Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.990
1.
Front Immunol ; 15: 1354710, 2024.
Article En | MEDLINE | ID: mdl-38726010

Cancer vaccines are gaining ground as immunotherapy options. We have previously demonstrated in cutaneous melanoma (CM) patients that adjuvant treatment with VACCIMEL, a mixture of four irradiated CM cell lines co-adjuvanted with BCG and GM-CSF, increases the cellular immune response to melanocyte differentiation antigens, cancer-testis antigens and neoantigens, with respect to basal levels. On the other hand, it is also known that treatment with anti-PD-1 monoclonal antibodies (MAbs), acting on pre-existing tumor-reactive lymphocytes, induces clinical responses in CM patients, albeit in a fraction of treated patients. A combination of both treatments would appear therefore desirable. In this paper, we describe CM patients who, having progressed even years after vaccination, were treated with anti-PD-1 MAbs. In 5/5 of such progressor patients, complete responses were obtained which lasted between 3 and 65+ months. Three of the patients remain disease-free and two recurred. One of the patients passed away after a recurrence of brain metastases. We suggest that clonally expanded reactive lymphocytes induced by VACCIMEL partially remain as memory cells, which may be recalled after tumor recurrence and may foster ulterior activity of anti-PD-1 MAbs.


Cancer Vaccines , Melanoma , Programmed Cell Death 1 Receptor , Skin Neoplasms , Humans , Melanoma/immunology , Melanoma/therapy , Melanoma/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cancer Vaccines/administration & dosage , Male , Female , Middle Aged , Aged , Immune Checkpoint Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Melanoma, Cutaneous Malignant , Treatment Outcome , Adjuvants, Immunologic/therapeutic use , Adjuvants, Immunologic/administration & dosage
2.
Sci Rep ; 14(1): 10661, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724599

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Antibodies, Bispecific , Cricetulus , Lymphocyte Activation Gene 3 Protein , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , CHO Cells , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Female , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
3.
BMC Immunol ; 25(1): 29, 2024 May 11.
Article En | MEDLINE | ID: mdl-38730320

BACKGROUND: Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS: To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS: In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.


Cross Reactions , Immunotherapy , Programmed Cell Death 1 Receptor , Animals , Humans , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice , Cross Reactions/immunology , Immunotherapy/methods , Hydrogen-Ion Concentration , Neoplasms/immunology , Neoplasms/therapy , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Epitopes/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Mice, Inbred C57BL , Female
4.
Front Immunol ; 15: 1338218, 2024.
Article En | MEDLINE | ID: mdl-38742109

Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL responses and is impaired when CTLs become exhausted, e.g. during chronic retroviral infections. A prominent T cell exhaustion marker is programmed cell death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be attributed selectively to CTLs. To overcome this problem, we performed CRISPR/Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus (FV)-specific CTLs. We transferred 1,000 of these cells into mice where they proliferated upon FV-infection. Using intravital two-photon microscopy we visualized CTL motility in the bone marrow and evaluated cytotoxic molecule expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at 14 days post infection and enhanced the expression of cytotoxicity markers. Our data show the potential of genetic tuning of naive antiviral CTLs and might be relevant for future designs of improved T cell-mediated therapies.


Cell Movement , Mice, Knockout , Programmed Cell Death 1 Receptor , Retroviridae Infections , T-Lymphocytes, Cytotoxic , Animals , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Mice , