Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anat ; 238(2): 467-479, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32914872

RESUMEN

Puberty is an important phase of development when the neural circuit organization is transformed by sexual hormones, inducing sexual dimorphism in adult behavioural responses. The principal brain area responsible for the control of the receptive component of female sexual behaviour is the ventrolateral division of the ventromedial nucleus of the hypothalamus (VMHvl), which is known for its dependency on ovarian hormones. Inputs to the VMHvl originating from the medial preoptic nucleus (MPN) are responsible for conveying essential information that will trigger such behaviour. Here, we investigated the pattern of the projection of the MPN to the VMHvl in rats ovariectomized at the onset of puberty. Sprague Dawley rats were ovariectomized (OVX) at puberty and then subjected to iontophoretic injections of the neuronal anterograde tracer Phaseolus vulgaris leucoagglutinin into the MPN once they reached 90 days of age. This study analysed the connectivity pattern established between the MPN and the VMH that is involved in the neuronal circuit responsible for female sexual behaviour in control and OVX rats. The data show the changes in the organization of the connections observed in the OVX adult rats that displayed a reduced axonal length for the MPN fibres reaching the VMHvl, suggesting that peripubertal ovarian hormones are relevant to the organization of MPN connections with structures involved in the promotion of female sexual behaviour.


Asunto(s)
Hormonas Esteroides Gonadales/fisiología , Área Preóptica/crecimiento & desarrollo , Núcleo Hipotalámico Ventromedial/crecimiento & desarrollo , Animales , Femenino , Fibras Nerviosas , Ovariectomía , Ratas Sprague-Dawley
2.
Endocrinology ; 161(11)2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33095238

RESUMEN

Polycystic ovary syndrome (PCOS) is the most common form of infertility in women. The causes of PCOS are not yet understood and both genetics and early-life exposure have been considered as candidates. With regard to the latter, circulating androgens are elevated in mid-late gestation in women with PCOS, potentially exposing offspring to elevated androgens in utero; daughters of women with PCOS are at increased risk for developing this disorder. Consistent with these clinical observations, prenatal androgenization (PNA) of several species recapitulates many phenotypes observed in PCOS. There is increasing evidence that symptoms associated with PCOS, including elevated luteinizing hormone (LH) (and presumably gonadotropin-releasing hormone [GnRH]) pulse frequency emerge during the pubertal transition. We utilized translating ribosome affinity purification coupled with ribonucleic acid (RNA) sequencing to examine GnRH neuron messenger RNAs from prepubertal (3 weeks) and adult female control and PNA mice. Prominent in GnRH neurons were transcripts associated with protein synthesis and cellular energetics, in particular oxidative phosphorylation. The GnRH neuron transcript profile was affected more by the transition from prepuberty to adulthood than by PNA treatment; however, PNA did change the developmental trajectory of GnRH neurons. This included families of transcripts related to both protein synthesis and oxidative phosphorylation, which were more prevalent in adults than in prepubertal mice but were blunted in PNA adults. These findings suggest that prenatal androgen exposure can program alterations in the translatome of GnRH neurons, providing a mechanism independent of changes in the genetic code for altered expression.


Asunto(s)
Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Área Preóptica/efectos de los fármacos , Virilismo , Andrógenos/efectos adversos , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Área Preóptica/citología , Área Preóptica/crecimiento & desarrollo , Área Preóptica/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores Sexuales , Virilismo/inducido químicamente , Virilismo/genética , Virilismo/fisiopatología
3.
Genes Brain Behav ; 19(7): e12662, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32388931

RESUMEN

Neural systems underlying important behaviors are usually highly conserved across species. The medial preoptic area (MPOA) has been demonstrated to play a crucial role in reward associated with affiliative, nonsexual, social communication in songbirds. However, the role of MPOA in affiliative, rewarding social behaviors (eg, social play behavior) in mammals remains largely unknown. Here we applied our insights from songbirds to rats to determine whether opioids in the MPOA govern social play behavior in rats. Using an immediate early gene (ie, Egr1, early growth response 1) expression approach, we identified increased numbers of Egr1-labeled cells in the MPOA after social play in adolescent male rats. We also demonstrated that cells expressing mu opioid receptors (MORs, gene name Oprm1) in the MPOA displayed increased Egr1 expression when adolescent rats were engaged in social play using double immunofluorescence labeling of MOR and Egr1. Furthermore, using short hairpin RNA-mediated gene silencing we revealed that knockdown of Oprm1 in the MPOA reduced the number of total play bouts and the frequency of pouncing. Last, RNA sequencing differential gene expression analysis identified genes involved in neuronal signaling with altered expression after Oprm1 knockdown, and identified Egr1 as potentially a key modulator for Oprm1 in the regulation of social play behavior. Altogether, these results show that the MPOA is involved in social play behavior in adolescent male rats and support the hypothesis that the MPOA is part of a conserved neural circuit across vertebrates in which opioids act to govern affiliative, intrinsically rewarded social behaviors.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Área Preóptica/metabolismo , Receptores Opioides mu/genética , Conducta Social , Animales , Proteínas Portadoras/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Área Preóptica/crecimiento & desarrollo , Área Preóptica/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/metabolismo
4.
Ecotoxicol Environ Saf ; 188: 109898, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31711775

