Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.609
1.
Reprod Fertil Dev ; 362024 May.
Article En | MEDLINE | ID: mdl-38739740

Context A maternal high-fat diet is thought to pose a risk to spermatogenesis in the progeny. Aims We tested whether a maternal high-fat diet would affect Sertoli cell expression of transcription factors (insulin-like growth factor I (IGF-I); glial-cell line-derived neurotrophic factor (GDNF); Ets variant 5 (ETV5)) and cell proliferation and apoptotic proteins, in the testis of adult offspring. Methods Pregnant rats were fed ad libitum with a standard diet (Control) or a high-fat diet (HFat) throughout pregnancy and lactation. After weaning, male pups were fed the standard diet until postnatal day 160. Males were monitored daily from postnatal day 34 to determine onset of puberty. On postnatal day 160, their testes were processed for morphometry and immunohistochemistry. Key results The HFat diet increased seminiferous-tubule diameter (P P P P P P P P Conclusions A maternal high-fat diet alters the balance between spermatogonia proliferation and spermatid apoptosis. Implications A maternal high-fat diet seems to 'program' adult male fertility.


Apoptosis , Cell Proliferation , Diet, High-Fat , Lactation , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Testis , Animals , Female , Male , Pregnancy , Apoptosis/physiology , Lactation/physiology , Testis/metabolism , Testis/pathology , Rats , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/metabolism , Maternal Nutritional Physiological Phenomena/physiology , Spermatogenesis/physiology , Sertoli Cells/metabolism , Sertoli Cells/pathology , Insulin-Like Growth Factor I/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Rats, Wistar
2.
Cereb Cortex ; 34(13): 146-160, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696608

Autism spectrum disorder is a neurodevelopmental disability that includes sensory disturbances. Hearing is frequently affected and ranges from deafness to hypersensitivity. In utero exposure to the antiepileptic valproic acid is associated with increased risk of autism spectrum disorder in humans and timed valproic acid exposure is a biologically relevant and validated animal model of autism spectrum disorder. Valproic acid-exposed rats have fewer neurons in their auditory brainstem and thalamus, fewer calbindin-positive neurons, reduced ascending projections to the midbrain and thalamus, elevated thresholds, and delayed auditory brainstem responses. Additionally, in the auditory cortex, valproic acid exposure results in abnormal responses, decreased phase-locking, elevated thresholds, and abnormal tonotopic maps. We therefore hypothesized that in utero, valproic acid exposure would result in fewer neurons in auditory cortex, neuronal dysmorphology, fewer calbindin-positive neurons, and reduced connectivity. We approached this hypothesis using morphometric analyses, immunohistochemistry, and retrograde tract tracing. We found thinner cortical layers but no changes in the density of neurons, smaller pyramidal and non-pyramidal neurons in several regions, fewer neurons immunoreactive for calbindin-positive, and fewer cortical neurons projecting to the inferior colliculus. These results support the widespread impact of the auditory system in autism spectrum disorder and valproic acid-exposed animals and emphasize the utility of simple, noninvasive auditory screening for autism spectrum disorder.


Auditory Cortex , Autism Spectrum Disorder , Calbindins , Disease Models, Animal , Valproic Acid , Animals , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/chemically induced , Valproic Acid/toxicity , Female , Calbindins/metabolism , Auditory Cortex/pathology , Auditory Cortex/drug effects , Auditory Cortex/metabolism , Pregnancy , Neurons/pathology , Neurons/metabolism , Rats , Male , Auditory Pathways/pathology , Auditory Pathways/drug effects , Prenatal Exposure Delayed Effects/pathology , Rats, Sprague-Dawley , Anticonvulsants
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167189, 2024 Jun.
Article En | MEDLINE | ID: mdl-38648899

