Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 13.959
1.
Carbohydr Polym ; 338: 122196, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38763723

Triple negative breast cancer (TNBC) represents the most aggressive and heterogenous disease, and combination therapy holds promising potential. Here, an enzyme-responsive polymeric prodrug with self-assembly properties was synthesized for targeted co-delivery of paclitaxel (PTX) and ursolic acid (UA). Hyaluronic acid (HA) was conjugated with UA, yielding an amphiphilic prodrug with 13.85 mol% UA and a CMC of 32.3 µg/mL. The HA-UA conjugate exhibited ∼14 % and 47 % hydrolysis at pH 7.4 and in tumor cell lysate. HA-UA/PTX NPs exhibited a spherical structure with 173 nm particle size, and 0.15 PDI. The nanoparticles showed high drug loading (11.58 %) and entrapment efficiency (76.87 %) of PTX. Release experiments revealed accelerated drug release (∼78 %) in the presence of hyaluronidase enzyme. Cellular uptake in MDA-MB-231 cells showed enhanced uptake of HA-UA/PTX NPs through CD44 receptor-mediated endocytosis. In vitro, HA-UA/PTX NPs exhibited higher cytotoxicity, apoptosis, and mitochondrial depolarization compared to PTX alone. In vivo, HA-UA/PTX NPs demonstrated improved pharmacokinetic properties, with 2.18, 2.40, and 2.35-fold higher AUC, t1/2, and MRT compared to free PTX. Notably, HA-UA/PTX NPs exhibited superior antitumor efficacy with a 90 % tumor inhibition rate in 4T1 tumor model and low systemic toxicity, showcasing their significant potential as carriers for TNBC combination therapy.


Hyaluronic Acid , Nanoparticles , Paclitaxel , Triple Negative Breast Neoplasms , Triterpenes , Ursolic Acid , Triterpenes/chemistry , Triterpenes/pharmacology , Hyaluronic Acid/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Nanoparticles/chemistry , Animals , Female , Paclitaxel/pharmacology , Paclitaxel/chemistry , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Cell Line, Tumor , Drug Liberation , Apoptosis/drug effects , Mice , Drug Carriers/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Mice, Inbred BALB C , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/chemistry
2.
Neoplasma ; 71(2): 117-122, 2024 Apr.
Article En | MEDLINE | ID: mdl-38766855

The incidence of distant metastases is associated with most cancer-related mortalities. Extracellular vesicles (EVs), secreted from tumors and cancer-associated fibroblasts, are involved in the metastatic process mediating their organotropism through their involvement in the pre-metastatic niche formation. We have been developing suicide gene therapy mediated by EVs secreted from mesenchymal stem/ stromal cells, tumor cells, and cancer-associated fibroblasts. Suicide gene EVs conjugated with prodrug are tumor tropic, penetrate tumor cells, and kill them by intracellular conversion of nontoxic prodrug to an efficient anti-cancer drug. Here, we discuss findings regarding the possibility of using suicide gene EVs as a novel therapeutic approach for metastases, via pre-metastatic niche modification. The suicide gene EVs provide a future perspective for metastasis prevention.


Extracellular Vesicles , Genes, Transgenic, Suicide , Neoplasm Metastasis , Humans , Genetic Therapy , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/prevention & control , Prodrugs/therapeutic use , Animals , Mesenchymal Stem Cells
3.
Nat Commun ; 15(1): 4343, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773197

Prodrugs have been explored as an alternative to conventional chemotherapy; however, their target specificity remains limited. The tumor microenvironment harbors a range of microorganisms that potentially serve as tumor-targeting vectors for delivering prodrugs. In this study, we harness bacteria-cancer interactions native to the tumor microbiome to achieve high target specificity for prodrug delivery. We identify an oral commensal strain of Lactobacillus plantarum with an intrinsic cancer-binding mechanism and engineer the strain to enable the surface loading of anticancer prodrugs, with nasopharyngeal carcinoma (NPC) as a model cancer. The engineered commensals show specific binding to NPC via OppA-mediated recognition of surface heparan sulfate, and the loaded prodrugs are activated by tumor-associated biosignals to release SN-38, a chemotherapy compound, near NPC. In vitro experiments demonstrate that the prodrug-loaded microbes significantly increase the potency of SN-38 against NPC cell lines, up to 10-fold. In a mouse xenograft model, intravenous injection of the engineered L. plantarum leads to bacterial colonization in NPC tumors and a 67% inhibition in tumor growth, enhancing the efficacy of SN-38 by 54%.