RESUMEN

Gamma-aminobutyric acid (GABA) plays a critical role in regulation of gonadotropin-releasing hormone (GnRH) through GABAA receptor (GABAAR). Nitric oxide (NO) production has correlation with GABA and regulates GnRH secretion. This study was performed to examine the mechanisms by which manganese (Mn) accelerate puberty onset involves GABAAR/NO pathway in the preoptic area-anterior hypothalamus (POA-AH) in immature female rats. First, female rats received daily dose of MnCl2 0 (saline), 2.5, 5 and 10 mg/kg b.w by oral gavage during postnatal day (PND) 21-32. Animals administered with 10 mg/kg MnCl2 exhibited earlier puberty onset age and advanced ovary and uterus development than these in saline-treatment group. Furthermore, we found that decrease of GABAAR result in elevated production of nitric oxide synthase1 (NOS1), NO and GnRH in the POA-AH. Second, we recorded the neuronal spikes alternation after perfusion with GABAAR inhibitor bicuculline (BIC), GABAAR agonist isoguvacine (isog), and MnCl2 from the POA-AH in acute brain slices of PND21 rats. Spontaneous firing revealed a powerful GABAAR-mediated action on immature POA-AH and confirm that MnCl2 has a significant effect on GABAAR. Third, we revealed that decrease in NOS1 and NO production by treatment with isog-alone or isog+MnCl2 contribute to the decrease of GnRH in the POA-AH and a delayed puberty onset age compared to treatment with MnCl2-alone. Together, these results suggested that excessive exposure to MnCl2 stimulates NO production through decreased GABAAR in the POA-AH to advance puberty onset in immature female rats.


Asunto(s)
Envejecimiento/efectos de los fármacos , Cloruros/toxicidad , Disruptores Endocrinos/toxicidad , Óxido Nítrico/metabolismo , Área Preóptica/efectos de los fármacos , Receptores de GABA-A/metabolismo , Maduración Sexual/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Compuestos de Manganeso , Neuronas/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/crecimiento & desarrollo , Área Preóptica/crecimiento & desarrollo , Área Preóptica/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Útero/diagnóstico por imagen , Útero/efectos de los fármacos , Destete
5.
Physiol Behav ; 204: 20-26, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30738033

RESUMEN

Testosterone activates singing within days in castrated male songbirds but full song quality only develops after a few weeks. Lesions of the medial preoptic nucleus (POM) inhibit while stereotaxic testosterone implants into this nucleus increase singing rate suggesting that this site plays a key role in the regulation of singing motivation. Testosterone action in the song control system works in parallel to control song quality. Accordingly, systemic testosterone increases POM volume within 1-2 days in female canaries, while the increase in volume of song control nuclei takes at least 2 weeks. The current study tested whether testosterone action is associated with similar differences in latencies in males. Photosensitive castrated male canaries were implanted with testosterone-filled Silastic™ implants and control castrates received empty implants, while simultaneously the photoperiod was switched from short- to long-days. Brains were collected from all subjects two days later. Plasma testosterone was elevated in testosterone-treated but not in controls. HVC volumes were not affected, but testosterone significantly increased the POM volume as identified by the dense group of aromatase-immunoreactive neurons, the number and somal area of these neurons and the fractional area they cover in POM. Testosterone-treated females from a previous experiment had a smaller POM volume in similar conditions suggesting the existence of a stable sex difference potentially affecting singing behavior. Thus testosterone induces male POM growth and aromatase expression in this nucleus within two days without affecting HVC size, further supporting the notion that testosterone increases singing motivation via its action in POM.


