Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nat Commun ; 15(1): 6845, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122737

RESUMEN

Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retículo Endoplásmico , Péptido 1 Similar al Glucagón , Proteínas Nogo , Proglucagón , Proproteína Convertasa 1 , Animales , Humanos , Masculino , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Retículo Endoplásmico/metabolismo , Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Insulina/metabolismo , Resistencia a la Insulina , Intestinos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nogo/metabolismo , Proteínas Nogo/genética , Proglucagón/metabolismo , Proglucagón/genética , Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 1/genética , Unión Proteica , Proteolisis
2.
Nutrients ; 16(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39064713

RESUMEN

(1) Background: Proglucagon-derived peptides (PDGPs) including glucagon (Gcg), GLP-1, and GLP-2 regulate lipid metabolism in the liver, adipocytes, and intestine. However, the mechanism by which PGDPs participate in alterations in lipid metabolism induced by high-fat diet (HFD) feeding has not been elucidated. (2) Methods: Mice deficient in PGDP (GCGKO) and control mice were fed HFD for 7 days and analyzed, and differences in lipid metabolism in the liver, adipose tissue, and duodenum were investigated. (3) Results: GCGKO mice under HFD showed lower expression levels of the genes involved in free fatty acid (FFA) oxidation such as Hsl, Atgl, Cpt1a, Acox1 (p < 0.05), and Pparα (p = 0.05) mRNA in the liver than in control mice, and both FFA and triglycerides content in liver and adipose tissue weight were lower in the GCGKO mice. On the other hand, phosphorylation of hormone-sensitive lipase (HSL) in white adipose tissue did not differ between the two groups. GCGKO mice under HFD exhibited lower expression levels of Pparα and Cd36 mRNA in the duodenum as well as increased fecal cholesterol contents compared to HFD-controls. (4) Conclusions: GCGKO mice fed HFD exhibit a lesser increase in hepatic FFA and triglyceride contents and adipose tissue weight, despite reduced ß-oxidation in the liver, than in control mice. Thus, the absence of PGDP prevents dietary-induced fatty liver development due to decreased lipid uptake in the intestinal tract.


Asunto(s)
Antígenos CD36 , Dieta Alta en Grasa , Absorción Intestinal , Metabolismo de los Lípidos , Hígado , Ratones Noqueados , PPAR alfa , Proglucagón , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , PPAR alfa/metabolismo , PPAR alfa/genética , Hígado/metabolismo , Proglucagón/metabolismo , Proglucagón/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Ratones , Esterol Esterasa/metabolismo , Esterol Esterasa/genética , Triglicéridos/metabolismo , Ratones Endogámicos C57BL , Ácidos Grasos no Esterificados/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Duodeno/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Tejido Adiposo/metabolismo , Grasas de la Dieta , Péptido 2 Similar al Glucagón/metabolismo , Aciltransferasas , Lipasa
3.
Sci Rep ; 14(1): 14403, 2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909126

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) agonists are now commonly used to treat type 2 diabetes and obesity. GLP-1R signaling in the spinal cord has been suggested to account for the mild tachycardia caused by GLP-1R agonists, and may also be involved in the therapeutic effects of these drugs. However, the neuroanatomy of the GLP-1/GLP-1R system in the spinal cord is still poorly understood. Here we applied in situ hybridization and immunohistochemistry to characterize this system, and its relation to cholinergic neurons. GLP-1R transcript and protein were expressed in neuronal cell bodies across the gray matter, in matching distribution patterns. GLP-1R-immunolabeling was also robust in dendrites and axons, especially in laminae II-III in the dorsal horn. Cerebrospinal fluid-contacting neurons expressed GLP-1R protein at exceedingly high levels. Only small subpopulations of cholinergic neurons expressed GLP-1R, including a subset of sympathetic preganglionic neurons at the rostral tip of the intermediolateral nucleus. GLP-1 axons innervated all regions where GLP-1R neurons were distributed, except laminae II-III. Scattered preproglucagon (Gcg) mRNA-expressing neurons were identified in the cervical and lumbar enlargements. The results will facilitate further studies on how GLP-1 regulates the sympathetic system and other autonomic and somatic functions via the spinal cord.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Médula Espinal , Animales , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Masculino , Médula Espinal/metabolismo , Ratones , Péptido 1 Similar al Glucagón/metabolismo , Neuronas Colinérgicas/metabolismo , Proglucagón/metabolismo , Proglucagón/genética , Ratones Endogámicos C57BL , Axones/metabolismo
4.
Diabetologia ; 67(8): 1602-1615, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38705923