Lactobacillus plantarum , Prodrugs , Xenograft Model Antitumor Assays , Prodrugs/pharmacology , Prodrugs/therapeutic use , Animals , Humans , Mice , Cell Line, Tumor , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/microbiology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/pathology , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Nude , Female , Mice, Inbred BALB C
4.
Biophys Chem ; 310: 107256, 2024 Jul.
Article En | MEDLINE | ID: mdl-38728807

Understanding the mechanisms by which drugs interact with cell membranes is crucial for unraveling the underlying biochemical and biophysical processes that occur on the surface of these membranes. Our research focused on studying the interaction between an ester-type derivative of tristearoyl uridine and model cell membranes composed of lipid monolayers at the air-water interface. For that, we selected a specific lipid to simulate nontumorigenic cell membranes, namely 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine. We noted significant changes in the surface pressure-area isotherms, with a noticeable shift towards larger areas, which was lower than expected for ideal mixtures, indicating monolayer condensation. Furthermore, the viscoelastic properties of the interfacial film demonstrated an increase in both the elastic and viscous parameters for the mixed film. We also observed structural alterations using vibrational spectroscopy, which revealed an increase in the all-trans to gauche conformers ratio. This confirmed the stiffening effect of the prodrug on the lipid monolayer. In summary, this study indicates that this lipophilic prodrug significantly impacts the lipid monolayer's thermodynamic, rheological, electrical, and molecular characteristics. This information is crucial for understanding how the drug interacts with specific sites on the cellular membrane. It also has implications for drug delivery, as the drug's passage into the cytosol may involve traversing the lipid bilayer.


Cell Membrane , Prodrugs , Uridine , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Uridine/chemistry , Uridine/pharmacology , Phosphatidylserines/chemistry , Thermodynamics , Surface Properties , Viscosity , Elasticity
5.
Bioorg Med Chem ; 106: 117754, 2024 May 15.
Article En | MEDLINE | ID: mdl-38728869

To improve the biodistribution of the drug in the tumor, a supramolecular prodrug of SN38 was fabricated in situ between endogenous albumin and SN38 prodrug modified with semaglutide side chain. Firstly, SN38 was conjugated with semaglutide side chain and octadecanedioic acid via glycine linkers to obtain SI-Gly-SN38 and OA-Gly-SN38 prodrugs, respectively. Both SI-Gly-SN38 and OA-Gly-SN38 exhibited excellent stability in PBS for over 24 h. Due to the strong binding affinity of the semaglutide side chain with albumin, the plasma half-life of SI-Gly-SN38 was 2.7 times higher than that of OA-Gly-SN38. Furthermore, with addition of HSA, the fluorescence intensity of SI-Gly-SN38 was 4 times higher than that of OA-Gly-SN38, confirming its strong binding capability with HSA. MTT assay showed that the cytotoxicity of SI-Gly-SN38 and OA-Gly-SN38 was higher than that of Irinotecan. Even incubated with HSA, the SI-Gly-SN38 and OA-Gly-SN38 still maintained high cytotoxicity, indicating minimal influence of HSA on their cytotoxicity. In vivo pharmacokinetic studies demonstrated that the circulation half-life of SI-Gly-SN38 was twice that of OA-Gly-SN38. SI-Gly-SN38 exhibited significantly reduced accumulation in the lungs, being only 0.23 times that of OA-Gly-SN38. The release of free SN38 in the lungs from SI-Gly-SN38 was only 0.4 times that from OA-Gly-SN38 and Irinotecan. The SI-Gly-SN38 showed the highest accumulation in tumors. The tumor inhibition rate of SI-Gly-SN38 was 6.42% higher than that of OA-Gly-SN38, and 8.67% higher than that of Irinotecan, respectively. These results indicate that the supramolecular prodrug delivery system can be constructed between SI-Gly-SN38 and endogenous albumin, which improves drug biodistribution in vivo, enhances tumor accumulation, and plays a crucial role in tumor growth inhibition.