Asunto(s)
Canarios/fisiología , Área Preóptica/efectos de los fármacos , Área Preóptica/crecimiento & desarrollo , Testosterona/farmacología , Animales , Implantes de Medicamentos , Femenino , Humanos , Masculino , Orquiectomía , Fotoperiodo , Caracteres Sexuales , Testosterona/administración & dosificación , Testosterona/sangre , Vocalización Animal/efectos de los fármacos
6.
Cell Tissue Res ; 375(1): 5-22, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30109407

RESUMEN

The paraventricular nucleus (PVN) of the hypothalamus harbors diverse neurosecretory cells with critical physiological roles for the homeostasis. Decades of research in rodents have provided a large amount of information on the anatomy, development, and function of this important hypothalamic nucleus. However, since the hypothalamus lies deep within the brain in mammals and is difficult to access, many questions regarding development and plasticity of this nucleus still remain. In particular, how different environmental conditions, including stress exposure, shape the development of this important nucleus has been difficult to address in animals that develop in utero. To address these open questions, the transparent larval zebrafish with its rapid external development and excellent genetic toolbox offers exciting opportunities. In this review, we summarize recent information on the anatomy and development of the neurosecretory preoptic area (NPO), which represents a similar structure to the mammalian PVN in zebrafish. We will then review recent studies on the development of different cell types in the neurosecretory hypothalamus both in mouse and in fish. Lastly, we discuss stress-induced plasticity of the PVN mainly discussing the data obtained in rodents, but pointing out tools and approaches available in zebrafish for future studies. This review serves as a primer for the currently available information relevant for studying the development and plasticity of this important brain region using zebrafish.


Asunto(s)
Hipotálamo/anatomía & histología , Hipotálamo/crecimiento & desarrollo , Plasticidad Neuronal/fisiología , Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/crecimiento & desarrollo , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo , Animales , Área Preóptica/anatomía & histología , Área Preóptica/crecimiento & desarrollo , Estrés Fisiológico
7.
Cereb Cortex ; 29(4): 1644-1658, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29912395

RESUMEN

The delicate balance of excitation and inhibition is crucial for proper function of the cerebral cortex, relying on the accurate number and subtype composition of inhibitory gamma-aminobutyric (GABA)-expressing interneurons. Various intrinsic and extrinsic factors precisely orchestrate their multifaceted development including the long-range migration from the basal telencephalon to cortical targets as well as interneuron survival throughout the developmental period. Particularly expressed guidance receptors were described to channel the migration of cortical interneurons deriving from the medial ganglionic eminence (MGE) and the preoptic area (POA) along distinct routes. Hence, unveiling the regulatory genetic networks controlling subtype-specific gene expression profiles is key to understand interneuron-specific developmental programs and to reveal causes for associated disorders. In contrast to MGE-derived interneurons, little is known about the transcriptional networks in interneurons born in the POA. Here, we provide first evidence for the LIM-homeobox transcription factor LHX1 as a crucial key player in the post-mitotic development of POA-derived cortical interneurons. By transcriptional regulation of related genes, LHX1 modulates their survival as well as the subtype-specific expression of guidance receptors of the Eph/ephrin family, thereby affecting directional migration and layer distribution in the adult cortex.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Interneuronas/fisiología , Proteínas con Homeodominio LIM/fisiología , Área Preóptica/crecimiento & desarrollo , Factores de Transcripción/fisiología , Animales , Movimiento Celular , Supervivencia Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Efrina-B3/genética , Efrina-B3/fisiología , Regulación del Desarrollo de la Expresión Génica , Interneuronas/citología , Interneuronas/metabolismo , Proteínas con Homeodominio LIM/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Área Preóptica/citología , Área Preóptica/metabolismo , Receptor EphA4/genética , Receptor EphA4/fisiología , Factores de Transcripción/genética
8.
Sci Rep ; 7(1): 11813, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924206

RESUMEN

The development of the neocortex requires co-ordination between proliferation and differentiation, as well as the precise orchestration of neuronal migration. Eph/ephrin signaling is crucial in guiding neurons and their projections during embryonic development. In adult ephrin-A2 knockout mice we consistently observed focal patches of disorganized neocortical laminar architecture, ranging in severity from reduced neuronal density to a complete lack of neurons. Loss of ephrin-A2 in the pre-optic area of the diencephalon reduced the migration of neocortex-bound interneurons from this region. Furthermore, ephrin-A2 participates in the creation of excitatory neurons by inhibiting apical progenitor proliferation in the ventricular zone, with the disruption of ephrin-A2 signaling in these cells recapitulating the abnormal neocortex observed in the knockout. The disturbance to the architecture of the neocortex observed following deletion of ephrin-A2 signaling shares many similarities with defects found in the neocortex of children diagnosed with autism spectrum disorder.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Efrina-A2/metabolismo , Interneuronas/metabolismo , Neocórtex/crecimiento & desarrollo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Niño , Efrina-A2/genética , Humanos , Interneuronas/citología , Ratones , Ratones Noqueados , Neocórtex/citología , Neocórtex/metabolismo , Área Preóptica/citología , Área Preóptica/crecimiento & desarrollo , Área Preóptica/metabolismo
9.
Reproduction ; 154(2): 145-152, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28559473

