Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 246
1.
Appl Microbiol Biotechnol ; 108(1): 306, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656376

The Streptomyces genus comprises Gram-positive bacteria known to produce over two-thirds of the antibiotics used in medical practice. The biosynthesis of these secondary metabolites is highly regulated and influenced by a range of nutrients present in the growth medium. In Streptomyces coelicolor, glucose inhibits the production of actinorhodin (ACT) and undecylprodigiosin (RED) by a process known as carbon catabolite repression (CCR). However, the mechanism mediated by this carbon source still needs to be understood. It has been observed that glucose alters the transcriptomic profile of this actinobacteria, modifying different transcriptional regulators, including some of the one- and two-component systems (TCSs). Under glucose repression, the expression of one of these TCSs SCO6162/SCO6163 was negatively affected. We aimed to study the role of this TCS on secondary metabolite formation to define its influence in this general regulatory process and likely establish its relationship with other transcriptional regulators affecting antibiotic biosynthesis in the Streptomyces genus. In this work, in silico predictions suggested that this TCS can regulate the production of the secondary metabolites ACT and RED by transcriptional regulation and protein-protein interactions of the transcriptional factors (TFs) with other TCSs. These predictions were supported by experimental procedures such as deletion and complementation of the TFs and qPCR experiments. Our results suggest that in the presence of glucose, the TCS SCO6162/SCO6163, named GarR/GarS, is an important negative regulator of the ACT and RED production in S. coelicolor. KEY POINTS: • GarR/GarS is a TCS with domains for signal transduction and response regulation • GarR/GarS is an essential negative regulator of the ACT and RED production • GarR/GarS putatively interacts with and regulates activators of ACT and RED.


Bacterial Proteins , Gene Expression Regulation, Bacterial , Streptomyces coelicolor , Anthraquinones/metabolism , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzoisochromanequinones , Catabolite Repression , Glucose/metabolism , Prodigiosin/analogs & derivatives , Prodigiosin/biosynthesis , Prodigiosin/metabolism , Secondary Metabolism/genetics , Streptomyces coelicolor/metabolism , Streptomyces coelicolor/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Mar Drugs ; 22(4)2024 Mar 23.
Article En | MEDLINE | ID: mdl-38667759

The enormous potential attributed to prodigiosin regarding its applicability as a natural pigment and pharmaceutical agent justifies the development of sound bioprocesses for its production. Using a Serratia rubidaea strain isolated from a shallow-water hydrothermal vent, optimization of the growth medium composition was carried out. After medium development, the bacterium temperature, light and oxygen needs were studied, as was growth inhibition by product concentration. The implemented changes led to a 13-fold increase in prodigiosin production in a shake flask, reaching 19.7 mg/L. The conditions allowing the highest bacterial cell growth and prodigiosin production were also tested with another marine strain: S. marcescens isolated from a tide rock pool was able to produce 15.8 mg/L of prodigiosin. The bioprocess with S. rubidaea was scaled up from 0.1 L shake flasks to 2 L bioreactors using the maintenance of the oxygen mass transfer coefficient (kLa) as the scale-up criterion. The implemented parameters in the bioreactor led to an 8-fold increase in product per biomass yield and to a final concentration of 293.1 mg/L of prodigiosin in 24 h.


Bioreactors , Culture Media , Prodigiosin , Serratia , Prodigiosin/biosynthesis , Serratia/metabolism , Culture Media/chemistry , Biomass , Oxygen/metabolism , Temperature , Aquatic Organisms/metabolism
3.
Nucleic Acids Res ; 50(1): 127-148, 2022 01 11.
Article En | MEDLINE | ID: mdl-34893884

Serratia marcescens is a Gram-negative bacterium of the Enterobacteriaceae family that can produce numbers of biologically active secondary metabolites. However, our understanding of the regulatory mechanisms behind secondary metabolites biosynthesis in S. marcescens remains limited. In this study, we identified an uncharacterized LysR family transcriptional regulator, encoding gene BVG90_12635, here we named psrA, that positively controlled prodigiosin synthesis in S. marcescens. This phenotype corresponded to PsrA positive control of transcriptional of the prodigiosin-associated pig operon by directly binding to a regulatory binding site (RBS) and an activating binding site (ABS) in the promoter region of the pig operon. We demonstrated that L-proline is an effector for the PsrA, which enhances the binding affinity of PsrA to its target promoters. Using transcriptomics and further experiments, we show that PsrA indirectly regulates pleiotropic phenotypes, including serrawettin W1 biosynthesis, extracellular polysaccharide production, biofilm formation, swarming motility and T6SS-mediated antibacterial activity in S. marcescens. Collectively, this study proposes that PsrA is a novel regulator that contributes to antibiotic synthesis, bacterial virulence, cell motility and extracellular polysaccharides production in S. marcescens and provides important clues for future studies exploring the function of the PsrA and PsrA-like proteins which are widely present in many other bacteria.


