Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prog Mol Biol Transl Sci ; 175: 297-323, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32958237

RESUMEN

Neurodegenerative disorders are invariably associated with intra- or extra-cellular deposition of aggregates composed of misfolded insoluble proteins. These deposits composed of tau, amyloid-ß or α-synuclein spread from cell to cell, in a prion-like manner. Emerging evidence suggests that the circulating soluble species of these misfolded proteins (usually referred as oligomers) could play a major role in pathology, while insoluble aggregates would represent their protective less toxic counterparts. Convincing data support the hypothesis that the cellular prion protein, PrPC, act as a toxicity-transducing receptor for amyloid-ß oligomers. As a consequence, several studies extended investigations to the role played by PrPC in binding aggregates of proteins other than Aß, such as tau and α-synuclein, for its possible common role in mediating toxic signaling. A better characterization of the biological relevance of PrPC as key ligand and potential mediator of toxicity for multiple proteinaceous aggregated species, prions or PrPSc included, would bring relevant therapeutic implications. Here we will first describe the structure of the prion protein and the hypothesized interplay with its pathological counterpart PrPSc and then we will recapitulate the most relevant discoveries regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.


Asunto(s)
Enfermedades Neurodegenerativas/patología , Proteínas Priónicas/metabolismo , Agregado de Proteínas , Transducción de Señal , Péptidos beta-Amiloides/toxicidad , Animales , Humanos , Proteínas Priónicas/química , Proteínas Priónicas/toxicidad , alfa-Sinucleína/toxicidad
3.
Sci Rep ; 9(1): 14656, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601984

RESUMEN

In peripherally acquired prion diseases, prions move through several tissues of the infected host, notably in the lymphoid tissue, long before the occurrence of neuroinvasion. Accumulation can even be restricted to the lymphoid tissue without neuroinvasion and clinical disease. Several experimental observations indicated that the presence of differentiated follicular dendritic cells (FDCs) in the lymphoid structures and the strain type are critical determinants of prion extraneural replication. In this context, the report that granulomatous structures apparently devoid of FDCs could support prion replication raised the question of the requirements for prion lymphotropism. The report also raised the possibility that nonlymphoid tissue-tropic prions could actually target these inflammatory structures. To investigate these issues, we examined the capacity of closely related prions, albeit with opposite lymphotropism (or FDC dependency), for establishment in experimentally-induced granuloma in ovine PrP transgenic mice. We found a positive correlation between the prion capacity to accumulate in the lymphoid tissue and granuloma, regardless of the prion detection method used. Surprisingly, we also revealed that the accumulation of prions in granulomas involved lymphoid-like structures associated with the granulomas and containing cells that stain positive for PrP, Mfge-8 but not CD45 that strongly suggest FDCs. These results suggest that the FDC requirement for prion replication in lymphoid/inflammatory tissues may be strain-dependent.


Asunto(s)
Células Dendríticas Foliculares/metabolismo , Granuloma/patología , Enfermedades por Prión/patología , Proteínas Priónicas/metabolismo , Animales , Antígenos de Superficie/metabolismo , Modelos Animales de Enfermedad , Humanos , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Proteínas de la Leche/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/aislamiento & purificación , Proteínas Priónicas/toxicidad , Pliegue de Proteína , Ovinos , Bazo/citología , Tropismo
4.
Curr Opin Pharmacol ; 44: 20-27, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30684854

RESUMEN

Prion diseases are untreatable and invariably fatal, making the discovery of effective therapeutic interventions a priority. Most candidate molecules have been discovered based on their ability to reduce the levels of PrPSc, the infectious form of the prion protein, in cultured neuroblastoma cells. We have employed an alternative assay, based on an abnormal cellular phenotype associated with a mutant prion protein, to discover a novel class of anti-prion compounds, the phenethyl piperidines. Using an assay that monitors the acute toxic effects of PrPSc on the synapses of cultured hippocampal neurons, we have identified p38 MAPK as a druggable pharmacological target that is already being pursued for the treatment of other human diseases. Organotypic brain slices, which can propagate prions and mimic several neuropathological features of the disease, have also been used to test inhibitory compounds. An effective anti-prion regimen will involve synergistic combination of drugs acting at multiple steps of the pathogenic process, resulting not only in reduction in prion levels but also suppression of neurotoxic signaling.