RESUMEN

Paracetamol/acetaminophen (N-Acetyl-p-Aminophenol; APAP) is the preferred analgesic for pain relief and fever during pregnancy. It has therefore caused concern that several studies have reported that prenatal exposure to APAP results in developmental alterations in both the reproductive tract and the brain. Genitals and nervous system of male mammals are actively masculinised during foetal development and early postnatal life by the combined actions of prostaglandins and androgens, resulting in the male-typical reproductive behaviour seen in adulthood. Both androgens and prostaglandins are known to be inhibited by APAP. Through intrauterine exposure experiments in C57BL/6 mice, we found that exposure to APAP decreased neuronal number in the sexually dimorphic nucleus (SDN) of the preoptic area (POA) in the anterior hypothalamus of male adult offspring. Likewise, exposure to the environmental pollutant and precursor of APAP, aniline, resulted in a similar reduction. Decrease in neuronal number in the SDN-POA is associated with reductions in male sexual behaviour. Consistent with the changes, male mice exposed in uteri to APAP exhibited changes in urinary marking behaviour as adults and had a less aggressive territorial display towards intruders of the same gender. Additionally, exposed males had reduced intromissions and ejaculations during mating with females in oestrus. Together, these data suggest that prenatal exposure to APAP may impair male sexual behaviour in adulthood by disrupting the sexual neurobehavioral programming. These findings add to the growing body of evidence suggesting the need to limit the widespread exposure and use of APAP by pregnant women.


Asunto(s)
Acetaminofén/toxicidad , Compuestos de Anilina/toxicidad , Neuronas/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Área Preóptica/efectos de los fármacos , Caracteres Sexuales , Conducta Sexual Animal/efectos de los fármacos , Agresión/efectos de los fármacos , Animales , Eyaculación/efectos de los fármacos , Femenino , Edad Gestacional , Masculino , Ratones Endogámicos C57BL , Neuronas/patología , Embarazo , Área Preóptica/crecimiento & desarrollo , Área Preóptica/patología , Medición de Riesgo , Territorialidad , Micción/efectos de los fármacos
10.
J Neurophysiol ; 117(1): 327-335, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27784808

RESUMEN

Sleep homeostasis in rats undergoes significant maturational changes during postweaning development, but the underlying mechanisms of this process are unknown. In the present study we tested the hypothesis that the maturation of sleep is related to the functional emergence of adenosine (AD) signaling in the brain. We assessed postweaning changes in 1) wake-related elevation of extracellular AD in the basal forebrain (BF) and adjacent lateral preoptic area (LPO), and 2) the responsiveness of median preoptic nucleus (MnPO) sleep-active cells to increasing homeostatic sleep drive. We tested the ability of exogenous AD to augment homeostatic responses to sleep deprivation (SD) in newly weaned rats. In groups of postnatal day (P)22 and P30 rats, we collected dialysate from the BF/LPO during baseline (BSL) wake-sleep, SD, and recovery sleep (RS). HPLC analysis of microdialysis samples revealed that SD in P30 rats results in significant increases in AD levels compared with BSL. P22 rats do not exhibit changes in AD levels in response to SD. We recorded neuronal activity in the MnPO during BSL, SD, and RS at P22/P30. MnPO neurons exhibited adult-like increases in waking neuronal discharge across SD on both P22 and P30, but discharge rates during enforced wake were higher on P30 vs. P22. Central administration of AD (1 nmol) during SD on P22 resulted in increased sleep time and EEG slow-wave activity during RS compared with saline control. Collectively, these findings support the hypothesis that functional reorganization of an adenosinergic mechanism of sleep regulation contributes to the maturation of sleep homeostasis. NEW & NOTEWORTHY: Brain mechanisms that regulate the maturation of sleep are understudied. The present study generated first evidence about a potential mechanistic role for adenosine in the maturation of sleep homeostasis. Specifically, we demonstrate that early postweaning development in rats, when homeostatic response to sleep loss become adult like, is characterized by maturational changes in wake-related production/release of adenosine in the brain. Pharmacologically increased adenosine signaling in developing brain facilitates homeostatic responses to sleep deprivation.