OBJECTIVES: Gamete and embryo-foetal origins of adult diseases hypothesis proposes that adulthood chronic disorders are associated with adverse foetal and early life traits. Our study aimed to characterise developmental changes and underlying mechanisms of metabolic disorders in offspring of pre-eclampsia (PE) programmed pregnancy. METHODS: Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME) induced pre-eclampsia-like C57BL/6J mouse model was used. Lipid profiling, histological morphology, indirect calorimetry, mRNA sequencing, and pyrosequencing were performed on PE offspring of both young and elderly ages. RESULTS: PE offspring exhibited increased postnatal weight gain, hepatic lipid accumulation, enlarged adipocytes, and impaired energy balance that continued to adulthood. Integrated RNA sequencing of foetal and 52-week-old livers revealed that the differentially expressed genes were mainly enriched in lipid metabolism, including glycerol-3-phosphate acyl-transferase 3 (Gpat3), a key enzyme for de novo synthesis of triglycerides (TG), and carnitine palmitoyltransferase-1a (Cpt1a), a key transmembrane enzyme that mediates fatty acid degradation. Pyrosequencing of livers from PE offspring identified hypomethylated and hypermethylated regions in Gpat3 and Cpt1a promoters, which were associated with upregulated and downregulated expressions of Gpat3 and Cpt1a, respectively. These epigenetic alterations are persistent and consistent from the foetal stage to adulthood in PE offspring. CONCLUSION: These findings suggest a methylation-mediated epigenetic mechanism for PE-induced intergenerational lipid accumulation, impaired energy balance and obesity in offspring, and indicate the potential benefits of early interventions in offspring exposed to maternal PE to reduce their susceptibility to metabolic disorder in their later life.


DNA Methylation , Fetal Development , Mice, Inbred C57BL , Pre-Eclampsia , Animals , Pregnancy , Female , Mice , Fetal Development/genetics , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Lipid Metabolism/genetics , Liver/metabolism , Liver/pathology , Male , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/pathology , Disease Models, Animal
4.
Mol Cell Endocrinol ; 588: 112202, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38552943

Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and ß-cell count, increased glucagon staining and α-cell count, and increased α-cell/ß-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.


Benzhydryl Compounds , Islets of Langerhans , Phenols , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Female , Phenols/toxicity , Pregnancy , Sheep , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Endocrine Disruptors/toxicity , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Maternal Exposure/adverse effects , Insulin/metabolism , Fetus/drug effects , Glucagon-Secreting Cells/drug effects , Glucagon-Secreting Cells/metabolism , Glucagon-Secreting Cells/pathology
5.
Dev Psychobiol ; 66(2): e22469, 2024 Feb.
Article En | MEDLINE | ID: mdl-38351305

Autism spectrum disorder (ASD) is characterized by deficits in social interaction and communication and repetitive and restricted behaviors. Sex dimorphism in the brain, including midbrain dopaminergic circuits, can explain differences in social behavior impairment and stereotypic behaviors between male and female individuals with ASD. These abnormal patterns may be due to alterations in dopamine synthesis in the ventral tegmental area (VTA) and substantia nigra (SN). We used an autism-like mouse model by prenatal valproic acid (VPA) exposure. CD1 pregnant female mice were injected with 500 mg/kg VPA or 0.9% NaCl as a vehicle on gestational day 12.5. In the offspring, on postnatal day 31, we examined the social and repetitive behaviors and the number of tyrosine hydroxylase (TH)-positive cells in VTA and SN by sex. Male VPA mice showed impaired social behavior and increased repetitive behaviors when compared to male vehicles. In females, we did not find statistically significant differences in social or repetitive behaviors between the groups. Male VPA mice had fewer TH+ cells in the SN than control-vehicle mice. Interestingly, no cellular changes were observed between females. This study supports the notion that sex dimorphism of certain brain regions is involved in the etiopathogenesis and clinical presentation of ASD.


Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Mice , Female , Male , Animals , Humans , Valproic Acid/pharmacology , Sex Characteristics , Dopaminergic Neurons/pathology , Social Behavior , Substantia Nigra/pathology , Disease Models, Animal , Prenatal Exposure Delayed Effects/pathology , Behavior, Animal/physiology
6.
Birth Defects Res ; 116(1): e2300, 2024 Jan.
Article En | MEDLINE | ID: mdl-38277409

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive behaviors and interests. In previous studies, music has been identified as an intervention therapy for children with ASD. OBJECTIVES: The present study evaluated the effects of music on cognitive behavioral impairments in both sexes of adult rats exposed prenatally to Valproic acid. METHODS: For induction of autism, pregnant female rats were pretreated with either saline or VPA (600 mg/kg.i.p.) at gestational day (GD) 12.5. Male and female offspring were divided into Saline.Non-Music, VPA.Non-Music, Saline.Music, and VPA.Music groups. The adult rats in the music groups were exposed to Mozart's piano sonata K.448 for 30 days (4 h/day), from postnatal day (PND) 60 to 90. Social interaction and Morris water maze (MWM) tasks were tested at PND 90. RESULTS: Our results revealed that prenatal exposure to VPA decreased sociability and social memory performance in both sexes of adult rats. Moreover, prenatal exposure to VPA created learning and memory impairments in both sexes of adult rats in the MWM task. Music intervention improved sociability in both sexes of VPA-exposed rats and social memory in both sexes of VPA-exposed rats, especially in females. Furthermore, our results revealed that music ameliorated learning impairments in VPA-exposed female rats in the MWM task. In addition, music improved spatial memory impairments in VPA-exposed rats of both sexes, especially in females, which needs more investigation in molecular and histological fields in future studies. CONCLUSION: Music intervention improved sociability and social memory in adult VPA-exposed rats, especially in female animals. Furthermore, music improved memory impairments in VPA-exposed rats of both sexes. It seems that music had a better influence on female rats. However, future studies need more investigations in molecular and histological fields.