Bacterial Proteins/genetics , Biofilms , Prodigiosin/biosynthesis , Serratia marcescens/genetics , Transcription Factors/genetics , Bacterial Proteins/metabolism , Depsipeptides/biosynthesis , Movement , Operon , Polysaccharides, Bacterial/biosynthesis , Promoter Regions, Genetic , Serratia marcescens/metabolism , Serratia marcescens/pathogenicity , Transcription Factors/metabolism
4.
Microbiol Spectr ; 9(2): e0117121, 2021 10 31.
Article En | MEDLINE | ID: mdl-34724731

Pseudoalteromonas rubra S4059 produces the red pigment prodigiosin, which has pharmaceutical and industrial potential. Here, we targeted a putative prodigiosin-synthesizing transferase PigC, and a pigC in-frame deletion mutant did not produce prodigiosin. However, extractions of the pigC mutant cultures retained antibacterial activity, and bioassay-guided fractionation found antibacterial activity in two fractions of blue color. A precursor of prodigiosin, 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC), was the dominant compound in both the fractions and likely caused the antibacterial activity. Also, a stable blue pigment, di-pyrrolyl-dipyrromethene prodigiosin, was identified from the two fractions. We also discovered antibacterial activity in the sterile filtered (nonextracted) culture supernatant of both wild type and mutant, and both contained a heat-sensitive compound between 30 and 100 kDa. Deletion of prodigiosin production did not affect growth rate or biofilm formation of P. rubra and did not change its fitness, as the mutant and wild type coexisted in equal levels in mixed cultures. In conclusion, a prodigiosin biosynthetic gene cluster (BGC) was identified and verified genetically and chemically in P. rubra S4059 and a stable blue pigment was isolated from the pigC mutant of S4059, suggesting that this strain may produce several prodigiosin-derived compounds of pharmaceutical and/or industrial potential. IMPORTANCE Pigmented Pseudoalteromonas strains are renowned for their production of secondary metabolites, and genome mining has revealed a high number of biosynthetic gene clusters (BGCs) for which the chemistry is unknown. Identification of those BGCs is a prerequisite for linking products to gene clusters and for further exploitation through heterologous expression. In this study, we identified the BGCs for the red, bioactive pigment prodigiosin using genomic, genetic, and metabolomic approaches. We also report here for the first time the production of a stable blue pigment, di-pyrrolyl-dipyrromethene prodigiosin (Dip-PDG), being produced by the pigC mutant of Pseudoalteromonas rubra S4059.


Anti-Bacterial Agents/biosynthesis , Multigene Family/genetics , Prodigiosin/biosynthesis , Pseudoalteromonas/genetics , Pseudoalteromonas/metabolism , Biofilms/growth & development , Coloring Agents/chemistry , Hexosyltransferases/genetics , Hexosyltransferases/metabolism , Secondary Metabolism/genetics
5.
Biochem Biophys Res Commun ; 579: 136-140, 2021 11 19.
Article En | MEDLINE | ID: mdl-34600298

Prodigiosin is a tripyrrole red secondary metabolite synthesized by many microorganisms, including Serratia marcescens. In this study, we found that the deletion of the gene of sensor kinase CpxA dramatically decreased the prodigiosin production, while the deletion of the gene of the response regulator CpxR or both genes of CpxRA has no effect on prodigiosin production, the kinase function of CpxA is not essential for its regulation on prodigiosin production while the phosphorylation site of CpxR is required. We further demonstrated that the CpxA regulates the prodigiosin biosynthesis at the transcriptional level and the phosphatase activity of CpxA plays vital roles in the regulation of prodigiosin biosynthesis. Finally, we proposed that CpxR/A regulates the prodigiosin biosynthesis by negative control and the phosphorylation level of CpxR may determine the positive or negative control of the genes it regulated.


Bacterial Proteins/physiology , Gene Expression Regulation, Bacterial , Prodigiosin/biosynthesis , Prodigiosin/chemistry , Protein Kinases/physiology , Serratia marcescens/metabolism , Bacterial Proteins/genetics , Gene Deletion , Multigene Family , Mutation , Phosphorylation , Protein Kinases/genetics , Transcription, Genetic , beta-Galactosidase/metabolism
6.
J Microbiol Biotechnol ; 31(11): 1591-1600, 2021 Nov 28.
Article En | MEDLINE | ID: mdl-34584035