Asunto(s)
Bioensayo , Descubrimiento de Drogas , Enfermedades por Prión/tratamiento farmacológico , Proteínas Priónicas/toxicidad , Animales , Encéfalo/efectos de los fármacos , Humanos , Neuronas/efectos de los fármacos
5.
Handb Clin Neurol ; 153: 45-68, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29887152

RESUMEN

The development of multiple cell culture models of prion infection over the last two decades has led to a significant increase in our understanding of how prions infect cells. In particular, new techniques to distinguish exogenous from endogenous prions have allowed us for the first time to look in depth at the earliest stages of prion infection through to the establishment of persistent infection. These studies have shown that prions can infect multiple cell types, both neuronal and nonneuronal. Once in contact with the cell, they are rapidly taken up via multiple endocytic pathways. After uptake, the initial replication of prions occurs almost immediately on the plasma membrane and within multiple endocytic compartments. Following this acute stage of prion replication, persistent prion infection may or may not be established. Establishment of a persistent prion infection in cells appears to depend upon the achievement of a delicate balance between the rate of prion replication and degradation, the rate of cell division, and the efficiency of prion spread from cell to cell. Overall, cell culture models have shown that prion infection of the cell is a complex and variable process which can involve multiple cellular pathways and compartments even within a single cell.


Asunto(s)
Biología Celular , Enfermedades por Prión , Proteínas Priónicas/metabolismo , Proteínas Priónicas/toxicidad , Animales , Humanos , Enfermedades por Prión/etiología , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología
6.
Cell Death Dis ; 9(2): 166, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29416016

RESUMEN

According to the "gain-of-toxicity mechanism", neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological  blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response in A1 neurons, although incomplete and insufficient to grant survival; the pharmacological enhancement of this process exerts neuroprotection favoring the clearing of the internalized peptide and could represents a promising neuroprotective tool for neurodegenerative proteinopathies.


Asunto(s)
Autofagia , Espacio Intracelular/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Proteínas Priónicas/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Ácidos/metabolismo , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Vesículas Citoplasmáticas/efectos de los fármacos , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Endocitosis/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Neuroprotección/efectos de los fármacos , Permeabilidad , Proteínas Priónicas/toxicidad , Agregado de Proteínas/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Sirolimus/farmacología
8.
BMC Biol ; 15(1): 34, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28464931

RESUMEN

The misfolding of the cellular prion protein (PrPC) causes fatal neurodegenerative diseases. Yet PrPC is highly conserved in mammals, suggesting that it exerts beneficial functions preventing its evolutionary elimination. Ablation of PrPC in mice results in well-defined structural and functional alterations in the peripheral nervous system. Many additional phenotypes were ascribed to the lack of PrPC, but some of these were found to arise from genetic artifacts of the underlying mouse models. Here, we revisit the proposed physiological roles of PrPC in the central and peripheral nervous systems and highlight the need for their critical reassessment using new, rigorously controlled animal models.


Asunto(s)
Sistema Nervioso Central/patología , Sistema Nervioso Periférico/patología , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Enfermedades por Prión/etiología , Proteínas Priónicas/toxicidad
9.
Elife ; 62017 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-28527237

RESUMEN

PrPC, the cellular isoform of the prion protein, serves to transduce the neurotoxic effects of PrPSc, the infectious isoform, but how this occurs is mysterious. Here, using a combination of electrophysiological, cellular, and biophysical techniques, we show that the flexible, N-terminal domain of PrPC functions as a powerful toxicity-transducing effector whose activity is tightly regulated in cis by the globular C-terminal domain. Ligands binding to the N-terminal domain abolish the spontaneous ionic currents associated with neurotoxic mutants of PrP, and the isolated N-terminal domain induces currents when expressed in the absence of the C-terminal domain. Anti-PrP antibodies targeting epitopes in the C-terminal domain induce currents, and cause degeneration of dendrites on murine hippocampal neurons, effects that entirely dependent on the effector function of the N-terminus. NMR experiments demonstrate intramolecular docking between N- and C-terminal domains of PrPC, revealing a novel auto-inhibitory mechanism that regulates the functional activity of PrPC.


Asunto(s)
Homeostasis , Proteínas PrPC/toxicidad , Proteínas Priónicas/toxicidad , Animales , Dendritas/patología , Hipocampo/patología , Espectroscopía de Resonancia Magnética , Ratones , Neuronas/patología , Proteínas PrPC/química , Proteínas Priónicas/química , Conformación Proteica
10.
FASEB J ; 31(7): 2785-2796, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28314768