Autism Spectrum Disorder , Music , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Child , Rats , Male , Female , Animals , Valproic Acid/pharmacology , Prenatal Exposure Delayed Effects/pathology , Cognition
7.
J Neuroimmune Pharmacol ; 18(4): 573-591, 2023 12.
Article En | MEDLINE | ID: mdl-37889404

Recent research on placental, embryo, and brain organoids suggests that the COVID-19 virus may potentially affect embryonic organs, including the brain. Given the established link between SARS-CoV-2 spike protein and neuroinflammation, we sought to investigate the effects of exposure to this protein during pregnancy. We divided pregnant rats into three groups: Group 1 received a 1 ml/kg saline solution, Group 2 received 150 µg/kg adjuvant aluminum hydroxide (AAH), and Group 3 received 40 µg/kg spike protein + 150 µg/kg AAH at 10 and 14 days of gestation. On postnatal day 21 (P21), we randomly separated 60 littermates (10 male-female) into control, AAH-exposed, and spike protein-exposed groups. At P50, we conducted behavioral analyses on these mature animals and performed MR spectroscopy. Subsequently, all animals were sacrificed, and their brains were subject to biochemical and histological analysis. Our findings indicate that male rats exposed to the spike protein displayed a higher rate of impaired performance on behavioral studies, including the three-chamber social test, passive avoidance learning analysis, open field test, rotarod test, and novelty-induced cultivation behavior, indicative of autistic symptoms. Exposure to the spike protein (male) induced gliosis and neuronal cell death in the CA1-CA3 regions of the hippocampus and cerebellum. The spike protein-exposed male rats exhibited significantly greater levels of malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-17 (IL-17), nuclear factor kappa B (NF-κB), and lactate and lower levels of brain-derived neurotrophic factor (BDNF) than the control group. Our study suggests a potential association between prenatal exposure to COVID-19 spike protein and neurodevelopmental problems, such as ASD. These findings highlight the importance of further research into the potential effects of the COVID-19 virus on embryonic and fetal development and the potential long-term consequences for neurodevelopment.


Autistic Disorder , COVID-19 , Pregnancy Complications, Infectious , Prenatal Exposure Delayed Effects , Animals , Female , Male , Pregnancy , Rats , Animals, Newborn , Autistic Disorder/chemically induced , Autistic Disorder/pathology , Disease Models, Animal , Placenta/pathology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Brain Behav ; 13(11): e3224, 2023 11.
Article En | MEDLINE | ID: mdl-37596045

BACKGROUND: Prenatal exposure to valproic acid (VPA) may enhance the risk of autism spectrum disorder (ASD) in children. This study investigated the effect of Prangos ferulacea (L.) on behavioral alterations, hippocampal oxidative stress markers, and apoptotic deficits in a rat model of autism induced by valproic acid. METHODS: Pregnant rats received VPA (600 mg/kg, intraperitoneally [i.p.]) or saline on gestational day 12.5 (E 12.5). Starting from the 30th postnatal day (PND 30), the pups were i.p. administered Prangos ferulacea (PF, 100 and 200 mg/kg), or the vehicle, daily until PND 58. On PND 30 and 58, various behavioral tasks were used to evaluate pups, including the open field, elevated plus-maze, hot-plate, and rotarod test. On PND 65, the animals were euthanized, and their brains were removed for histopathological and biochemical assay. RESULTS: Prenatal exposure to VPA caused significant behavioral changes in the offspring, reversed by administering an extract of Prangos ferulacea (L.). Additionally, prenatal VPA administration resulted in increased levels of malondialdehyde and deficits in antioxidant enzyme activities in the hippocampus, including catalase and glutathione, ameliorated by PF. Likewise, postnatal treatment with PF improved VPA-induced dysregulation of Bax and Blc2 in the hippocampus and reduced neuronal death in CA1, CA3, and dentate gyrus. CONCLUSION: The findings of this study suggest that postnatal administration of PF can prevent VPA-induced ASD-like behaviors by exhibiting antiapoptotic and antioxidant properties. Therefore, PF may have the potential as an adjunct in the management of ASD.


Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Child , Rats , Animals , Valproic Acid , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Antioxidants/pharmacology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/drug therapy , Prenatal Exposure Delayed Effects/pathology , Rats, Wistar , Hippocampus/pathology , Social Behavior , Behavior, Animal/physiology , Oxidative Stress , Disease Models, Animal
9.
Int J Mol Sci ; 24(14)2023 Jul 20.
Article En | MEDLINE | ID: mdl-37511470

Neurodevelopmental disorders stemming from maternal immune activation can significantly affect a child's life. A major limitation in pre-clinical studies is the scarcity of valid animal models that accurately mimic these challenges. Among the available models, administration of lipopolysaccharide (LPS) to pregnant females is a widely used paradigm. Previous studies have reported that a model of 'emotional stress', involving chronic exposure of rodents to ultrasonic frequencies, induces neuroinflammation, aberrant neuroplasticity, and behavioral deficits. In this study, we explored whether this model is a suitable paradigm for maternal stress and promotes neurodevelopmental abnormalities in the offspring of stressed females. Pregnant dams were exposed to ultrasound stress for 21 days. A separate group was injected with LPS on embryonic days E11.5 and E12.5 to mimic prenatal infection. The behavior of the dams and their female offspring was assessed using the sucrose test, open field test, and elevated plus maze. Additionally, the three-chamber sociability test and Barnes maze were used in the offspring groups. ELISA and qPCR were used to examine pro-inflammatory changes in the blood and hippocampus of adult females. Ultrasound-exposed adult females developed a depressive-like syndrome, hippocampal overexpression of GSK-3ß, IL-1ß, and IL-6 and increased serum concentrations of IL-1ß, IL-6, IL-17, RANTES, and TNFα. The female offspring also displayed depressive-like behavior, as well as cognitive deficits. These abnormalities were comparable to the behavioral changes induced by LPS. The ultrasound stress model can be a promising animal paradigm of neurodevelopmental pathology associated with prenatal 'emotional stress'.


Behavior, Animal , Prenatal Exposure Delayed Effects , Mice , Pregnancy , Animals , Humans , Female , Behavior, Animal/physiology , Prenatal Exposure Delayed Effects/pathology , Lipopolysaccharides/toxicity , Glycogen Synthase Kinase 3 beta , Interleukin-6/adverse effects , Cytokines , Disease Models, Animal
10.
Sci Rep ; 13(1): 9322, 2023 06 08.
Article En | MEDLINE | ID: mdl-37291156

Bisphenol A (BPA) is a plasticiser used in the manufacturing of many products and its effects on human health remain controversial. Up till now, BPA involvement in metabolic syndrome risk and development is still not fully understood. In this study, we aimed to investigate the effect of prenatal BPA exposure with postnatal trans-fat diet intake on metabolic parameters and pancreatic tissue histology. Eighteen pregnant rats were divided into control (CTL), vehicle tween 80 (VHC), and BPA (5 mg/kg/day) from gestational day (GD) 2 until GD 21, then their weaning rat's offspring were fed with normal diet (ND) or trans-fat diet (TFD) from postnatal week (PNW) 3 until PNW 14. The rats were then sacrificed and the blood (biochemical analysis) and pancreatic tissues (histological analysis) were collected. Glucose, insulin, and lipid profile were measured. The study has shown that there was no significant difference between groups with regard to glucose, insulin, and lipid profiles (p > 0.05). All pancreatic tissues showed normal architecture with irregular islets of Langerhans in TFD intake groups compared to offspring that consumed ND. Furthermore, the pancreatic histomorphometry was also affected whereby the study findings revealed that there was a significant increase in the mean number of pancreatic islets in rats from BPA-TFD group (5.987 ± 0.3159 islets/field, p = 0.0022) compared to those fed with ND and BPA non-exposed. In addition, the results have found that prenatal BPA exposure resulted in a significant decrease in the pancreatic islets diameter of the BPA-ND group (183.3 ± 23.28 µm, p = 0.0022) compared to all other groups. In conclusion, prenatal BPA exposure with postnatal TFD in the offspring may affect glucose homeostasis and pancreatic islets in adulthood, and the effect may be more aggravated in late adulthood.