RESUMEN

AIMS/HYPOTHESES: Glucagon and glucagon-like peptide-1 (GLP-1) are derived from the same precursor; proglucagon, and dual agonists of their receptors are currently being explored for the treatment of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated levels of endogenous glucagon (hyperglucagonaemia) have been linked with hyperglycaemia in individuals with type 2 diabetes but are also observed in individuals with obesity and MASLD. GLP-1 levels have been reported to be largely unaffected or even reduced in similar conditions. We investigated potential determinants of plasma proglucagon and associations of glucagon receptor signalling with metabolic diseases based on data from the UK Biobank. METHODS: We used exome sequencing data from the UK Biobank for ~410,000 white participants to identify glucagon receptor variants and grouped them based on their known or predicted signalling. Data on plasma levels of proglucagon estimated using Olink technology were available for a subset of the cohort (~40,000). We determined associations of glucagon receptor variants and proglucagon with BMI, type 2 diabetes and liver fat (quantified by liver MRI) and performed survival analyses to investigate if elevated proglucagon predicts type 2 diabetes development. RESULTS: Obesity, MASLD and type 2 diabetes were associated with elevated plasma levels of proglucagon independently of each other. Baseline proglucagon levels were associated with the risk of type 2 diabetes development over a 14 year follow-up period (HR 1.13; 95% CI 1.09, 1.17; n=1562; p=1.3×10-12). This association was of the same magnitude across strata of BMI. Carriers of glucagon receptor variants with reduced cAMP signalling had elevated levels of proglucagon (ß 0.847; 95% CI 0.04, 1.66; n=17; p=0.04), and carriers of variants with a predicted frameshift mutation had higher levels of liver fat compared with the wild-type reference group (ß 0.504; 95% CI 0.03, 0.98; n=11; p=0.04). CONCLUSIONS/INTERPRETATION: Our findings support the suggestion that glucagon receptor signalling is involved in MASLD, that plasma levels of proglucagon are linked to the risk of type 2 diabetes development, and that proglucagon levels are influenced by genetic variation in the glucagon receptor, obesity, type 2 diabetes and MASLD. Determining the molecular signalling pathways downstream of glucagon receptor activation may guide the development of biased GLP-1/glucagon co-agonist with improved metabolic benefits. DATA AVAILABILITY: All coding is available through https://github.com/nicwin98/UK-Biobank-GCG.


Asunto(s)
Bancos de Muestras Biológicas , Diabetes Mellitus Tipo 2 , Obesidad , Proglucagón , Receptores de Glucagón , Transducción de Señal , Humanos , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo , Reino Unido , Femenino , Proglucagón/metabolismo , Proglucagón/genética , Masculino , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Persona de Mediana Edad , Obesidad/sangre , Anciano , Adulto , Índice de Masa Corporal , Glucagón/sangre , Péptido 1 Similar al Glucagón/sangre , Biobanco del Reino Unido
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167185, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38653360

RESUMEN

OBJECTIVE: Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS: The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS: Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION: Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.


Asunto(s)
Dieta Alta en Grasa , Células Secretoras de Glucagón , Glucagón , Canales Iónicos , Ratones Noqueados , Animales , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Ratones , Canales Iónicos/metabolismo , Canales Iónicos/genética , Dieta Alta en Grasa/efectos adversos , Masculino , Transducción de Señal , Insulina/metabolismo , Línea Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mecanotransducción Celular , Ratones Endogámicos C57BL , Proglucagón/metabolismo , Proglucagón/genética , Pirazinas , Tiadiazoles
6.
Anim Sci J ; 95(1): e13919, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38287469

RESUMEN

We investigated the role of dietary carbohydrates in the maintenance of the enterocyte microvillar structure in the chicken ileum. Male chickens were divided into the control and three experimental groups, and the experimental groups were fed diets containing 50%, 25%, and 0% carbohydrates of the control diet. The structural alterations in enterocytes were examined using transmission electron microscopy and immunofluorescent techniques for ß-actin and villin. Glucagon-like peptide (GLP)-2 and proglucagon mRNA were detected by immunohistochemistry and in situ hybridization, respectively. Fragmentation and wide gap spaces were frequently observed in the microvilli of the 25% and 0% groups. The length, width, and density of microvilli were also decreased in the experimental groups. The experimental groups had shorter terminal web extensions, and there were substantial changes in the mitochondrial density between the control and experimental groups. Intensities of ß-actin and villin immunofluorescence observed on the apical surface of enterocytes were lower in the 0% group. The frequency of GLP-2-immunoreactive and proglucagon mRNA-expressing cells decreased with declining dietary carbohydrate levels. This study revealed that dietary carbohydrates contribute to the structural maintenance of enterocyte microvilli in the chicken ileum. The data from immunohistochemistry and in situ hybridization assays suggest the participation of GLP-2 in this maintenance system.