Streptomyces coelicolor is a filamentous soil bacterium producing several kinds of antibiotics. S. coelicolor abs8752 is an abs (antibiotic synthesis deficient)-type mutation at the absR locus; it is characterized by an incapacity to produce any of the four antibiotics synthesized by its parental strain J1501. A chromosomal DNA fragment from S. coelicolor J1501, capable of complementing the abs- phenotype of the abs8752 mutant, was cloned and analyzed. DNA sequencing revealed that two complete ORFs (SCO6992 and SCO6993) were present in opposite directions in the clone. Introduction of SCO6992 in the mutant strain resulted in a remarkable increase in the production of two pigmented antibiotics, actinorhodin and undecylprodigiosin, in S. coelicolor J1501 and abs8752. However, introduction of SCO6993 did not show any significant difference compared to the control, suggesting that SCO6992 is primarily involved in stimulating the biosynthesis of antibiotics in S. coelicolor. In silico analysis of SCO6992 (359 aa, 39.5 kDa) revealed that sequences homologous to SCO6992 were all annotated as hypothetical proteins. Although a metalloprotease domain with a conserved metal-binding motif was found in SCO6992, the recombinant rSCO6992 did not show any protease activity. Instead, it showed very strong ß-glucuronidase activity in an API ZYM assay and toward two artificial substrates, p-nitrophenyl-ß-D-glucuronide and AS-BI-ß-D-glucuronide. The binding between rSCO6992 and Zn2+ was confirmed by circular dichroism spectroscopy. We report for the first time that SCO6992 is a novel protein with ß-glucuronidase activity, that has a distinct primary structure and physiological role from those of previously reported ß-glucuronidases.


Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/genetics , Glucuronidase/genetics , Streptomyces coelicolor/genetics , Amino Acid Sequence , Anthraquinones/metabolism , Bacterial Proteins/metabolism , Gene Dosage , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Glucuronidase/metabolism , Mutation , Prodigiosin/analogs & derivatives , Prodigiosin/biosynthesis , Sequence Alignment , Streptomyces coelicolor/enzymology
7.
Appl Environ Microbiol ; 87(18): e0054321, 2021 08 26.
Article En | MEDLINE | ID: mdl-34232745

In Serratia marcescens JNB5-1, prodigiosin was highly produced at 30°C, but it was noticeably repressed at ≥37°C. Our initial results demonstrated that both the production and the stability of the O-methyl transferase (PigF) and oxidoreductase (PigN) involved in the prodigiosin pathway in S. marcescens JNB5-1 sharply decreased at ≥37°C. Therefore, in this study, we improved mRNA stability and protein production using de novo polynucleotide fragments (PNFs) and the introduction of disulfide bonds, respectively, and observed their effects on prodigiosin production. Our results demonstrate that adding PNFs at the 3' untranslated regions of pigF and pigN significantly improved the mRNA half-lives of these genes, leading to an increase in the transcript and expression levels. Subsequently, the introduction of disulfide bonds in pigF improved the thermal stability, pH stability, and copper ion resistance of PigF. Finally, shake flask fermentation showed that the prodigiosin titer with the engineered S. marcescens was increased by 61.38% from 5.36 to 8.65 g/liter compared to the JNB5-1 strain at 30°C and, significantly, the prodigiosin yield increased 2.05-fold from 0.38 to 0.78 g/liter at 37°C. In this study, we revealed that the introduction of PNFs and disulfide bonds greatly improved the expression and stability of pigF and pigN, hence efficiently enhancing prodigiosin production with S. marcescens at 30 and 37°C. IMPORTANCE This study highlights a promising strategy to improve mRNA/enzyme stability and to increase production using de novo PNF libraries and the introduction of disulfide bonds into the protein. PNFs could increase the half-life of target gene mRNA and effectively prevent its degradation. Moreover, PNFs could increase the relative intensity of target genes without affecting the expression of other genes; as a result, it could alleviate the cellular burden compared to other regulatory elements such as promoters. In addition, we obtained a PigF variant with improved activity and stability by the introduction of disulfide bonds into PigF. Collectively, we demonstrate here a novel approach for improving mRNA/enzyme stability using PNFs, which results in enhanced prodigiosin production in S. marcescens at 30°C.


Bacterial Proteins/genetics , Methyltransferases/genetics , Prodigiosin/biosynthesis , Serratia marcescens/genetics , Serratia marcescens/metabolism , 3' Untranslated Regions , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Disulfides/chemistry , Fermentation , Hydrogen-Ion Concentration , Methyltransferases/chemistry , Methyltransferases/metabolism , Molecular Dynamics Simulation , Polynucleotides/genetics , Protein Stability , RNA, Messenger/genetics , Temperature
8.
Metab Eng ; 67: 112-124, 2021 09.
Article En | MEDLINE | ID: mdl-34175462

Polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS) comprise biosynthetic pathways that provide access to diverse, often bioactive natural products. Metabolic engineering can improve production metrics to support characterization and drug-development studies, but often native hosts are difficult to genetically manipulate and/or culture. For this reason, heterologous expression is a common strategy for natural product discovery and characterization. Many bacteria have been developed to express heterologous biosynthetic gene clusters (BGCs) for producing polyketides and nonribosomal peptides. In this article, we describe tools for using Pseudomonas putida, a Gram-negative soil bacterium, as a heterologous host for producing natural products. Pseudomonads are known to produce many natural products, but P. putida production titers have been inconsistent in the literature and often low compared to other hosts. In recent years, synthetic biology tools for engineering P. putida have greatly improved, but their application towards production of natural products is limited. To demonstrate the potential of P. putida as a heterologous host, we introduced BGCs encoding the synthesis of prodigiosin and glidobactin A, two bioactive natural products synthesized from a combination of PKS and NRPS enzymology. Engineered strains exhibited robust production of both compounds after a single chromosomal integration of the corresponding BGC. Next, we took advantage of a set of genome-editing tools to increase titers by modifying transcription and translation of the BGCs and increasing the availability of auxiliary proteins required for PKS and NRPS activity. Lastly, we discovered genetic modifications to P. putida that affect natural product synthesis, including a strategy for removing a carbon sink that improves product titers. These efforts resulted in production strains capable of producing 1.1 g/L prodigiosin and 470 mg/L glidobactin A.


Peptides, Cyclic/biosynthesis , Prodigiosin/biosynthesis , Pseudomonas putida , Biosynthetic Pathways , Metabolic Engineering , Microorganisms, Genetically-Modified , Multigene Family , Pseudomonas putida/genetics
9.
J Basic Microbiol ; 61(6): 506-523, 2021 Jun.
Article En | MEDLINE | ID: mdl-33955034

Prodigiosin is a natural red pigment derived primarily from secondary metabolites of microorganisms, especially Serratia marcescens. It can also be chemically synthesized. Prodigiosin has been proven to have antitumor, antibacterial, antimalaria, anti-insect, antialgae, and immunosuppressive activities, and is gaining increasing important in the global market because of its great potential application value in clinical medicine development, environmental treatment, preparation of food additives, and so on. Due to the low efficiency of prodigiosin chemical synthesis, high-level prodigiosin of production by microorganisms are necessary for prodigiosin applications. In this paper, the production of prodigiosin by microorganism in recent decades is reviewed. The methods and strategies for increasing the yield of prodigiosin are discussed from the aspects of medium composition, additives, factors affecting production conditions, strain modification, and fermentation methods.


Prodigiosin/biosynthesis , Biosynthetic Pathways , Culture Media , Fermentation , Serratia marcescens/genetics , Serratia marcescens/growth & development , Serratia marcescens/metabolism
10.
Arch Microbiol ; 203(7): 4091-4100, 2021 Sep.
Article En | MEDLINE | ID: mdl-34052891

This work aimed to investigate the production of prodigiosin by S. marcescens UCP 1549 in solid-state fermentation (SSF), as a sustainable alternative for reducing the production costs and environmental impact. Thus, different agro-industrial substrates were used in the formulation of the prodigiosin production medium, obtaining the maximum yield of pigment (119.8 g/kg dry substrate) in medium consisting of 5 g wheat bran, 5% waste soybean oil and saline solution. The pigment was confirmed as prodigiosin by the maximum absorbance peak at 535 nm, Rf 0.9 in TLC, and the functional groups by infrared spectrum (FTIR). Prodigiosin demonstrated stability at different values of temperature, pH and NaCl concentrations and antimicrobial properties, as well as not show any toxicity. These results confirm the applicability of SSF as a sustainable and promising technology and wheat bran as potential agrosubstrate to produce prodigiosin, making the bioprocess economic and competitive for industrial purposes.


Industrial Microbiology , Prodigiosin , Serratia marcescens , Anti-Bacterial Agents/biosynthesis , Culture Media/chemistry , Fermentation , Industrial Microbiology/methods , Prodigiosin/biosynthesis , Serratia marcescens/metabolism
11.
FEMS Microbiol Lett ; 368(8)2021 05 06.
Article En | MEDLINE | ID: mdl-33881506

Streptomyces are efficient chemists with a capacity to generate diverse and potent chemical scaffolds. The secondary metabolism of these soil-dwelling prokaryotes is stimulated upon interaction with other microbes in their complex ecosystem. We observed such an interaction when a Streptomyces isolate was cultivated in a media supplemented with dead yeast cells. Whole-genome analysis revealed that Streptomyces sp. MBK6 harbors the red cluster that is cryptic under normal environmental conditions. An interactive culture of MBK6 with dead yeast triggered the production of the red pigments metacycloprodigiosin and undecylprodigiosin. Streptomyces sp. MBK6 scavenges dead-yeast cells and preferentially grows in aggregates of sequestered yeasts within its mycelial network. We identified that the activation depends on the cluster-situated regulator, mbkZ, which may act as a cross-regulator. Cloning of this master regulator mbkZ in S. coelicolor with a constitutive promoter and promoter-deprived conditions generated different production levels of the red pigments. These surprising results were further validated by DNA-protein binding assays. The presence of the red cluster in Streptomyces sp. MBK6 provides a vivid example of horizontal gene transfer of an entire metabolic pathway followed by differential adaptation to a new environment through mutations in the receiver domain of the key regulatory protein MbkZ.