Irinotecan , Prodrugs , Irinotecan/chemistry , Irinotecan/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Animals , Humans , Mice , Tissue Distribution , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Molecular Structure , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Cell Line, Tumor , Mice, Inbred BALB C , Mice, Nude , Albumins/chemistry , Male , Structure-Activity Relationship , Serum Albumin, Human/chemistry , Glucagon-Like Peptides
6.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38709930

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Blood-Brain Barrier , Brain Neoplasms , Breast Neoplasms , Nanoparticles , Oxidative Phosphorylation , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/pathology , Animals , Humans , Female , Nanoparticles/chemistry , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Oxidative Phosphorylation/drug effects , Cell Line, Tumor , Mitochondria/metabolism , Mitochondria/drug effects , Drug Delivery Systems/methods , Glycolysis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use
7.
ACS Appl Bio Mater ; 7(5): 3431-3440, 2024 May 20.
Article En | MEDLINE | ID: mdl-38697834

Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.


Antineoplastic Agents , Drug Screening Assays, Antitumor , Light , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Molecular Structure , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects , Cisplatin/pharmacology , Cisplatin/chemistry , Particle Size , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemical synthesis , Photochemical Processes , Density Functional Theory
8.
Sci Transl Med ; 16(746): eadk8198, 2024 May 08.
Article En | MEDLINE | ID: mdl-38718132

The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds. Using both Gq-mediated calcium mobilization and G protein-independent GPCR assays, we found that phosphate-modified compounds potently activate MRGPRX4. Furthermore, a humanized mouse model expressing MRGPRX4 in sensory neurons exhibited robust phosphomonoester prodrug-evoked itch. To characterize and confirm this interaction, we further determined the structure of MRGPRX4 in complex with a phosphate-modified drug through single-particle cryo-electron microscopy (cryo-EM) and identified critical amino acid residues responsible for the binding of the phosphate group. Together, these findings explain how phosphorylated drugs can elicit treatment-limiting itch and identify MRGPRX4 as a potential therapeutic target to suppress itch and to guide future drug design.


Disease Models, Animal , Pruritus , Receptors, G-Protein-Coupled , Animals , Pruritus/metabolism , Pruritus/chemically induced , Pruritus/pathology , Pruritus/drug therapy , Humans , Receptors, G-Protein-Coupled/metabolism , Mice , HEK293 Cells , Phosphorylation/drug effects , Phosphates/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Prodrugs/pharmacology , Cryoelectron Microscopy
9.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Article En | MEDLINE | ID: mdl-38690769

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Adenosine/analogs & derivatives , Antiviral Agents , Cathepsin A , Lung , Prodrugs , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Animals , Mice , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Humans , Cathepsin A/metabolism , Lung/metabolism , Cell Membrane Permeability/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacokinetics , Alanine/metabolism , Alanine/pharmacology , Permeability , ProTides
10.
Mol Cell ; 84(10): 1948-1963.e11, 2024 May 16.
Article En | MEDLINE | ID: mdl-38759627

The yeast glucose-induced degradation-deficient (GID) E3 ubiquitin ligase forms a suite of complexes with interchangeable receptors that selectively recruit N-terminal degron motifs of metabolic enzyme substrates. The orthologous higher eukaryotic C-terminal to LisH (CTLH) E3 complex has been proposed to also recognize substrates through an alternative subunit, WDR26, which promotes the formation of supramolecular CTLH E3 assemblies. Here, we discover that human WDR26 binds the metabolic enzyme nicotinamide/nicotinic-acid-mononucleotide-adenylyltransferase 1 (NMNAT1) and mediates its CTLH E3-dependent ubiquitylation independently of canonical GID/CTLH E3-family substrate receptors. The CTLH subunit YPEL5 inhibits NMNAT1 ubiquitylation and cellular turnover by WDR26-CTLH E3, thereby affecting NMNAT1-mediated metabolic activation and cytotoxicity of the prodrug tiazofurin. Cryoelectron microscopy (cryo-EM) structures of NMNAT1- and YPEL5-bound WDR26-CTLH E3 complexes reveal an internal basic degron motif of NMNAT1 essential for targeting by WDR26-CTLH E3 and degron mimicry by YPEL5's N terminus antagonizing substrate binding. Thus, our data provide a mechanistic understanding of how YPEL5-WDR26-CTLH E3 acts as a modulator of NMNAT1-dependent metabolism.


