALL, whereas FAT1, TET2, NARS, KMT2D, FLT3, and RELN were the most common mutations in B-ALL. Correlation analysis revealed the mutation patterns, which were significantly different between T-ALL and B-ALL. In the prognostic analysis of 107 patients with B-ALL, multivariate analysis showed that the number of mutations ≥5 was an independent risk factor for overall survival and the RELN mutation was an independent poor prognostic factor for event-free survival. DISCUSSION: The distribution of gene mutations and the co-occurrence and repulsion of mutant genes in patients with ALL were closely related to the immunophenotype of the patients. The number of mutations ≥5 and the RELN mutation were significantly associated with poor prognosis in adolescent and adult patients with ALL.


Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Adolescent , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Mutation , Neoplasm, Residual/pathology , Molecular Biology
17.
Oncogene ; 43(6): 447-456, 2024 Feb.
Article En | MEDLINE | ID: mdl-38102337

TAL1 is one of the most frequently dysregulated genes in T-ALL and is overexpressed in about 50% of T-ALL cases. One of the molecular mechanisms of TAL1 overexpression is abnormal mutations in the upstream region of the TAL1 promoter that introduce binding motifs for the MYB transcription factor. MYB binding at this location creates a 5' TAL1 super-enhancer (SE), which leads to aberrant expression of TAL1 and is associated with unfavorable clinical outcomes. Although targeting TAL1 is considered to be an attractive therapeutic strategy for patients with T-ALL, direct inhibition of transcription factors is challenging. Here, we show that KLF4, a known tumor suppressor in leukemic cells, suppresses SE-driven TAL1 expression in T-ALL cells. Mechanistically, KLF4 downregulates MYB expression by directly binding to its promoter and inhibits the formation of 5' TAL1 SE. In addition, we found that APTO-253, a small molecule inducer of KLF4, exerts an anti-leukemic effect by targeting SE-driven TAL1 expression in T-ALL cells. Taken together, our results suggest that the induction of KLF4 is a promising strategy to control TAL1 expression and could be a novel treatment for T-ALL patients with a poor prognosis.


Leukemia-Lymphoma, Adult T-Cell , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Enhancer Elements, Genetic , Transcription Factors/genetics , Leukemia-Lymphoma, Adult T-Cell/genetics
19.
Eur J Pharmacol ; 963: 176268, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38096965

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and heterogeneous hematologic malignancy. Chemotherapy resistance and refractory relapses are the most important challenges in T-ALL. PI3K/Akt/mTOR pathway has been implicated in regulating cell survival, T-ALL development and resistance to chemotherapy. We explored the effects of AZD5363 (a potent pan-Akt inhibitor) alone and in combination with autophagy inhibitor hydroxycholoroquine sulfate (HCQ) in cultured CCRF-CEM, Jurkat and PF382 cells and a T-ALL xenograft mouse model. METHODS: A xenograft mouse model was used to investigate the effect of AZD5363 on T-ALL progression. MTT assay, flow cytometry, siRNA, transmission electron microscopy and western blotting were performed in cultured CCRF-CEM, Jurkat and PF382 cells. The interaction between AZD5363 and HCQ was explored by molecular docking. RESULTS: AZD5363 delayed T-ALL progression and increased the expression of cleaved caspase-3 and LC3B-II in mice. AZD5363 decreased cells viability by arresting cell cycle in the G1 phase and inducing apoptosis, and, significantly increased the number of autophagosomes (p < 0.01). The increased expression of cleaved caspase-3 and LC3B-II, and phosphorylation of Akt and mTOR were significantly, inhibited by AZD5363. HCQ blocked AZD5363-induced autophagy and enhanced AZD5363-induced cell death (p < 0.01). CONCLUSIONS: AZD5363 suppressed T-ALL progression and its anti-leukemia activity was enhanced by HCQ in T-ALL cells, which might provide a potential therapeutic strategy for human T-ALL.


Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-akt , Humans , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Caspase 3 , Phosphatidylinositol 3-Kinases , Molecular Docking Simulation , Cell Line, Tumor , TOR Serine-Threonine Kinases , T-Lymphocytes/metabolism , Apoptosis , Autophagy , Cell Proliferation
20.
Expert Opin Ther Targets ; 27(11): 1087-1096, 2023.
Article En | MEDLINE | ID: mdl-37975616

INTRODUCTION: Human T-cell acute lymphoblastic leukemia/T-cell lymphoblastic lymphoma (T-ALL/LBL) is a type of cancer that originates from the bone marrow and spreads quickly to other organs. Long-term survival rate with current available chemotherapy is less than 20%. Despite the potentially huge market, a truly effective and safe therapy for T-ALL/LBL is elusive. Thus, it is imperative to identify new therapeutic ways to target essential pathways in T-ALL that regulate the proliferation and survival of these cancer cells. AREAS COVERED: The role of the Cyclin-dependent kinase 6 (CDK6) pathway in human T-ALL is of significant interest with major clinical/translational relevance. This review covers the recent advances in elucidating the essential roles of CDK6 and its closely regulated networks in proliferation, survival, and metabolism of T-ALL cells, with new insight into its mechanisms of action which hopefully could trigger the identification of new therapeutic avenues. EXPERT OPINION: Animal models showed that inhibition of CDK6 and its related networks blocked initiation, growth, and survival of T-ALL in vivo. Numerous clinical trials of CDK4/6 inhibitors are ongoing in T-ALL. Specific CDK6 inhibitors alone or novel combination regimens may hopefully delay the progression, or even reverse the symptoms of T-ALL, leading to disease eradication and cure.


Cyclin-Dependent Kinase 6 , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , T-Lymphocytes/metabolism
...