Asunto(s)
Adenosina/metabolismo , Homeostasis/fisiología , Área Preóptica/crecimiento & desarrollo , Área Preóptica/metabolismo , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Sueño/fisiología , Adenosina/farmacología , Factores de Edad , Envejecimiento/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Cromatografía Líquida de Alta Presión , Electroencefalografía , Electromiografía , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Homeostasis/efectos de los fármacos , Área Preóptica/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sueño/efectos de los fármacos , Privación de Sueño/fisiopatología , Vigilia
11.
Biol Psychiatry ; 81(5): 402-410, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27871670

RESUMEN

The male bias in autism spectrum disorder incidence is among the most extreme of all neuropsychiatric disorders, yet the origins of the sex difference remain obscure. Developmentally, males are exposed to high levels of testosterone and its byproduct, estradiol. Together these steroids modify the course of brain development by altering neurogenesis, cell death, migration, differentiation, dendritic and axonal growth, synaptogenesis, and synaptic pruning, all of which can be deleteriously impacted during the course of developmental neuropsychiatric disorders. Elucidating the cellular mechanisms by which steroids modulate brain development provides valuable insights into how these processes may go awry. An emerging theme is the role of inflammatory signaling molecules and the innate immune system in directing brain masculinization, the evidence for which we review here. Evidence is also emerging that the neuroimmune system is overactivated in individuals with autism spectrum disorder. These combined observations lead us to propose that the natural process of brain masculinization puts males at risk by moving them closer to a vulnerability threshold that could more easily be breached by inflammation during critical periods of brain development. Two brain regions are highlighted: the preoptic area and the cerebellum. Both are developmentally regulated by the inflammatory prostaglandin E2, but in different ways. Microglia, innate immune cells of the brain, and astrocytes are also critical contributors to masculinization and illustrate the importance of nonneuronal cells to the health of the developing brain.


Asunto(s)
Trastorno del Espectro Autista/inmunología , Encéfalo/inmunología , Inmunidad Innata , Inflamación/inmunología , Neuroinmunomodulación , Caracteres Sexuales , Animales , Astrocitos/inmunología , Astrocitos/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Conducta Animal , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cerebelo/crecimiento & desarrollo , Cerebelo/inmunología , Cerebelo/metabolismo , Dinoprostona/inmunología , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Microglía/inmunología , Microglía/metabolismo , Área Preóptica/crecimiento & desarrollo , Área Preóptica/inmunología , Área Preóptica/metabolismo , Ratas , Factores de Riesgo , Diferenciación Sexual , Factores Sexuales
12.
Horm Mol Biol Clin Investig ; 26(3): 165-72, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27166725

RESUMEN

It is well established that sexually dimorphic brain regions, which are critical for reproductive physiology and behavior, are organized by steroid hormones during the first 2 weeks after birth in the rodents. In our recent observation, neonatal exposure to estradiol-17ß (E2) in the female rat revealed increase in cyclooxygenase 2 (COX-2) level, sexually dimorphic nucleus (SDN)-pre-optic area (POA) size and down-regulation of synaptogenesis related genes in POA in the adult stage. In the present study, using the same animal model, the protein profile of control and neonatally E2-treated POA was compared by 1D-SDS-PAGE, and the protein that shows a change in abundance was identified by LC-MS/MS analysis. Results indicated that there was a single protein band, which was down-regulation in E2-treated POA and it was identified as spectrin alpha chain, non-erythrocytic 1 (SPTAN1). Consistently, the down-regulation of SPTAN1 expression was also confirmed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. The SPTAN1 was identified as a cytoskeletal protein that is involved in stabilization of the plasma membrane and organizes intracellular organelles, and it has been implicated in cellular functions including DNA repair and cell cycle regulation. The evidence shows that any mutation in spectrins causes impairment of synaptogenesis and other neurological disorders. Also, protein-protein interaction analysis of SPTAN1 revealed a strong association with proteins such as kirrel, actinin, alpha 4 (ACTN4) and vinculin (VCL) which are implicated in sexual behavior, masculinization and defeminization. Our results indicate that SPTAN1 expression in the developing rat brain is sexually dimorphic, and we suggest that this gene may mediate E2-17ß-induced masculinization and defeminization, and disrupted reproductive function in the adult stage.