Nicotinamide-Nucleotide Adenylyltransferase , Prodrugs , Ubiquitin-Protein Ligases , Ubiquitination , Humans , HEK293 Cells , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Prodrugs/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Substrate Specificity , Cryoelectron Microscopy , Protein Binding
11.
Cells ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38727266

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. METHODS: For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. RESULTS: We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. CONCLUSIONS: We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance.


Deoxycytidine , Gemcitabine , Pancreatic Neoplasms , Tumor Microenvironment , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Humans , Tumor Microenvironment/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Podosomes/metabolism , Podosomes/drug effects , Drug Resistance, Neoplasm/drug effects , Prodrugs/pharmacology
12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 296-304, 2024 Feb 28.
Article En, Zh | MEDLINE | ID: mdl-38755726

Traditional antibody drug conjugates (ADC) combine monoclonal antibodies with cytotoxic drugs to accurately strike cancer cells, but there are still many shortcomings in stability, targeting, efficacy, and safety. Novel ADC, such as bi-specific, site-specific, dual-payload, and pro-drug type ADC, can be optimized by simultaneously binding 2 different antigens or epitopes, selecting more stable linkers, coupling with specific amino acid sites of antibodies, carrying different drug payloads, and adopting prodrug strategies, while retaining the characteristics of traditional ADC. Significantly improving the stability, targeting, efficacy and safety of drugs can better meet the needs of clinical treatment. Novel ADC will play a more important role in cancer treatment in the future. Discussing the progress of novel ADC in cancer treatment and analyzing their advantages and challenges can provide theoretical support for the development of anti-cancer strategies and provide directions for drug research and development.


Immunoconjugates , Neoplasms , Humans , Neoplasms/drug therapy , Immunoconjugates/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Prodrugs/therapeutic use
13.
Inorg Chem ; 63(15): 6822-6835, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38560761

Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ âˆ¼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 µM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.


Antineoplastic Agents , Photochemotherapy , Porphobilinogen/analogs & derivatives , Prodrugs , Humans , Boron/pharmacology , Red Light , Coloring Agents , Prodrugs/pharmacology , Cobalt/pharmacology , Photosensitizing Agents/radiation effects , Antineoplastic Agents/radiation effects , Boron Compounds/pharmacology , Boron Compounds/radiation effects , Singlet Oxygen/metabolism , Light
14.
Int J Pharm ; 655: 124072, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38561133

We explored the potential of overcoming the dense interstitial barrier in pancreatic cancer treatment by enhancing the uptake of hydrophilic chemotherapeutic drugs. In this study, we synthesized the squalenoyl-chidamide prodrug (SQ-CHI), linking lipophilic squalene (SQ) with the hydrophilic antitumor drug chidamide (CHI) through a trypsin-responsive bond. Self-assembled nanoparticles with sigma receptor-bound aminoethyl anisamide (AEAA) modification, forming AEAA-PEG-SQ-CHI NPs (A-C NPs, size 116.6 ± 0.4 nm), and reference nanoparticles without AEAA modification, forming mPEG-SQ-CHI NPs (M-C NPs, size 88.3 ± 0.3 nm), were prepared. A-C NPs exhibited significantly higher in vitro CHI release (74.7 %) in 0.5 % trypsin medium compared to release (20.2 %) in medium without trypsin. In vitro cell uptake assays revealed 3.6 and 2.3times higher permeation of A-C NPs into tumorspheres of PSN-1/HPSC or CFPAC-1/HPSC, respectively, compared to M-C NPs. Following intraperitoneal administration to subcutaneous tumor-bearing nude mice, the A-C NPs group demonstrated significant anti-pancreatic cancer efficacy, inducing cancer cell apoptosis and inhibiting proliferation in vivo. Mechanistic studies revealed that AEAA surface modification on nanoparticles promoted intracellular uptake through caveolin-mediated endocytosis. This nanoparticle system presents a novel therapeutic approach for pancreatic cancer treatment, offering a delivery strategy to enhance efficacy through improved tumor permeation, trypsin-responsive drug release, and specific cell surface receptor-mediated intracellular uptake.