Pigments, Biological/biosynthesis , Prodigiosin/analogs & derivatives , Streptomyces/metabolism , Gene Expression Regulation, Bacterial , Genes, Bacterial , Molecular Structure , Prodigiosin/biosynthesis , Promoter Regions, Genetic , Saccharomyces cerevisiae , Secondary Metabolism , Streptomyces/genetics
12.
Biochemistry ; 60(3): 219-230, 2021 01 26.
Article En | MEDLINE | ID: mdl-33416314

The acyl carrier protein (ACP) is an indispensable component of both fatty acid and polyketide synthases and is primarily responsible for delivering acyl intermediates to enzymatic partners. At present, increasing numbers of multidomain ACPs have been discovered with roles in molecular recognition of trans-acting enzymatic partners as well as increasing metabolic flux. Further structural information is required to provide insight into their function, yet to date, the only high-resolution structure of this class to be determined is that of the doublet ACP (two continuous ACP domains) from mupirocin synthase. Here we report the solution nuclear magnetic resonance (NMR) structure of the doublet ACP domains from PigH (PigH ACP1-ACP2), which is an enzyme that catalyzes the formation of the bipyrrolic intermediate of prodigiosin, a potent anticancer compound with a variety of biological activities. The PigH ACP1-ACP2 structure shows each ACP domain consists of three conserved helices connected by a linker that is partially restricted by interactions with the ACP1 domain. Analysis of the holo (4'-phosphopantetheine, 4'-PP) form of PigH ACP1-ACP2 by NMR revealed conformational exchange found predominantly in the ACP2 domain reflecting the inherent plasticity of this ACP. Furthermore, ensemble models obtained from SAXS data reveal two distinct conformers, bent and extended, of both apo (unmodified) and holo PigH ACP1-ACP2 mediated by the central linker. The bent conformer appears to be a result of linker-ACP1 interactions detected by NMR and might be important for intradomain communication during the biosynthesis. These results provide new insights into the behavior of the interdomain linker of multiple ACP domains that may modulate protein-protein interactions. This is likely to become an increasingly important consideration for metabolic engineering in prodigiosin and other related biosynthetic pathways.


Acyl Carrier Protein/chemistry , Bacterial Proteins/chemistry , Models, Molecular , Molecular Dynamics Simulation , Serratia/chemistry , Acyl Carrier Protein/metabolism , Bacterial Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Prodigiosin/biosynthesis , Prodigiosin/chemistry , Protein Domains , Serratia/metabolism
13.
Appl Environ Microbiol ; 87(7)2021 03 11.
Article En | MEDLINE | ID: mdl-33483309

Prodiginines are a family of red-pigmented secondary metabolites with multiple biological activities. The biosynthesis of prodiginines is affected by various physiological and environmental factors. Thus, prodiginine biosynthesis regulation is highly complex and multifaceted. Although the regulatory mechanism for prodiginine biosynthesis has been extensively studied in Serratia and Streptomyces species, little is known about that in the marine betaproteobacterium Pseudoalteromonas In this study, we report that stringent starvation protein A (SspA), an RNA polymerase-associated regulatory protein, is required for the biosynthesis of prodiginine in Pseudoalteromonas sp. strain R3. The strain lacking sspA (ΔsspA) fails to produce prodiginine, which resulted from the downregulation of the prodiginine biosynthetic gene (pig) cluster. The effect of SspA on prodiginine biosynthesis is independent of histone-like nucleoid structuring protein (H-NS) and RpoS (σS). Further analysis demonstrates that the ΔsspA strain has a significant decrease in the transcription of the siderophore biosynthesis gene (pvd) cluster, leading to the inhibition of siderophore production and iron uptake. The ΔsspA strain regains the ability to synthesize prodiginine by cocultivation with siderophore producers or the addition of iron. Therefore, we conclude that SspA-regulated prodiginine biosynthesis is due to decreased siderophore levels and iron deficiency. We further show that the iron homeostasis master regulator Fur is also essential for pig transcription and prodiginine biosynthesis. Overall, our results suggest that SspA indirectly regulates the biosynthesis of prodiginine, which is mediated by the siderophore-dependent iron uptake pathway.IMPORTANCE The red-pigmented prodiginines are attracting increasing interest due to their broad biological activities. As with many secondary metabolites, the biosynthesis of prodiginines is regulated by both environmental and physiological factors. At present, studies on the regulation of prodiginine biosynthesis are mainly restricted to Serratia and Streptomyces species. This work focused on the regulatory mechanism of prodiginine biosynthesis in Pseudoalteromonas sp. R3. We found that stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis via affecting the siderophore-dependent iron uptake pathway. The connections among SspA, iron homeostasis, and prodiginine biosynthesis were investigated. These findings uncover a novel regulatory mechanism for prodigiosin biosynthesis.