Asunto(s)
Regulación hacia Abajo , Estradiol/farmacología , Área Preóptica/metabolismo , Espectrina/metabolismo , Actinina/metabolismo , Animales , Femenino , Área Preóptica/efectos de los fármacos , Área Preóptica/crecimiento & desarrollo , Unión Proteica , Proteoma/genética , Proteoma/metabolismo , Ratas , Espectrina/genética , Vinculina/metabolismo
13.
Neuroendocrinology ; 103(3-4): 248-58, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26138474

RESUMEN

Kisspeptin, a regulator of reproductive function and puberty in mammals, is expressed in the rostral (anteroventral) periventricular nucleus (AVPV) and arcuate nucleus (Arc), and its expression is at least partially regulated by estradiol in rodents. The aim of the present study was to determine contributions of genetic factors and gonadal steroid hormones to the sexual differentiation of kisspeptin-immunoreactive (kisspeptin-ir) cell populations in the AVPV and Arc during postnatal development using agonadal steroidogenic factor 1 (SF-1) knockout (KO) mice. To examine the effects of gonadal hormones on pubertal development of kisspeptin neurons, SF-1 KO mice were treated with estradiol benzoate (EB) from postnatal day (P)25 to P36, and their brains were examined at P36. No sex differences were observed in the SF-1 KO mice during postnatal development and after treatment with EB - which failed to increase the number of kisspeptin-ir cells at P36 to the levels found in wild-type (WT) control females. This suggests that specific time periods of estradiol actions or other factors are needed for sexual differentiation of the pattern of immunoreactive kisspeptin in the AVPV. Kisspeptin immunoreactivity in the Arc was significantly higher in gonadally intact WT and SF-1 KO females than in male mice at P36 during puberty. Further, in WT and SF-1 KO females, but not in males, adult levels were reached at P36. This suggests that maturation of the kisspeptin system in the Arc differs between sexes and is regulated by gonad-independent mechanisms.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Regulación del Desarrollo de la Expresión Génica , Hormonas Esteroides Gonadales/farmacología , Kisspeptinas/metabolismo , Área Preóptica , Caracteres Sexuales , Factor Esteroidogénico 1/genética , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Núcleo Arqueado del Hipotálamo/metabolismo , Castración , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Kisspeptinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Área Preóptica/efectos de los fármacos , Área Preóptica/crecimiento & desarrollo , Área Preóptica/metabolismo , Maduración Sexual/efectos de los fármacos , Maduración Sexual/genética , Factor Esteroidogénico 1/deficiencia
14.
Life Sci ; 141: 1-7, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26409312

RESUMEN

AIMS: Administration of estradiol or compounds with estrogenic activity to newborn female rats results in irreversible masculinization as well as defeminization in the brain and the animals exhibit altered reproductive behavior as adults. The cellular and molecular mechanism involved in inducing the irreversible changes is largely unknown. In the present study, we have monitored the changes in the expression of selected synaptogenesis related genes in the sexually dimorphic brain regions such as POA, hypothalamus and pituitary following 17ß-estradiol administration to neonatal female rats. MAIN METHODS: Female Wistar rats which were administered 17ß-estradiol on day 2 and 3 after birth were sacrificed 120days later and the expression levels of genes implicated in synaptogenesis were monitored by semi-quantitative reverse transcription PCR. Since estradiol induced up-regulation of COX-2 in POA is a marker for estradiol induced masculinization as well as defeminization, in the present study only animals in which the increase in expression of COX-2 gene was observed in POA were included in the study. KEY FINDINGS: Down-regulation of genes such as NMDA-2B, NETRIN-1, BDNF, MT-5 MMP and TNF-α was observed in the pre-optic area of neonatally E2 treated female rat brain but not in hypothalamus and pituitary compared to the vehicle- treated controls as assessed by RT-PCR and Western blot analysis. SIGNIFICANCE: Our results suggest a possibility that down-regulation of genes associated with synaptogenesis in POA, may be resulting in disruption of the cyclical regulation of hormone secretion by pituitary the consequence of which could be infertility and altered reproductive behavior.


Asunto(s)
Animales Recién Nacidos/fisiología , Encéfalo/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Neurogénesis/genética , Sinapsis/efectos de los fármacos , Animales , Encéfalo/crecimiento & desarrollo , Ciclooxigenasa 2/biosíntesis , Regulación hacia Abajo/efectos de los fármacos , Femenino , Feminización , Expresión Génica/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/crecimiento & desarrollo , Masculino , Neurogénesis/efectos de los fármacos , Hipófisis/efectos de los fármacos , Hipófisis/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Embarazo , Área Preóptica/efectos de los fármacos , Área Preóptica/crecimiento & desarrollo , Ratas , Diferenciación Sexual/efectos de los fármacos
15.
Mol Cell Endocrinol ; 414: 42-52, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26190835

RESUMEN

This study examined developmental changes and sexual dimorphisms in hypothalamic microRNAs, and whether gestational exposures to environmental endocrine-disrupting chemicals (EDCs) altered their expression patterns. Pregnant rat dams were treated on gestational days 16 and 18 with vehicle, estradiol benzoate, or a mixture of polychlorinated biphenyls. Male and female offspring were euthanized on postnatal days (P) 15, 30, 45, or 90, and microRNA and mRNA targets were quantified in the medial preoptic nucleus (MPN) and ventromedial nucleus (VMN) of the hypothalamus. MicroRNAs showed robust developmental changes in both regions, and were sexually dimorphic in the MPN, but not VMN. Importantly, microRNAs in females were up-regulated by EDCs at P30, and down-regulated in males at P90. Few changes in mRNAs were found. Thus, hypothalamic microRNAs are sensitive to prenatal EDC treatment in a sex-, developmental age-, and brain region-specific manner.