RESUMEN

Patients who recover from pneumonia subsequently have elevated rates of death after hospital discharge as a result of secondary organ damage, the causes of which are unknown. We used the bacterium Pseudomonas aeruginosa, a common cause of hospital-acquired pneumonia, as a model for investigating this phenomenon. We show that infection of pulmonary endothelial cells by P. aeruginosa induces production and release of a cytotoxic amyloid molecule with prion characteristics, including resistance to various nucleases and proteases. This cytotoxin was self-propagating, was neutralized by anti-amyloid Abs, and induced death of endothelial cells and neurons. Moreover, the cytotoxin induced edema in isolated lungs. Endothelial cells and isolated lungs were protected from cytotoxin-induced death by stimulation of signal transduction pathways that are linked to prion protein. Analysis of bronchoalveolar lavage fluid collected from human patients with P. aeruginosa pneumonia demonstrated cytotoxic activity, and lavage fluid contained amyloid molecules, including oligomeric τ and Aß. Demonstration of long-lived cytotoxic agents after Pseudomonas infection may establish a molecular link to the high rates of death as a result of end-organ damage in the months after recovery from pneumonia, and modulation of signal transduction pathways that have been linked to prion protein may provide a mechanism for intervention.-Balczon, R., Morrow, K. A., Zhou, C., Edmonds, B., Alexeyev, M., Pittet, J.-F., Wagener, B. M., Moser, S. A., Leavesley, S., Zha, X., Frank, D. W., Stevens, T. Pseudomonas aeruginosa infection liberates transmissible, cytotoxic prion amyloids.


Asunto(s)
Citotoxinas/metabolismo , Proteínas Priónicas/toxicidad , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Animales , Edema , Células Endoteliales/microbiología , Humanos , Ratones , Neuronas/microbiología , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/patología , Proteínas Priónicas/metabolismo , Infecciones por Pseudomonas/patología , Ratas
11.
J Neurochem ; 139(2): 162-180, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27529376

RESUMEN

Proteinopathies represent a group of diseases characterized by the unregulated misfolding and aggregation of proteins. Accumulation of misfolded protein in the central nervous system (CNS) is associated with neurodegenerative diseases, such as the transmissible spongiform encephalopathies (or prion diseases), Alzheimer's disease, and the synucleinopathies (the most common of which is Parkinson's disease). Of these, the pathogenic mechanisms of prion diseases are particularly striking where the transmissible, causative agent of disease is the prion, or proteinaceous infectious particle. Prions are composed almost exclusively of PrPSc ; a misfolded isoform of the normal cellular protein, PrPC , which is found accumulated in the CNS in disease. Today, mounting evidence suggests other aggregating proteins, such as amyloid-ß (Aß) and α-synuclein (α-syn), proteins associated with Alzheimer's disease and synucleinopathies, respectively, share similar biophysical and biochemical properties with PrPSc that influences how they misfold, aggregate, and propagate in disease. In this regard, the definition of a 'prion' may ultimately expand to include other pathogenic proteins. Unifying knowledge of folded proteins may also reveal common mechanisms associated with other features of disease that are less understood, such as neurotoxicity. This review discusses the common features Aß and α-syn share with PrP and neurotoxic mechanisms associated with these misfolded proteins. Several proteins are known to misfold and accumulate in the central nervous system causing a range of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and the prion diseases. Prions are transmissible misfolded conformers of the prion protein, PrP, which seed further generation of infectious proteins. Similar effects have recently been observed in proteins associated with Alzheimer's disease and the synucleinopathies, leading to the proposition that the definition of a 'prion' may ultimately expand to include other pathogenic proteins. Unifying knowledge of misfolded proteins may also reveal common mechanisms associated with other features of disease that are less understood, such as neurotoxicity.


Asunto(s)
Péptidos beta-Amiloides/genética , Enfermedades por Prión/patología , Proteínas Priónicas/toxicidad , Deficiencias en la Proteostasis/patología , alfa-Sinucleína/genética , Enfermedad de Alzheimer/patología , Animales , Humanos , Proteínas PrPSc/genética , Proteínas PrPSc/toxicidad
12.
Sci Adv ; 2(7): e1600014, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27419232

RESUMEN

Prion protein (PrP) misfolding and oligomerization are key pathogenic events in prion disease. Copper exposure has been linked to prion pathogenesis; however, its mechanistic basis is unknown. We resolve, with single-molecule precision, the molecular mechanism of Cu(2+)-induced misfolding of PrP under physiological conditions. We also demonstrate that misfolded PrPs serve as seeds for templated formation of aggregates, which mediate inflammation and degeneration of neuronal tissue. Using a single-molecule fluorescence assay, we demonstrate that Cu(2+) induces PrP monomers to misfold before oligomer assembly; the disordered amino-terminal region mediates this structural change. Single-molecule force spectroscopy measurements show that the misfolded monomers have a 900-fold higher binding affinity compared to the native isoform, which promotes their oligomerization. Real-time quaking-induced conversion demonstrates that misfolded PrPs serve as seeds that template amyloid formation. Finally, organotypic slice cultures show that misfolded PrPs mediate inflammation and degeneration of neuronal tissue. Our study establishes a direct link, at the molecular level, between copper exposure and PrP neurotoxicity.


Asunto(s)
Cobre/química , Proteínas Priónicas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Proteínas Priónicas/química , Proteínas Priónicas/genética , Proteínas Priónicas/toxicidad , Agregado de Proteínas/fisiología , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Proteína Quinasa C-delta/metabolismo , Proteínas Recombinantes/sangre , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...