Asunto(s)
Pollos , Enterocitos , Masculino , Animales , Pollos/genética , Proglucagón/genética , Actinas , Carbohidratos de la Dieta , Íleon , Péptido 2 Similar al Glucagón , ARN Mensajero/genética , Microvellosidades
7.
Equine Vet J ; 56(2): 352-360, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37853957

RESUMEN

BACKGROUND: Active glucagon-like peptide-1 (aGLP-1) has been implicated in the pathogenesis of equine insulin dysregulation (ID), but its role is unclear. Cleavage of proglucagon (coded by the GCG gene) produces aGLP-1 in enteral L cells. OBJECTIVES: The aim in vivo was to examine the sequence of the exons of GCG in horses with and without ID, where aGLP-1 was higher in the group with ID. The aims in vitro were to identify and quantify the expression of GCG in the equine intestine (as a marker of L cells) and determine intestinal secretion of aGLP-1. STUDY DESIGN: Genomic studies were case-control studies. Expression and secretion studies in vitro were cross-sectional. METHODS: The GCG gene sequence of the exons was determined using a hybridisation capture protocol. Expression and quantification of GCG in samples of stomach duodenum, jejunum, ileum, caecum and ascending and descending colon was achieved with droplet digital PCR. For secretory studies tissue explants were incubated with 12 mM glucose and aGLP-1 secretion was measured with an ELISA. RESULTS: Although the median [IQR] post-prandial aGLP-1 concentrations were higher (p = 0.03) in animals with ID (10.2 [8.79-15.5]), compared with healthy animals (8.47 [6.12-11.7]), there was 100% pairwise identity of the exons of the GCG sequence for the cohort. The mRNA concentrations of GCG and secretion of aGLP-1 differed (p < 0.001) throughout the intestine. MAIN LIMITATIONS: Only the exons of the GCG gene were sequenced and breeds were not compared. The horses used for the study in vitro were not assessed for ID and different horses were used for the small, and large, intestinal studies. CONCLUSIONS: Differences in post-prandial aGLP-1 concentration were not due to a variant in the exons of the GCG gene sequence in this cohort. Both the large and small intestine are sites of GLP-1 secretion.


Asunto(s)
Péptido 1 Similar al Glucagón , Insulina , Humanos , Animales , Caballos/genética , Péptido 1 Similar al Glucagón/genética , Insulina/metabolismo , Intestino Delgado/metabolismo , Proglucagón/genética , Proglucagón/análisis , Proglucagón/metabolismo , Reacción en Cadena de la Polimerasa/veterinaria
8.
J Diabetes Investig ; 14(9): 1045-1055, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37300240

RESUMEN

AIMS/INTRODUCTION: Glucagon is secreted from pancreatic α-cells and plays an important role in amino acid metabolism in liver. Various animal models deficient in glucagon action show hyper-amino acidemia and α-cell hyperplasia, indicating that glucagon contributes to feedback regulation between the liver and the α-cells. In addition, both insulin and various amino acids, including branched-chain amino acids and alanine, participate in protein synthesis in skeletal muscle. However, the effect of hyperaminoacidemia on skeletal muscle has not been investigated. In the present study, we examined the effect of blockade of glucagon action on skeletal muscle using mice deficient in proglucagon-derived peptides (GCGKO mice). MATERIALS AND METHODS: Muscles isolated from GCGKO and control mice were analyzed for their morphology, gene expression and metabolites. RESULTS: GCGKO mice showed muscle fiber hypertrophy, and a decreased ratio of type IIA and an increased ratio of type IIB fibers in the tibialis anterior. The expression levels of myosin heavy chain (Myh) 7, 2, 1 and myoglobin messenger ribonucleic acid were significantly lower in GCGKO mice than those in control mice in the tibialis anterior. GCGKO mice showed a significantly higher concentration of arginine, asparagine, serine and threonine in the quadriceps femoris muscles, and also alanine, aspartic acid, cysteine, glutamine, glycine and lysine, as well as four amino acids in gastrocnemius muscles. CONCLUSIONS: These results show that hyperaminoacidemia induced by blockade of glucagon action in mice increases skeletal muscle weight and stimulates slow-to-fast transition in type II fibers of skeletal muscle, mimicking the phenotype of a high-protein diet.