Benzhydryl Compounds , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Rats , Animals , Benzhydryl Compounds/toxicity , Insulin , Glucose/metabolism , Diet , Lipids , Prenatal Exposure Delayed Effects/pathology
11.
Placenta ; 139: 127-133, 2023 08.
Article En | MEDLINE | ID: mdl-37390516

INTRODUCTION: Prenatal exposure to stress has been associated with poor pregnancy outcomes, yet evidence linking stress and placental size is limited. Asthma is associated with worse pregnancy outcomes and women with asthma may be more susceptible to stress. Using the asthma-enriched B-WELL-Mom cohort, we examined the association between perceived stress and placental size. METHODS: Placental measures of weight, length, width, and thickness were available for 345 women (262 with asthma) via placental pathology report. Perceived Stress Scale (PSS) scores were obtained in each trimester of pregnancy and categorized into quartiles (low quartile as reference). For associations between PSS and placental size, generalized estimating equations adjusted for maternal and infant factors were used to estimate regression coefficients (ß) and 95% confidence intervals (95% CI). Full models and models stratified by asthma status were run. RESULTS: Compared to Quartile 1, high levels of stress (Quartile 4) were associated with smaller placental weight (-20.63 95% CI: -37.01,-4.26) and length (-0.55 95% CI: -0.96,-0.15), but not width or thickness. Results by asthma status show a stronger association between perceived stress and shorter placental length in those with asthma and a stronger association between perceived stress and smaller placental thickness in those without asthma. Findings were robust to sensitivity analyses DISCUSSION: Higher levels of perceived stress were associated with smaller placental size. Additional research is warranted to understand the relationship between stress and placental size.


Asthma , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Placenta/pathology , Prenatal Exposure Delayed Effects/pathology , Pregnancy Outcome , Asthma/pathology , Stress, Psychological , Maternal Exposure
12.
J Endocrinol Invest ; 46(8): 1521-1531, 2023 Aug.
Article En | MEDLINE | ID: mdl-36976483

PURPOSE: The aim of this review was to summarize sex differences in glycolipid metabolic phenotypes of human and animal models after exposure to maternal hyperglycemia and overview the underlying mechanisms, providing a new perspective on the maternal hyperglycemia-triggered risk of glycolipidic disorders in offspring. METHODS: A comprehensive literature search within PubMed was performed. Selected publications related to studies on offspring exposed to maternal hyperglycemia investigating the sex differences of glycolipid metabolism were reviewed. RESULTS: Maternal hyperglycemia increases the risk of glycolipid metabolic disorders in offspring, such as obesity, glucose intolerance and diabetes. Whether with or without intervention, metabolic phenotypes have been shown to exhibit sex differences between male and female offspring in response to maternal hyperglycemia, which may be related to gonadal hormones, organic intrinsic differences, placenta, and epigenetic modifications. CONCLUSION: Sex may play a role in the different incidences and pathogenesis of abnormal glycolipid metabolism. More studies investigating both sexes are needed to understand how and why environmental conditions in early life affect long-term health between male and female individuals.


Diabetes, Gestational , Glucose Intolerance , Prenatal Exposure Delayed Effects , Pregnancy , Animals , Female , Male , Humans , Sex Characteristics , Prenatal Exposure Delayed Effects/pathology , Glycolipids
13.
J Chem Neuroanat ; 130: 102268, 2023 07.
Article En | MEDLINE | ID: mdl-36989922

The cytotoxicity of chemotherapeutic drugs is known due to its non-selective effect not only on cancer cells but also on healthy cells. This study investigated the cerebellar alteration in rats prenatally exposed to cyclophosphamide (SK, 20 mg/kg). We also evaluated the neuroprotective potential of Ginkgo biloba (GB, 80 mg/kg/day) against possible biological changes caused by SK in the cerebellar tissues. Twenty adult female rats (weighing 230-280 g, 12 weeks old) were divided into five groups: control, sham, SK, GB, and SK + GB. After mating, pregnant rats was treated with SK in the SK and SK + GB groups and GB in the GB and SK + GB groups from day 13 to day 21 of gestation. After parturition, eight female rats were randomly selected from each group. On day 32 after birth, the cerebellar tissues were dissected and then examined under light microscope using stereological and histopathological methods. Stereological findings showed that the total number of Purkinje cells and granular cells were significantly decreased in the SK group than the control group (p < 0.05). In addition, the mean volumes of molecular layer, granular layer, white matter, and cerebellum were significantly decreased in the SK group compared to the control group (p < 0.05). In the SK + GB group, the total number Purkinje cell, and granular cells, as well as the mean volumes of molecular layer, granular layer, white matter, and cerebellum were significantly increased than the SK group (p < 0.05). Histopathological evaluation also confirmed our stereological findings in the cerebellar tissues. Our results showed that prenatal exposure to SK caused significant changes in the cerebellar architectures of rats, and that GB administration significantly attenuated the deleterious effect of SK on the cerebellar tissues.