Adhesins, Bacterial/genetics , Prodigiosin/analogs & derivatives , Pseudoalteromonas/genetics , Siderophores/metabolism , Adhesins, Bacterial/metabolism , Iron/metabolism , Prodigiosin/biosynthesis , Pseudoalteromonas/metabolism
14.
J Appl Genet ; 62(1): 165-182, 2021 Feb.
Article En | MEDLINE | ID: mdl-33415709

Genetic manipulation of the undecylprodigiosin-producing strains and engineered culture medium approaches were applied as the most economical induction strategy for improving production. The hyper-producing recombinant strain ALAA-R20 was obtained after applying protoplast fusion strategy between the potent producer marine endophytic strains Streptomyces sp. ESRAA-10 (P1) and Streptomyces sp. ESRAA-31 (P2) of Dendronephthya hemprichi. Recombinant strain ALAA-R20 produced undecylprodigiosin yield higher than its parental strains ESRAA-10 and ESRAA-31 by 82.45% and 105.52% under submerged fermentation using modified R2YE medium. In order to reduce the costs of producing undecylprodigiosin, a solid-state fermentation (SSF) was applied. Scaled-up of optimized SSF parameters consisting of groundnut oil cake (GOC) sized to 3 mm, initial moisture content 80% with a mixture of dairy mill and fruit processing wastewaters (1:1), pH 7.0, inoculum size equal to 3 × 105 spores/g dry substrate (gds), incubation temperature 30 °C, and 7-day incubation period yielded the highest yield of 181.78 mg/gds of undecylprodigiosin by the recombinant strain Streptomyces sp. ALAA-R20. Extraction and purification of the pigment using the chromatographic techniques as well as mass spectral analysis exhibited maximum absorbance at 539 nm which is physiological property of the undecylprodigiosin. Undecylprodigiosin was stable over a wide temperature ranged from - 20 to 35 °C even after storage for 6 months. The maximum yield and stability of pigment was obtained at the acidic pH (acidified methanol, pH 4.0). Undecylprodigiosin obtained from the recombinant strain Streptomyces sp. ALAA-R20 demonstrated strong antimicrobial activity against all multidrug-resistant bacterial and fungal strains tested with minimum inhibitory, minimum bactericidal, and minimum fungicidal concentrations ranged between 0.5 and 4.0, 0.5 to 4.0, and 1.0 to 8.0 µg/mL, respectively. It also showed complete inhibition of cancer cells; HCT-116, HepG-2, MCF-7 and A-549 at 5, 8, 4, and 7 µM with IC50 equal to 2.0, 4.7, 1.2, and 2.8 µM, respectively.


Culture Media , Prodigiosin/analogs & derivatives , Streptomyces , Fermentation , Microorganisms, Genetically-Modified/metabolism , Prodigiosin/biosynthesis , Streptomyces/genetics , Streptomyces/metabolism
15.
Prep Biochem Biotechnol ; 51(7): 678-685, 2021.
Article En | MEDLINE | ID: mdl-33302794

Microbial fermentation has become the main method to produce target compound. In this study, a 2-Keto-D-gluconic acid (2-KGA) producing mutant strain was obtained by mutation with rational screening methods. Meanwhile, prodigiosin was produced when the nitrogen source in the medium was changed to peptone and its fermentation conditions were evaluated to achieve high-efficient accumulation. The mutant strain SDSPY-136 was firstly identified as Serratia marcescens by morphological observation and 16S rDNA sequencing. The 2-KGA synthetic capacity of S. marcescens SDSPY-136 was evaluated by shake fermentation with 110 g/L glucose as substrates. For fermentation, 2-KGA yield, conversation rate and purity of SDSPY-136 reached 104.60 g/L, 95.10%, 99.11% in 72 h. The red pigment was extracted from the fermentation broth using acidic methanol and identified as prodigiosin by FT-IR. The optimal conditions were as follows: glycerol 20 g/L, peptone 20 g/L, MgSO415 g/L, pH 6.0, a 2% (v/v) inoculum, 30 °C and 200 rpm of shaking culture. Eventually, prodigiosin reached a yield of 9.89 g/Lafter shake culturing for 50 h under this condition. The mutant S. marcescens SDSPY-136 was shown to be promising for 2-KGA and prodigiosin production and a suitable object for prodigiosin metabolism research of S. marcescens.


Prodigiosin/biosynthesis , Serratia marcescens/growth & development , Sugar Acids/metabolism , Mutation , Serratia marcescens/genetics
16.
Appl Environ Microbiol ; 87(2)2021 01 04.
Article En | MEDLINE | ID: mdl-33158890

Prodigiosin (PG), a red linear tripyrrole pigment normally secreted by Serratia marcescens, has received attention for its reported immunosuppressive, antimicrobial, and anticancer properties. Although several genes have been shown to be important for prodigiosin synthesis, information on the regulatory mechanisms behind this cellular process remains limited. In this work, we identified that the transcriptional regulator RcsB encoding gene BVG90_13250 (rcsB) negatively controlled prodigiosin biosynthesis in S. marcescens Disruption of rcsB conferred a remarkably increased production of prodigiosin. This phenotype corresponded to negative control of transcription of the prodigiosin-associated pig operon by RcsB, probably by binding to the promoter region of the prodigiosin synthesis positive regulator FlhDC. Moreover, using transcriptomics and further experiments, we revealed that RcsB also controlled some other important cellular processes, including swimming and swarming motilities, capsular polysaccharide production, biofilm formation, and acid resistance (AR), in S. marcescens Collectively, this work proposes that RcsB is a prodigiosin synthesis repressor in S. marcescens and provides insight into the regulatory mechanism of RcsB in cell motility, capsular polysaccharide production, and acid resistance in S. marcescensIMPORTANCE RcsB is a two-component response regulator in the Rcs phosphorelay system, and it plays versatile regulatory functions in Enterobacteriaceae However, information on the function of the RcsB protein in bacteria, especially in S. marcescens, remains limited. In this work, we illustrated experimentally that the RcsB protein was involved in diverse cellular processes in S. marcescens, including prodigiosin synthesis, cell motility, capsular polysaccharide production, biofilm formation, and acid resistance. Additionally, the regulatory mechanism of the RcsB protein in these cellular processes was investigated. In conclusion, this work indicated that RcsB could be a regulator for prodigiosin synthesis and provides insight into the function of the RcsB protein in S. marcescens.


Bacterial Proteins/genetics , Prodigiosin/biosynthesis , Serratia marcescens/metabolism , Gene Expression Regulation, Bacterial , Operon , Serratia marcescens/genetics
17.
Mar Drugs ; 18(11)2020 Oct 22.
Article En | MEDLINE | ID: mdl-33105706

This study aimed to establish the culture process for the cost-effective production of prodigiosin (PG) from demineralized crab shell powder (de-CSP), a fishery processing byproduct created via fermentation. Among the tested PG-producing strains, Serratia marcescens TNU02 was demonstrated to be the most active strain. Various ratios of protein/de-CSP were used as the sources of C/N for PG biosynthesis. The PG yield was significantly enhanced when the casein/de-CSP ratio was controlled in the range of 3/7 to 4/6. TNU02 produced PG with a high yield (5100 mg/L) in a 15 L bioreactor system containing 4.5 L of a newly-designed liquid medium containing 1.6% C/N source (protein/de-CSP ratio of 3/7), 0.02% (NH4)2SO4, 0.1% K2HPO4, and an initial pH of 6.15, at 27 °C for 8 h in dark conditions. The red pigment was purified from the culture broth and then quantified as being PG by specific Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and UV spectra analysis. The purified PG demonstrated moderate antioxidant and effective inhibition against four cancerous cell lines. Notably, this study was the first to report on using crab wastes for PG bioproduction with high-level productivity (5100 mg/L) in a large scale (4.5 L per pilot) in a short period of fermentation time (8 h). The salt compositions, including (NH4)2SO4 and K2HPO4, were also a novel finding for the enhancement of PG yield by S. marcescens in this report.


Antineoplastic Agents/metabolism , Antioxidants/metabolism , Brachyura , Food Industry , Industrial Waste , Prodigiosin/biosynthesis , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bioreactors , Cell Line, Tumor , Cell Survival/drug effects , Fermentation , Humans , Molecular Structure , Prodigiosin/chemistry , Prodigiosin/pharmacology , Serratia marcescens/metabolism
18.
J Basic Microbiol ; 60(9): 758-767, 2020 Sep.
Article En | MEDLINE | ID: mdl-32573013

Quorum sensing is a density-dependent chemical process between bacteria, which may be intergenus or intragenus. N-acyl homoserine lactones (HSLs) are a type of small signaling molecules associated with Gram-negative bacteria for monitoring their own population density. The present study unveils the mechanism of HSLs in Achromobacter denitrificans SP1 while transforming di(2-ethylhexyl) phthalate (DEHP) into prodigiosin in a simple basal salt medium. The primary detection of HSLs was done by the colorimetric method. Fourier-transform infrared spectroscopy and liquid chromatography-mass spectrometry-quadrupole time-of-flight confirmed and identified the HSLs. The maximum production of HSLs was observed between 24 and 72 h of incubation, which is noted to be a peak time of DEHP degradation. A total of 57.2% of DEHP was degraded within 30 h and complete degradation was observed within 72 h of incubation. Regulation in the synthesis of various acyl-HSL molecules, viz. 3OC6-HSL in the initial stage of DEHP stress, 3OC8-HSL, and C10-HSL during the time of degradation and 3OC12-HSL on completion of degradation was noticed. The role of HSLs on the production of prodigiosin was confirmed using vanillin as an HSL inhibitor. Through the selective activation of HSL molecules, A. denitrificans SP1 sustain the changing stressful conditions. Supplementation of acyl-HSL signal molecules may boost up the efficacy of A. denitrificans SP1 in both DEHP degradation and prodigiosin production which offers great potential towards the management of DEHP containing plastic wastes.