Asunto(s)
Glucagón , Músculo Esquelético , Proglucagón , Animales , Ratones , Aminoácidos , Glucagón/metabolismo , Músculo Esquelético/metabolismo , Proglucagón/genética , Proglucagón/metabolismo
9.
Am J Physiol Endocrinol Metab ; 324(3): E217-E225, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652401

RESUMEN

Insulin secretion from ß-cells is tightly regulated by local signaling from preproglucagon (Gcg) products from neighboring α-cells. Physiological paracrine signaling within the microenvironment of the ß-cell is altered after metabolic stress, such as high-fat diet or the ß-cell toxin, streptozotocin (STZ). Here, we examined the role and source of Gcg peptides in ß-cell function and in response to STZ-induced hyperglycemia. We used whole body Gcg null (GcgNull) mice and mice with Gcg expression either specifically within the pancreas (GcgΔPanc) or the intestine (GcgΔIntest). With lower doses of STZ exposure, insulin levels were greater and glucose levels were lower in GcgNull mice compared with wild-type mice. When Gcg was functional only in the intestine, plasma glucagon-like peptide-1 (GLP-1) levels were fully restored but these mice did not have any additional protection from STZ-induced diabetes. Pancreatic Gcg reactivation normalized the hyperglycemic response to STZ. In animals not treated with STZ, GcgNull mice had increased pancreas mass via both α- and ß-cell hyperplasia and reactivation of Gcg in the intestine normalized ß- but not α-cell mass, whereas pancreatic reactivation normalized both ß- and α-cell mass. GcgNull and GcgΔIntest mice maintained higher ß-cell mass after treatment with STZ compared with control and GcgΔPanc mice. Although in vivo insulin response to glucose was normal, global lack of Gcg impaired glucose-stimulated insulin secretion in isolated islets. Congenital replacement of Gcg either in the pancreas or intestine normalized glucose-stimulated insulin secretion. Interestingly, mice that had intestinal Gcg reactivated in adulthood had impaired insulin response to KCl. We surmise that the expansion of ß-cell mass in the GcgNull mice compensated for decreased individual ß-cell insulin secretion, which is sufficient to normalize glucose under physiological conditions and conferred some protection after STZ-induced diabetes.NEW & NOTEWORTHY We examined the role of Gcg on ß-cell function under normal and high glucose conditions. GcgNull mice had decreased glucose-stimulated insulin secretion, increased ß-cell mass, and partial protection against STZ-induced hyperglycemia. Expression of Gcg within the pancreas normalized these endpoints. Intestinal expression of Gcg only normalized ß-cell mass and glucose-stimulated insulin secretion. Increased ß-cell mass in GcgNull mice likely compensated for decreased insulin secretion normalizing physiological glucose levels and conferring some protection after STZ-induced diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Glucagón , Hiperglucemia , Ratones , Animales , Proglucagón/genética , Proglucagón/metabolismo , Estreptozocina , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucosa/farmacología , Ratones Noqueados , Células Secretoras de Glucagón/metabolismo , Glucemia/metabolismo
10.
Nutrients ; 14(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35267952

RESUMEN

(1) Background: Protein stimulates the secretion of glucagon (GCG), which can affect glucose metabolism. This study aimed to analyze the metabolic effect of a high-protein diet (HPD) in the presence or absence of proglucagon-derived peptides, including GCG and GLP-1. (2) Methods: The response to HPD feeding for 7 days was analyzed in mice deficient in proglucagon-derived peptides (GCGKO). (3) Results: In both control and GCGKO mice, food intake and body weight decreased with HPD and intestinal expression of Pepck increased. HPD also decreased plasma FGF21 levels, regardless of the presence of proglucagon-derived peptides. In control mice, HPD increased the hepatic expression of enzymes involved in amino acid metabolism without the elevation of plasma amino acid levels, except branched-chain amino acids. On the other hand, HPD-induced changes in the hepatic gene expression were attenuated in GCGKO mice, resulting in marked hyperaminoacidemia with lower blood glucose levels; the plasma concentration of glutamine exceeded that of glucose in HPD-fed GCGKO mice. (4) Conclusions: Increased plasma amino acid levels are a common feature in animal models with blocked GCG activity, and our results underscore that GCG plays essential roles in the homeostasis of amino acid metabolism in response to altered protein intake.