Ginkgo biloba , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Rats , Animals , Female , Prenatal Exposure Delayed Effects/pathology , Purkinje Cells/pathology , Cerebellum/pathology , Cyclophosphamide/toxicity
14.
Cells ; 12(3)2023 01 29.
Article En | MEDLINE | ID: mdl-36766783

The brain's ability to strengthen or weaken synaptic connections is often termed synaptic plasticity. It has been shown to function in brain remodeling following different types of brain damage (e.g., drugs of abuse, alcohol use disorders, neurodegenerative diseases, and inflammatory conditions). Although synaptic plasticity mechanisms have been extensively studied, how neural plasticity can influence neurobehavioral abnormalities in alcohol use disorders (AUDs) is far from being completely understood. Alcohol use during pregnancy and its harmful effects on the developing offspring are major public health, social, and economic challenges. The significant attribute of prenatal alcohol exposure on offspring is damage to the central nervous system (CNS), causing a range of synaptic structural, functional, and behavioral impairments, collectively called fetal alcohol spectrum disorder (FASD). Although the synaptic mechanisms in FASD are limited, emerging evidence suggests that FASD pathogenesis involves altering a set of molecules involved in neurotransmission, myelination, and neuroinflammation. These studies identify several immediate and long-lasting changes using many molecular approaches that are essential for synaptic plasticity and cognitive function. Therefore, they can offer potential synaptic targets for the many neurobehavioral abnormalities observed in FASD. In this review, we discuss the substantial research progress in different aspects of synaptic and molecular changes that can shed light on the mechanism of synaptic dysfunction in FASD. Increasing our understanding of the synaptic changes in FASD will significantly advance our knowledge and could provide a basis for finding novel therapeutic targets and innovative treatment strategies.


Alcoholism , Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Fetal Alcohol Spectrum Disorders/etiology , Fetal Alcohol Spectrum Disorders/pathology , Alcoholism/pathology , Prenatal Exposure Delayed Effects/pathology , Brain/pathology , Neuronal Plasticity
15.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article En | MEDLINE | ID: mdl-36769026

Autism spectrum disorder (ASD) is a heterogeneous collection of neurodevelopmental disorders, difficult to diagnose and currently lacking treatment options. The possibility of finding reliable biomarkers useful for early identification would offer the opportunity to intervene with treatment strategies to improve the life quality of ASD patients. To date, there are many recognized risk factors for the development of ASD, both genetic and non-genetic. Although genetic and epigenetic factors may play a critical role, the extent of their contribution to ASD risk is still under study. On the other hand, non-genetic risk factors include pollution, nutrition, infection, psychological states, and lifestyle, all together known as the exposome, which impacts the mother's and fetus's life, especially during pregnancy. Pathogenic and non-pathogenic maternal immune activation (MIA) and autoimmune diseases can cause various alterations in the fetal environment, also contributing to the etiology of ASD in offspring. Activation of monocytes, macrophages, mast cells and microglia and high production of pro-inflammatory cytokines are indeed the cause of neuroinflammation, and the latter is involved in ASD's onset and development. In this review, we focused on non-genetic risk factors, especially on the connection between inflammation, macrophage polarization and ASD syndrome, MIA, and the involvement of microglia.


Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Microglia/pathology , Prenatal Exposure Delayed Effects/pathology , Inflammation/pathology , Macrophages/pathology
16.
JBRA Assist Reprod ; 27(3): 373-380, 2023 09 12.
Article En | MEDLINE | ID: mdl-36749807

OBJECTIVE: During pregnancy, maternal exposure to ultraviolet radiation (UVR) has been linked to altered offspring immune and health status. This study was therefore designed to investigate some markers of immune response in the offspring of pregnant Wistar rats exposed to UVR at various points of gestation. METHODS: Thirty pregnant rats were divided into 6 groups (n=5) as follows; group I, control, consisting of pregnant rats unexposed to UVR. Animals in groups II, III, IV, V and VI were exposed to UVR for one hour daily, on gestational days 1-7,8-14,15-21,1-14 and 1-21, respectively. Animals were allowed to come to term and offspring birth weight was taken. On postnatal Day 10, weight of each offspring was taken again. Thereafter, blood samples were collected from each offspring per group and evaluated for total protein, albumin, globulin, C-reactive protein, interleukin-1ß, and complement component protein-3 (C3). Offspring hepatic samples were evaluated using standard histological techniques. RESULTS: Offspring birthweight increased (p<0.05), while weight gain on postnatal day 10 reduced in all experimental groups compared to controls. No significant differences were observed for offspring total protein, albumin, and C3 levels across all groups. Globulin increased (p<0.05) only in group VI, while C-reactive protein increased (p<0.05) in all experimental groups, except group III, compared to controls. Interleukin-1ß in groups II, III, V and VI increased significantly compared to controls. Offspring hepatic samples exhibited hepatocellular degeneration and necrosis that was independent of gestational stage of maternal exposure to UVR. CONCLUSIONS: Maternal exposure to ultraviolet radiation during gestation in Wistar rats activates offspring immune and inflammatory responses.


Prenatal Exposure Delayed Effects , Ultraviolet Rays , Pregnancy , Humans , Female , Rats , Animals , Rats, Wistar , Ultraviolet Rays/adverse effects , Interleukin-1beta , Prenatal Exposure Delayed Effects/pathology , C-Reactive Protein
17.
Hum Brain Mapp ; 44(6): 2380-2394, 2023 04 15.
Article En | MEDLINE | ID: mdl-36691973

Prenatal depressive symptoms are linked to negative child behavioral and cognitive outcomes and predict later psychopathology in adolescent children. Prior work links prenatal depressive symptoms to child brain structure in regions like the amygdala; however, the relationship between symptoms and the development of brain structure over time remains unclear. We measured maternal depressive symptoms during pregnancy and acquired longitudinal T1-weighted and diffusion imaging data in children (n = 111; 60 females) between 2.6 and 8 years of age. Controlling for postnatal symptoms, we used linear mixed effects models to test relationships between prenatal depressive symptoms and age-related changes in (i) amygdala and hippocampal volume and (ii) structural properties of the limbic and default-mode networks using graph theory. Higher prenatal depressive symptoms in the second trimester were associated with more curvilinear trajectories of left amygdala volume changes. Higher prenatal depressive symptoms in the third trimester were associated with slower age-related changes in limbic global efficiency and average node degree across childhood. Our work provides evidence that moderate symptoms of prenatal depression in a low sociodemographic risk sample are associated with structural brain development in regions and networks implicated in emotion processing.


Depression , Prenatal Exposure Delayed Effects , Female , Pregnancy , Adolescent , Child , Humans , Depression/diagnostic imaging , Default Mode Network/pathology , Magnetic Resonance Imaging/methods , Prenatal Exposure Delayed Effects/diagnostic imaging , Prenatal Exposure Delayed Effects/pathology , Brain/pathology
18.
Sci Rep ; 13(1): 109, 2023 01 03.
Article En | MEDLINE | ID: mdl-36596841

Fetal alcohol spectrum disorders (FASD) are spectrum of neurodevelopmental conditions associated with prenatal alcohol exposure. The FASD manifests mostly with facial dysmorphism, prenatal and postnatal growth retardation, and selected birth defects (including central nervous system defects). Unrecognized and untreated FASD leads to severe disability in adulthood. The diagnosis of FASD is based on clinical criteria and neither biomarkers nor imaging tests can be used in order to confirm the diagnosis. The quantitative electroencephalography (QEEG) is a type of EEG analysis, which involves the use of mathematical algorithms, and which has brought new possibilities of EEG signal evaluation, among the other things-the analysis of a specific frequency band. The main objective of this study was to identify characteristic patterns in QEEG among individuals affected with FASD. This study was of a pilot prospective study character with experimental group consisting of patients with newly diagnosed FASD and of the control group consisting of children with gastroenterological issues. The EEG recordings of both groups were obtained, than analyzed using a commercial QEEG module. As a results we were able to establish the dominance of the alpha rhythm over the beta rhythm in FASD-participants compared to those from the control group, mostly in frontal and temporal regions. Second important finding is an increased theta/beta ratio among patients with FASD. These findings are consistent with the current knowledge on the pathological processes resulting from the prenatal alcohol exposure. The obtained results and conclusions were promising, however, further research is necessary (and planned) in order to validate the use of QEEG tools in FASD diagnostics.