Asunto(s)
Contaminantes Ambientales/administración & dosificación , Estradiol/análogos & derivados , MicroARNs/genética , Bifenilos Policlorados/administración & dosificación , Núcleo Hipotalámico Ventromedial/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Contaminantes Ambientales/farmacología , Estradiol/administración & dosificación , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , MicroARNs/efectos de los fármacos , Bifenilos Policlorados/farmacología , Embarazo , Área Preóptica/crecimiento & desarrollo , Área Preóptica/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Ratas , Caracteres Sexuales , Núcleo Hipotalámico Ventromedial/metabolismo
16.
Endocrinology ; 156(8): 2934-48, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25965960

RESUMEN

Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Neurogénesis/fisiología , Adenohipófisis/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Neuronas Dopaminérgicas/citología , Embrión no Mamífero , Femenino , Sistemas Neurosecretores/citología , Sistemas Neurosecretores/crecimiento & desarrollo , Adenohipófisis/embriología , Adenohipófisis/crecimiento & desarrollo , Hormonas Adenohipofisarias/metabolismo , Área Preóptica/embriología , Área Preóptica/crecimiento & desarrollo , Pez Cebra/embriología , Pez Cebra/genética
17.
J Comp Neurol ; 522(7): 1542-64, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24127437

RESUMEN

The paraventricular nucleus (PVN) in mammals is the main hypothalamic nucleus controlling hormone release in the pituitary and plays pivotal roles in homeostasis. While the location of a PVN-homologous region has been described in adult fish as the neurosecretory preoptic area (NPO), this region has not been clearly defined in larval zebrafish due to the difficulty in defining cytoarchitectonic nuclear boundaries in the larval brain. Here we identify the precise location of the larval zebrafish NPO using conserved transcription factor and neuropeptide gene expressions. Our results identify the dorsal half of the preoptic-hypothalamic orthopedia a (otpa) domain as the larval NPO and the homologous region to the mammalian PVN. Further, by reconstructing the locations of cells producing zebrafish neuropeptides found in the mammalian PVN (CCK, CRH, ENK, NTS, SS, VIP, OXT, AVP), we provide the first 3D arrangement map of NPO neuropeptides in the larval zebrafish brain. Our results show striking conservation of transcription factor expression (otp, arx, dlx5a, isl1) in and around the NPO/PVN together with neuropeptide expression within it. Finally, we describe the exact anatomical location of cells producing Oxt and Avp in the adult zebrafish. Thus, our results identify the definitive borders and extent of the PVN homologous region in larval zebrafish and serve as an important basis for cross-species comparisons of PVN/NPO structure and function.


Asunto(s)
Larva/anatomía & histología , Larva/metabolismo , Sistemas Neurosecretores/metabolismo , Área Preóptica/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Imagenología Tridimensional , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/crecimiento & desarrollo , Área Preóptica/anatomía & histología , Área Preóptica/crecimiento & desarrollo , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
18.
Brain Res ; 1516: 20-32, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23623814

RESUMEN

Brain structures related to reproduction are thought to depend on the action of gonadal steroids acting either during early life (organizing irreversible effects) or adulthood (activating transient effects). More recently puberty has become a focus of attention and it was demonstrated that action of sex steroid hormones at this time plays a critical role in the final organization of brain and behavior. We studied by BrdU immunohistochemistry the ontogeny from hatching to sexual maturity of a previously identified cell population in the preoptic area labeled by a BrdU injection at the end of embryonic period (E12) of sexual differentiation in male and female Japanese quail. After an initial increase between E12 and hatching, the density of BrdU-immunoreactive cells decreased until the beginning of puberty but then increased again during sexual maturation in the caudal preoptic area specifically. Divisions of these cells took place in the brain parenchyma as indicated by the large numbers of pairs of labeled cells. No sex difference affecting these processes could be detected at any stage of development. Large numbers of new cells thus arise around puberty in the caudal preoptic area and presumably contribute to the reorganization of this structure that precedes the emergence of adult reproductive behaviors.