Achromobacter denitrificans/physiology , Diethylhexyl Phthalate/metabolism , Plasticizers/metabolism , Prodigiosin/biosynthesis , Quorum Sensing/physiology , Achromobacter denitrificans/metabolism , Acyl-Butyrolactones/analysis , Acyl-Butyrolactones/antagonists & inhibitors , Acyl-Butyrolactones/metabolism , Benzaldehydes/pharmacology , Biodegradation, Environmental/drug effects , Quorum Sensing/drug effects , Stress, Physiological
19.
PLoS One ; 15(6): e0232549, 2020.
Article En | MEDLINE | ID: mdl-32484808

Prodigiosin is an important secondary metabolite produced by Serratia marcescens. It can help strains resist stresses from other microorganisms and environmental factors to achieve self-preservation. Prodigiosin is also a promising secondary metabolite due to its pharmacological characteristics. However, pigmentless S. marcescens mutants always emerge after prolonged starvation, which might be a way for the bacteria to adapt to starvation conditions, but it could be a major problem in the industrial application of S. marcescens. To identify the molecular mechanisms of loss of prodigiosin production, two mutants were isolated after 16 days of prolonged incubation of wild-type (WT) S. marcescens 1912768R; one mutant (named 1912768WR) exhibited reduced production of prodigiosin, and a second mutant (named 1912768W) was totally defective. Comparative genomic analysis revealed that the two mutants had either mutations or deletions in rpoS. Knockout of rpoS in S. marcescens 1912768R had pleiotropic effects. Complementation of rpoS in the ΔrpoS mutant further confirmed that RpoS was a positive regulator of prodigiosin production and that its regulatory role in prodigiosin biosynthesis was opposite that in Serratia sp. ATCC 39006, which had a different type of pig cluster; further, rpoS from Serratia sp. ATCC 39006 and other strains complemented the prodigiosin defect of the ΔrpoS mutant, suggesting that the pig promoters are more important than the genes in the regulation of prodigiosin production. Deletion of rpoS strongly impaired the resistance of S. marcescens to stresses but increased membrane permeability for nutritional competence; competition assays in rich and minimum media showed that the ΔrpoS mutant outcompeted its isogenic WT strain. All these data support the idea that RpoS is pleiotropic and that the loss of prodigiosin biosynthesis in S. marcescens 1912768R during prolonged incubation is due to a mutation in rpoS, which appears to be a self-preservation and nutritional competence (SPANC) trade-off.


Bacterial Proteins/metabolism , Biofilms/growth & development , Enzymes/metabolism , Prodigiosin/biosynthesis , Serratia marcescens/physiology , Siderophores/biosynthesis , Sigma Factor/metabolism , Bacterial Proteins/genetics , Cell Membrane Permeability/physiology , Gene Expression Regulation , Gene Knockdown Techniques , Movement/physiology , Promoter Regions, Genetic , Sigma Factor/genetics , Stress, Physiological
20.
Environ Microbiol ; 22(7): 2921-2938, 2020 07.
Article En | MEDLINE | ID: mdl-32352190

Serratia sp. ATCC 39006 produces intracellular gas vesicles to enable upward flotation in water columns. It also uses flagellar rotation to swim through liquid and swarm across semi-solid surfaces. Flotation and motility can be co-regulated with production of a ß-lactam antibiotic (carbapenem carboxylate) and a linear tripyrrole red antibiotic, prodigiosin. Production of gas vesicles, carbapenem and prodigiosin antibiotics, and motility are controlled by master transcriptional and post-transcriptional regulators, including the SmaI/SmaR-based quorum sensing system and the mRNA binding protein, RsmA. Recently, the ribose operon repressor, RbsR, was also defined as a pleiotropic regulator of flotation and virulence factor elaboration in this strain. Here, we report the discovery of a new global regulator (FloR; a DeoR family transcription factor) that modulates flotation through control of gas vesicle morphogenesis. The floR mutation is highly pleiotropic, down-regulating production of gas vesicles, carbapenem and prodigiosin antibiotics, and infection in Caenorhabditis elegans, but up-regulating flagellar motility. Detailed proteomic analysis using TMT peptide labelling and LC-MS/MS revealed that FloR is a physiological master regulator that operates through subordinate pleiotropic regulators including Rap, RpoS, RsmA, PigU, PstS and PigT.


Bacterial Proteins/metabolism , Serratia , Virulence/genetics , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Carbapenems/biosynthesis , Chromatography, Liquid , Gene Expression Regulation, Bacterial , Mutation , Operon , Prodigiosin/biosynthesis , Proteomics , Quorum Sensing , Serratia/genetics , Serratia/metabolism , Serratia/pathogenicity , Tandem Mass Spectrometry , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence Factors/metabolism
...