Asunto(s)
Dieta Rica en Proteínas , Glucagón , Animales , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Ratones , Péptidos , Proglucagón/genética , Proglucagón/metabolismo
11.
Front Endocrinol (Lausanne) ; 12: 698511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220721

RESUMEN

Strong efforts have been placed on understanding the physiological roles and therapeutic potential of the proglucagon peptide hormones including glucagon, GLP-1 and GLP-2. However, little is known about the extent and magnitude of variability in the amino acid composition of the proglucagon precursor and its mature peptides. Here, we identified 184 unique missense variants in the human proglucagon gene GCG obtained from exome and whole-genome sequencing of more than 450,000 individuals across diverse sub-populations. This provides an unprecedented source of population-wide genetic variation data on missense mutations and insights into the evolutionary constraint spectrum of proglucagon-derived peptides. We show that the stereotypical peptides glucagon, GLP-1 and GLP-2 display fewer evolutionary alterations and are more likely to be functionally affected by genetic variation compared to the rest of the gene products. Elucidating the spectrum of genetic variations and estimating the impact of how a peptide variant may influence human physiology and pathophysiology through changes in ligand binding and/or receptor signalling, are vital and serve as the first important step in understanding variability in glucose homeostasis, amino acid metabolism, intestinal epithelial growth, bone strength, appetite regulation, and other key physiological parameters controlled by these hormones.


Asunto(s)
Péptidos Similares al Glucagón/genética , Proglucagón/genética , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Conjuntos de Datos como Asunto , Frecuencia de los Genes , Glucagón/química , Glucagón/genética , Péptido 1 Similar al Glucagón/química , Péptido 1 Similar al Glucagón/genética , Péptido 2 Similar al Glucagón/química , Péptido 2 Similar al Glucagón/genética , Péptidos Similares al Glucagón/química , Humanos , Modelos Moleculares , Mutación Missense , Pruebas de Farmacogenómica , Proglucagón/química , Precursores de Proteínas/química , Precursores de Proteínas/genética , Estructura Secundaria de Proteína/genética
12.
Front Endocrinol (Lausanne) ; 12: 700066, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322093

RESUMEN

The mammalian proglucagon gene (Gcg) encodes three glucagon like sequences, glucagon, glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 that are of similar length and share sequence similarity, with these hormones having cell surface receptors, glucagon receptor (Gcgr), GLP-1 receptor (Glp1r), and GLP-2 receptor (Glp2r), respectively. Gcgr, Glp1r, and Glp2r are all class B1 G protein-coupled receptors (GPCRs). Despite their sequence and structural similarity, analyses of sequences from rodents have found differences in patterns of sequence conservation and evolution. To determine whether these were rodent-specific traits or general features of these genes in mammals I analyzed coding and protein sequences for proglucagon and the receptors for proglucagon-derived peptides from the genomes of 168 mammalian species. Single copy genes for each gene were found in almost all genomes. In addition to glucagon sequences within Hystricognath rodents (e.g., guinea pig), glucagon sequences from a few other groups (e.g., pangolins and some bats) as well as changes in the proteolytic processing of GLP-1 in some bats are suggested to have functional effects. GLP-2 sequences display increased variability but accepted few substitutions that are predicted to have functional consequences. In parallel, Glp2r sequences display the most rapid protein sequence evolution, and show greater variability in amino acids at sites involved in ligand interaction, however most were not predicted to have a functional consequence. These observations suggest that a greater diversity in biological functions for proglucagon-derived peptides might exist in mammals.


Asunto(s)
Evolución Molecular , Variación Genética , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 2 Similar al Glucagón/genética , Glucagón/genética , Proglucagón/genética , Receptores de Glucagón/genética , Secuencia de Aminoácidos , Animales , Genoma , Péptido 1 Similar al Glucagón , Péptido 2 Similar al Glucagón , Mamíferos , Filogenia
13.
Front Endocrinol (Lausanne) ; 12: 683089, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177808

RESUMEN

Enteroglucagon refers to the predominant peptide with glucagon-like immunoreactivity (GLI) that is released by the intestine into the circulation in response to nutrients. Development of a radioimmunoassay for glucagon revealed issues that were not apparent in applications of the insulin radioimmunoassay. The fact that some antisera raised against glucagon recognized glucagon-related peptides in extracts of both pancreas and gut whereas others recognized only components in the pancreas remained a mystery until it was realized that the "gut GLI cross-reactive" antisera were directed against an epitope in the N-terminal to central region of glucagon whereas the "pancreatic glucagon specific" antisera were directed against an epitope in the C-terminal region. Unlike the cross-reactive antisera, the glucagon specific antisera did not recognize components in which glucagon was extended from its C-terminus by additional amino acids. Initial attempts to purify enteroglucagon from porcine ileum led to the erroneous conclusion that enteroglucagon comprised 100 amino acids with an apparent molecular mass of 12,000 Da and was consequently given the name glicentin. Subsequent work established that the peptide constituted residues (1-69) of proglucagon (Mr 8128). In the 40 years since the structural characterization of glicentin, attempts to establish an unambiguous physiological function for enteroglucagon have not been successful. Unlike the oxyntomodulin domain at the C-terminus of enteroglucagon, the primary structure of the N-terminal domain (glicentin-related pancreatic peptide) has been poorly conserved among mammals. Consequently, most investigations of the bioactivity of porcine glicentin may have been carried out in inappropriate animal models. Enteroglucagon may simply represent an inactive peptide that ensures that the intestine does not release equimolar amounts of a hyperglycemic agent (glucagon) and a hypoglycemic agent (GLP-1) after ingestion of nutrients.


Asunto(s)
Proglucagón , Animales , Historia del Siglo XX , Humanos , Proglucagón/química , Proglucagón/genética , Proglucagón/historia , Radioinmunoensayo
14.
Biochem Biophys Res Commun ; 530(1): 266-272, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828297

RESUMEN

Glucagon is a peptide hormone generated by pancreatic α cells. It is the counterpart of insulin and plays an essential role in the regulation of blood glucose level. Therefore, a tight regulation of glucagon levels is pivotal to maintain homeostasis of blood glucose. However, little is known about the mechanisms regulating glucagon biosynthesis. In this study, we demonstrate that the RNA-binding protein HuD regulates glucagon expression in pancreatic α cells. HuD was found in α cells from mouse pancreatic islet and mouse glucagonoma αTC1 cell line. Ribonucleoprotein immunoprecipitation analysis, followed by RT-qPCR showed the association of HuD with glucagon mRNA. Knockdown of HuD resulted in a reduction in both proglucagon expression and cellular glucagon level by decreasing its de novo synthesis. Reporter analysis using the EGFP reporter containing 3' untranslated region (3'UTR) of glucagon mRNA showed that HuD regulates proglucagon expression via its 3'UTR. In addition, the relative level of glucagon in the islets and plasma was lower in HuD knockout (KO) mice compared to age-matched control mice. Taken together, these results suggest that HuD is a novel factor regulating the biosynthesis of proglucagon in pancreatic α cells.


Asunto(s)
Proteína 4 Similar a ELAV/metabolismo , Células Secretoras de Glucagón/metabolismo , Proglucagón/metabolismo , Animales , Vías Biosintéticas , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo , Proteína 4 Similar a ELAV/genética , Técnicas de Silenciamiento del Gen , Células Secretoras de Glucagón/citología , Ratones , Proglucagón/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Peptides ; 131: 170349, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32561493

RESUMEN

Glucagon is an essential regulator of glucose homeostasis, particularly in type 2 diabetes (T2D). Blocking the glucagon receptor (GCGR) in diabetic animals and humans has been shown to alleviate hyperglycemia and increase circulating glucagon-like peptide-1 (GLP-1) levels. However, the origin of the upregulated GLP-1 remains to be clarified. Here, we administered high-fat diet + streptozotocin-induced T2D mice and diabetic db/db mice with REMD 2.59, a fully competitive antagonistic human GCGR monoclonal antibody (mAb) for 12 weeks. GCGR mAb treatment decreased fasting blood glucose levels and increased plasma GLP-1 levels in the T2D mice. In addition, GCGR mAb upregulated preproglucagon gene expression and the contents of gut proglucagon-derived peptides, particularly GLP-1, in the small intestine and colon. Notably, T2D mice treated with GCGR mAb displayed a higher L-cell density in the small intestine and colon, which was associated with increased numbers of LK-cells coexpressing GLP-1 and glucose-dependent insulinotropic polypeptide and reduced L-cell apoptosis. Furthermore, GCGR mAb treatment upregulated GLP-1 production in the pancreas, which was detected at lower levels than in the intestine. Collectively, these results suggest that GCGR mAb can increase intestinal GLP-1 production and L-cell number by enhancing LK-cell expansion and inhibiting L-cell apoptosis in T2D.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Polipéptido Inhibidor Gástrico/genética , Péptido 1 Similar al Glucagón/genética , Receptores de Glucagón/genética , Animales , Apoptosis/genética , Glucemia/metabolismo , Colon/efectos de los fármacos , Colon/metabolismo , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Ayuno/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Regulación de la Expresión Génica , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Proglucagón/genética , Proglucagón/metabolismo , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/metabolismo , Transducción de Señal , Estreptozocina/administración & dosificación
16.
Food Chem ; 324: 126857, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32344342