Asunto(s)
Proliferación Celular , Coturnix , Área Preóptica , Células Madre/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Recuento de Células , Coturnix/anatomía & histología , Coturnix/embriología , Coturnix/crecimiento & desarrollo , Embrión de Mamíferos , Femenino , Masculino , Área Preóptica/citología , Área Preóptica/embriología , Área Preóptica/crecimiento & desarrollo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Caracteres Sexuales
19.
Proc Natl Acad Sci U S A ; 110(12): 4792-7, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23460698

RESUMEN

During puberty, the brain goes through extensive remodeling, involving the addition of new neurons and glia to brain regions beyond the canonical neurogenic regions (i.e., dentate gyrus and olfactory bulb), including limbic and hypothalamic cell groups associated with sex-typical behavior. Whether these pubertally born cells become functionally integrated into neural circuits remains unknown. To address this question, we gave male Syrian hamsters daily injections of the cell birthdate marker bromodeoxyuridine throughout puberty (postnatal day 28-49). Half of the animals were housed in enriched environments with access to a running wheel to determine whether enrichment increased the survival of pubertally born cells compared with the control environment. At 4 wk after the last BrdU injection, animals were allowed to interact with a receptive female and were then killed 1 h later. Triple-label immunofluorescence for BrdU, the mature neuron marker neuronal nuclear antigen, and the astrocytic marker glial fibrillary acidic protein revealed that a proportion of pubertally born cells in the medial preoptic area, arcuate nucleus, and medial amygdala differentiate into either mature neurons or astrocytes. Double-label immunofluorescence for BrdU and the protein Fos revealed that a subset of pubertally born cells in these regions is activated during sociosexual behavior, indicative of their functional incorporation into neural circuits. Enrichment affected the survival and activation of pubertally born cells in a brain region-specific manner. These results demonstrate that pubertally born cells located outside of the traditional neurogenic regions differentiate into neurons and glia and become functionally incorporated into neural circuits that subserve sex-typical behaviors.


Asunto(s)
Neuroglía/metabolismo , Neuronas/metabolismo , Área Preóptica/crecimiento & desarrollo , Conducta Sexual Animal/fisiología , Maduración Sexual/fisiología , Animales , Antígenos de Diferenciación/biosíntesis , Antimetabolitos/farmacología , Bromodesoxiuridina/farmacología , Cricetinae , Femenino , Proteína Ácida Fibrilar de la Glía/biosíntesis , Masculino , Mesocricetus , Neuroglía/citología , Neuronas/citología , Área Preóptica/citología
20.
J Neurosci ; 33(7): 2761-72, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407936

RESUMEN

Brain sexual differentiation in rodents results from the perinatal testicular androgen surge. In the preoptic area (POA), estradiol aromatized from testosterone upregulates the production of the proinflammatory molecule, prostaglandin E(2) (PGE(2)) to produce sex-specific brain development. PGE(2) produces a two-fold greater density of dendritic spines in males than in females and masculinizes adult copulatory behavior. One neonatal dose of PGE(2) masculinizes the POA and behavior, and simultaneous treatment with an inhibitor of additional prostaglandin synthesis prevents this masculinization, indicating a positive feedforward process that leads to sustained increases in PGE(2). The mechanisms underlying this feedforward process were unknown. Microglia, the primary immunocompetent cells in the brain, are active neonatally, contribute to normal brain development, and both produce and respond to prostaglandins. We investigated whether there are sex differences in microglia in the POA and whether they influence developmental masculinization. Neonatal males had twice as many ameboid microglia as females and a more activated morphological profile, and both estradiol and PGE(2) masculinized microglial number and morphology in females. Microglial inhibition during the critical period for sexual differentiation prevented sex differences in microglia, estradiol-induced masculinization of dendritic spine density, and adult copulatory behavior. Microglial inhibition also prevented the estradiol-induced upregulation of PGE(2), indicating that microglia are essential to the feedforward process through which estradiol upregulates prostaglandin production. These studies demonstrate that immune cells in the brain interact with the nervous and endocrine systems during development, and are crucial for sexual differentiation of brain and behavior.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/citología , Encéfalo/fisiología , Microglía/fisiología , Diferenciación Sexual/fisiología , Animales , Western Blotting , Química Encefálica/fisiología , Recuento de Células , Células Cultivadas , Espinas Dendríticas/fisiología , Dinoprostona/metabolismo , Dinoprostona/fisiología , Estradiol/farmacología , Estradiol/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Minociclina/farmacología , Proteínas del Tejido Nervioso/biosíntesis , Área Preóptica/crecimiento & desarrollo , Área Preóptica/metabolismo , Área Preóptica/fisiología , Ratas , Conducta Sexual Animal/fisiología , Maduración Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...