Epilepsy , Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Humans , Child , Female , Pregnancy , Adult , Fetal Alcohol Spectrum Disorders/diagnosis , Fetal Alcohol Spectrum Disorders/pathology , Prospective Studies , Prenatal Exposure Delayed Effects/pathology , Brain/pathology , Epilepsy/pathology , Electroencephalography
19.
Toxicol Lett ; 374: 57-67, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36549429

With the increasing application of cerium and rare-earth elements (REEs), cerium exposure is becoming more widespread. However, there remains a paucity of evidence on developmental immunotoxicity of cerium. This study was designed to examine the developmental immunotoxicity of gestational and postnatal exposure to cerium nitrate (CN) in BALB/C mouse offspring. Dams were given CN by oral gavage at 0, 0.002, 0.02 and 0.2 mg/kg from gestation day 5 (GD5) to postnatal day 21 (PND 21). On PND 21, the highest dose of CN significantly suppressed the NK cell cytotoxicity, and reduced the proportions of NK cells in peripheral blood and spleen of both female and male pups, however, the proportions of monocytes in peripheral blood and macrophages in spleen only increased in female pups. For adaptive immunity, on PND 21, the suppression of T/B lymphocyte proliferation, humoral and cellular immune responses (number of splenic plaque-forming cells, PFC, and delayed-type hypersensitivity, DTH) were observed in both female and male pup mice exposed to 0.2 mg/kg CN. However, the fall of proportions of T/B lymphocytes in peripheral blood (PB), spleen and mesenteric lymph node (MLN) only found in female pups at 0.2 mg/kg on PND 21. Most indications recovered to normal after 3-week cessation of CN exposure, except the reduction of DTH and PFC. From the findings in this study, the lowest-observed-adverse-effect level (LOAEL) of CN for developmental immunotoxicity was estimated to be 0.2 mg/kg bw per day.


Cerium , Prenatal Exposure Delayed Effects , Humans , Mice , Animals , Male , Female , Mice, Inbred BALB C , Maternal Exposure/adverse effects , Spleen , Cerium/toxicity , Prenatal Exposure Delayed Effects/pathology
20.
Toxicol Ind Health ; 39(1): 1-9, 2023 Jan.
Article En | MEDLINE | ID: mdl-36383165

It is well-known that wireless communication technologies facilitate human life. However, the harmful effects of electromagnetic field (EMF) radiation on the human body should not be ignored. In the present study, we evaluated the effects of long-term, prenatal exposure to EMF radiation on the myocardium of rats at varying durations. Overall, 18 pregnant Sprague-Dawley rats were assigned into six groups (n = 3 in each group). In all groups other than the control group, three pregnant rats were exposed to EMF radiation (900, 1800 and 2100 MHz) for 6, 12 and 24 h over 20 days. After delivery, the newborn male pups were identified and six newborn male pups from each group were randomly selected. Then, histopathological and biochemical analysis of myocardial samples were performed. When 24-h/day prenatal exposures to 900, 1800, 2100 MHz EMF radiation were evaluated, myocardial damage was greater in the 2100 MHz EMF-24h group than the other groups. In addition, when malondialdehyde (MDA) and glutathione (GSH) levels associated with reactive oxidative species (ROS) were evaluated, the MDA level was higher in the 2100 MHz EMF-24h group compared with the other groups. The GSH level was also lower in the 2100 MHz EMF-24h group. When the 6, 12 and 24 h/day prenatal exposures to 1800 MHz EMF radiation were evaluated, myocardial damage was greater in 1800 MHz EMF-24h group than the remaining groups (p < 0.0001). Also, MDA level was greater in the 1800 MHz EMF-24h group compared with the other groups while the GSH level was lower in this group. It was shown that myocardial tissue was affected more by long-term exposure to EMF radiation at high frequencies. The data raise concerns that the harmful effects of non-ionizing radiation exposure on cardiac tissue will increase with 5G technology.


Prenatal Exposure Delayed Effects , Female , Pregnancy , Humans , Rats , Animals , Male , Rats, Sprague-Dawley , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/pathology , Electromagnetic Fields/adverse effects , Glutathione , Myocardium/pathology
...