RESUMEN

Glucagon-like peptide-1 (GLP-1) is an important signal in the peripheral and neural systems, which contributes to the maintenance of glucose and energy homeostasis. In this study, 1H NMR validated polyphenols and polysaccharides extracted from sprouted quinoa yoghurt were used as isolates and conjugates to upregulate the stimulation of GLP-1 release in NCI-H716 cells. In addition, we explored their effect on proglucagon and prohormone convertase 3 mRNA expressions, HNF-3γ and CCK-2R gene protein expression, as well as cytosolic calcium release. Variations in concentration showed a dose-dependent GLP-1 stimulation, and were significantly optimized by germination. Proglucagon mRNA expression in NCI-H716 cells was upregulated, and was relatively highest with QYPSP1 treatments in a 2.68 fold. The results suggested that the conjugates had greater potential to stimulate GLP-1 release than their isolates. Sprouted quinoa yoghurt could therefore be a potential functional food useful to regulate glucose and energy homeostasis.


Asunto(s)
Chenopodium quinoa/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Péptido 1 Similar al Glucagón/metabolismo , Polifenoles/química , Polisacáridos/química , Yogur/análisis , Calcio/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chenopodium quinoa/crecimiento & desarrollo , Chenopodium quinoa/metabolismo , Cromatografía Líquida de Alta Presión , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Germinación , Humanos , Polifenoles/análisis , Polifenoles/aislamiento & purificación , Polisacáridos/análisis , Polisacáridos/aislamiento & purificación , Proglucagón/antagonistas & inhibidores , Proglucagón/genética , Proglucagón/metabolismo , Proproteína Convertasa 1/antagonistas & inhibidores , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo
17.
Physiol Behav ; 219: 112830, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061682

RESUMEN

Binge eating involves eating larger than normal quantities of food within a discrete period of time. The neurohormonal controls governing binge-like palatable food intake are not well understood. Glucagon-like peptide-1 (GLP-1), a hormone produced peripherally in the intestine and centrally in the nucleus tractus solitarius (NTS), reduces food intake. Given that the NTS plays a critical role in integrating peripheral and central signals relevant for food intake, as well as the role of GLP-1 in motivated feeding, we tested the hypothesis that expression of the GLP-1 precursor preproglucagon (PPG) would be reduced in the NTS of rats with a history of binge-like palatable food intake. Adult male rats received access to fat for 1 h shortly before lights off, either every day (Daily, D) or only 3d/week (Intermittent, INT). INT rats ate significantly more fat than did D rats in sessions where all rats had fat access. After ~8.5 weeks of diet maintenance, we measured plasma GLP-1 as well as NTS PPG and GLP-1 receptor expression. INT rats had significantly lower NTS PPG mRNA expression compared to D rats. However, plasma GLP-1 was significantly increased in the INT group versus D rats. No significant differences were observed in NTS GLP-1 receptor expression. We also measured plasma insulin levels, fasted blood glucose, and plasma corticosterone but no differences were detected between groups. These results support the hypothesis that binge-like eating reduces NTS GLP-1 expression, and furthermore, demonstrate divergent impacts of binge-like eating on peripheral (plasma) versus central GLP-1.


Asunto(s)
Trastorno por Atracón , Núcleo Solitario , Animales , Ingestión de Alimentos , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Proglucagón/genética , Ratas , Núcleo Solitario/metabolismo
18.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1338-1350, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31342562

RESUMEN

The objective of this study was to test the hypothesis that aspartame supplementation in starter diet accelerates small intestinal cell cycle by stimulating secretion and expression of glucagon-like peptide -2 (GLP-2) in pre-weaned lambs using animal and cell culture experiments. In vivo, twelve 14-day-old lambs were selected and allocated randomly to two groups; one was treated with plain starter diet (Con, n = 6) and the other was treated with starter supplemented with 200 mg of aspartame/kg starter (APM, n = 6). Results showed that the lambs received APM treatment for 35 d had higher (p < .05) GLP-2 concentration in the plasma and greater jejunum weight/live body weight (BW) and jejunal crypt depth. Furthermore, APM treatment significantly upregulated (p < .05) the mRNA expression of cyclin D1 in duodenum; and cyclin A2, cyclin D1, cyclin-dependent kinases 6 (CDK6) in jejunum; and cyclin A2, cyclin D1, CDK4 in ileum. Moreover, APM treatment increased (p < .05) the mRNA expression of glucagon (GCG), insulin-like growth factor 1 (IGF-1) in the jejunum and ileum and mRNA expression of GLP-2 receptor (GLP-2R) in the jejunum. In vitro, when jejunal cells were treated with GLP-2 for 2 hr, the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) OD, IGF-1 concentration, and the mRNA expression of IGF-1, cyclin D1 and CDK6 were increased (p < .05). Furthermore, IGF-1 receptor (IGF-1R) inhibitor decreased (p < .05) the mRNA expression of IGF-1, cyclin A2, cyclin D1 and CDK6 in GLP-2 treatment jejunal cells. These results suggest that aspartame supplementation in starter accelerates small intestinal cell cycle that may, in part, be related to stimulate secretion and expression of GLP-2 in pre-weaning lambs. Furthermore, GLP-2 can indirectly promote the proliferation of jejunal cells mainly through the IGF-1 pathway. These findings provide new insights into nutritional interventions that promote the development of small intestines in young ruminants.