Aminopyridines , Benzamides , Nanoparticles , Pancreatic Neoplasms , Prodrugs , Animals , Mice , Caveolins/therapeutic use , Mice, Nude , Trypsin , Nanoparticles/chemistry , Prodrugs/chemistry , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor
15.
Nat Commun ; 15(1): 2831, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565562

The prodrug design strategy offers a potent solution for improving therapeutic index and expanding drug targets. However, current prodrug activation designs are mainly responsive to endogenous stimuli, resulting in unintended drug release and systemic toxicity. In this study, we introduce 3-vinyl-6-oxymethyl-tetrazine (voTz) as an all-in-one reagent for modular preparation of tetrazine-caged prodrugs and chemoselective labeling peptides to produce bioorthogonal activable peptide-prodrug conjugates. These stable prodrugs can selectively bind to target cells, facilitating cellular uptake. Subsequent bioorthogonal cleavage reactions trigger prodrug activation, significantly boosting potency against tumor cells while maintaining exceptional off-target safety for normal cells. In vivo studies demonstrate the therapeutic efficacy and safety of this prodrug design approach. Given the broad applicability of functional groups and labeling versatility with voTz, we foresee that this strategy will offer a versatile solution to enhance the therapeutic range of cytotoxic agents and facilitate the development of bioorthogonal activatable biopharmaceuticals and biomaterials.


Heterocyclic Compounds , Prodrugs , Prodrugs/pharmacology , Prodrugs/therapeutic use , Cell Line, Tumor , Cysteine , Drug Delivery Systems
16.
Bioconjug Chem ; 35(4): 551-558, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38591781

Poly(ADP-ribose) polymerase inhibitors (PARPi) have been approved for once or twice daily oral use in the treatment of cancers with BRCA defects. However, for some patients, oral administration of PARPi may be impractical or intolerable, and a long-acting injectable formulation is desirable. We recently developed a long-acting PEGylated PARPi prodrug, PEG∼talazoparib (TLZ), which suppressed the growth of PARPi-sensitive tumors in mice for very long periods. However, the release rate of TLZ from the conjugate was too fast to be optimal in humans. We prepared several new PEG∼TLZ prodrugs having longer half-lives of drug release and accurately measured their pharmacokinetics in the rat. Using the rates of release of TLZ from these prodrugs and the known pharmacokinetics of free TLZ in humans, we simulated the pharmacokinetics of the macromolecular prodrugs and released TLZ in humans. From several possibilities, we chose two conjugates that could be administered intravenously every 2 weeks and maintain TLZ within its known therapeutic window. We describe situations where the PEG∼TLZ conjugates would find utility in humans and suggest how the intravenously administered long-acting prodrugs could in fact be more effective than daily oral administration of free TLZ.


Antineoplastic Agents , Neoplasms , Prodrugs , Humans , Mice , Rats , Animals , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prodrugs/pharmacology , Neoplasms/drug therapy
17.
Molecules ; 29(7)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38611899

2,6-Diaryl-4H-tetrahydro-thiopyran-4-ones and corresponding sulfoxide and sulfone derivatives were designed to lower the major toxicity of their parent anti-kinetoplatidal diarylideneacetones through a prodrug effect. Novel diastereoselective methodologies were developed and generalized from diarylideneacetones and 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones to allow the introduction of a wide substitution profile and to prepare the related S-oxides. The in vitro biological activity and selectivity of diarylideneacetones, 2,6-diaryl-4H-tetrahydro-thiopyran-4-ones, and their S-sulfoxide and sulfone metabolites were evaluated against Trypanosoma brucei brucei, Trypanosoma cruzi, and various Leishmania species in comparison with their cytotoxicity against human fibroblasts hMRC-5. The data revealed that the sulfides, sulfoxides, and sulfones, in which the Michael acceptor sites are temporarily masked, are less toxic against mammal cells while the anti-trypanosomal potency was maintained against T. b. brucei, T. cruzi, L. infantum, and L. donovani, thus confirming the validity of the prodrug strategy. The mechanism of action is proposed to be due to the involvement of diarylideneacetones in cascades of redox reactions involving the trypanothione system. After Michael addition of the dithiol to the double bonds, resulting in an elongated polymer, the latter-upon S-oxidation, followed by syn-eliminations-fragments, under continuous release of reactive oxygen species and sulfenic/sulfonic species, causing the death of the trypanosomal parasites in the micromolar or submicromolar range with high selectivity indexes.


Chagas Disease , Prodrugs , Pyrans , Safrole/analogs & derivatives , Sulfhydryl Compounds , Humans , Animals , Oxides , Oxidation-Reduction , Mammals
18.
Bioorg Med Chem Lett ; 104: 129729, 2024 May 15.
Article En | MEDLINE | ID: mdl-38583786

Aptamers have shown significant potential in treating diverse diseases. However, challenges such as stability and drug delivery limited their clinical application. In this paper, the development of AS1411 prodrug-type aptamers for tumor treatment was introduced. A Short oligonucleotide was introduced at the end of the AS1411 sequence with a disulfide bond as responsive switch. The results indicated that the aptamer prodrugs not only enhanced the stability of the aptamer against nuclease activity but also facilitated binding to serum albumin. Furthermore, in the reducing microenvironment of tumor cells, disulfide bonds triggered drug release, resulting in superior therapeutic effects in vitro and in vivo compared to original drugs. This paper proposes a novel approach for optimizing the structure of nucleic acid drugs, that promises to protect other oligonucleotides or secondary structures, thus opening up new possibilities for nucleic acid drug design.


Aptamers, Nucleotide , Nucleic Acids , Prodrugs , Prodrugs/chemistry , Drug Delivery Systems , Aptamers, Nucleotide/pharmacology , Disulfides/chemistry , Cell Line, Tumor
19.
J Med Chem ; 67(8): 6218-6237, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38573870

Although cisplatin has been widely used for clinical purposes, its application is limited due to its obvious side effects. To mitigate the defects of cisplatin, here, six "multitarget prodrugs" were synthesized by linking cisplatin and NF-κB inhibitors. Notably, complex 9 demonstrated a 63-fold enhancement in the activity against A549/CDDP cells with lower toxicity toward normal LO2 cells compared to cisplatin. Additionally, complex 9 could effectively cause DNA damage, induce mitochondrial dysfunction, generate reactive oxygen species, and induce cell apoptosis through the mitochondrial pathway and ER stress. Remarkably, complex 9 effectively inhibited the NF-κB/MAPK signaling pathway and disrupted the PI3K/AKT signaling transduction. Importantly, complex 9 showed superior in vivo antitumor efficiency compared to cisplatin or the combination of cisplatin/4, without obvious systemic toxicity in A549 or A549/CDDP xenograft models. Our results demonstrated that the dual-acting mechanism endowed the complexes with high efficiency and low toxicity, which may represent an efficient strategy for cancer therapy.


Antineoplastic Agents , Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress , Mitochondria , NF-kappa B , Prodrugs , Reactive Oxygen Species , Humans , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis , Prodrugs/therapeutic use , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Mitochondria/drug effects , Mitochondria/metabolism , Endoplasmic Reticulum Stress/drug effects , Drug Resistance, Neoplasm/drug effects , Mice , Cisplatin/pharmacology , Mice, Nude , Apoptosis/drug effects , Mice, Inbred BALB C , Cell Line, Tumor , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/therapeutic use , Xenograft Model Antitumor Assays
20.
J Med Chem ; 67(9): 7033-7047, 2024 May 09.
Article En | MEDLINE | ID: mdl-38634331

A brand-new enhanced starvation is put forward to trigger sensitized chemotherapy: blocking tumor-relation blood vessel formation and accelerating nutrient degradation and efflux. Following this concept, two cisplatin-like gemfibrozil-derived Pt(IV) prodrugs, GP and GPG, are synthesized. GP and GPG had nanomolar IC50 against A2780 cells and higher selectivity against normal cells than cisplatin. Bioactivity results confirmed that GP and GPG highly accumulated in cells and induced DNA damage, G2-phase arrest, and p53 expression. Besides, they could increase ROS and MDA levels and reduce mitochondrial membrane potential and Bcl-2 expression to promote cell apoptosis. In vivo, GP showed superior antitumor activity in A2780 tumor-bearing mice with no observable tissue damage. Mechanistic studies suggested that highly selective chemotherapy could be due to the new enhanced starvation effect: blocking vasculature formation via inhibiting the CYP2C8/EETs pathway and VEGFR2, NF-κB, and COX-2 expression and cholesterol efflux and degradation acceleration via increasing ABCA1 and PPARα.


Antineoplastic Agents , Gemfibrozil , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Gemfibrozil/pharmacology , Mice, Inbred BALB C , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis
...