Asunto(s)
Aspartame/farmacología , Células Epiteliales/efectos de los fármacos , Péptido 2 Similar al Glucagón/metabolismo , Mucosa Intestinal/citología , Intestino Delgado/efectos de los fármacos , Ovinos/fisiología , Alimentación Animal , Animales , Animales Lactantes , Aspartame/administración & dosificación , Células Cultivadas , Células Epiteliales/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Péptido 2 Similar al Glucagón/genética , Receptor del Péptido 2 Similar al Glucagón/genética , Receptor del Péptido 2 Similar al Glucagón/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/efectos de los fármacos , Proglucagón/genética , Proglucagón/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
19.
Res Vet Sci ; 124: 223-227, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30928654

RESUMEN

Gastrointestinal hormone based therapies are being investigated for treating diabetes in cats; however, the tissue distribution of these hormones and their cognate receptors remain largely understudied. We determined the distribution of transcripts for the gut hormones proglucagon (Gcg), glucose-dependent insulinotropic peptide (Gip), peptide YY (Pyy), and their receptors (Glp1r, Gipr, Npy2r), in feline peripheral tissues. The Gcg, Gip and Pyy mRNA were expressed in the gut, with higher Gcg and Pyy abundance in the lower gut. Interestingly, Glp1r and Npy2r mRNA were expressed in multiple peripheral tissues including the gut, pancreas and liver, whereas, Gipr mRNA was restricted to the stomach and adipose tissues. The localized mRNA expression of Gcg and Pyy in the gut, but the extensive distribution of Glp1r and Npy2r in several peripheral tissues suggests that these hormones may have pleiotropic physiological functions in cats.


Asunto(s)
Gatos/genética , Polipéptido Inhibidor Gástrico/genética , Péptido YY/genética , Proglucagón/genética , Receptores de la Hormona Gastrointestinal/genética , Receptores de Péptidos/genética , Animales , Gatos/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Perfilación de la Expresión Génica , Péptido YY/metabolismo , Proglucagón/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de Péptidos/metabolismo , Distribución Tisular , Transcripción Genética
20.
Nutrients ; 10(10)2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30241419

RESUMEN

Obesity is one of the major public health issues, and its prevalence is steadily increasing all the world over. The endocannabinoid system (ECS) has been shown to be involved in the intake of palatable food via activation of cannabinoid 1 receptor (CB1R). However, the involvement of lingual CB1R in the orosensory perception of dietary fatty acids has never been investigated. In the present study, behavioral tests on CB1R-/- and wild type (WT) mice showed that the invalidation of Cb1r gene was associated with low preference for solutions containing rapeseed oil or a long-chain fatty acid (LCFA), such as linoleic acid (LA). Administration of rimonabant, a CB1R inverse agonist, in mice also brought about a low preference for dietary fat. No difference in CD36 and GPR120 protein expressions were observed in taste bud cells (TBC) from WT and CB1R-/- mice. However, LCFA induced a higher increase in [Ca2+]i in TBC from WT mice than that in TBC from CB1R-/- mice. TBC from CB1R-/- mice also exhibited decreased Proglucagon and Glp-1r mRNA and a low GLP-1 basal level. We report that CB1R is involved in fat taste perception via calcium signaling and GLP-1 secretion.


Asunto(s)
Ácidos Grasos , Preferencias Alimentarias , Obesidad/genética , Receptor Cannabinoide CB1/genética , Papilas Gustativas/metabolismo , Percepción del Gusto/genética , Gusto/genética , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Señalización del Calcio/genética , Antagonistas de Receptores de Cannabinoides/farmacología , Grasas de la Dieta , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ácido Linoleico , Masculino , Ratones Noqueados , Obesidad/etiología , Proglucagón/genética , Proglucagón/metabolismo , ARN Mensajero/metabolismo , Aceite de Brassica napus , Receptor Cannabinoide CB1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Rimonabant/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA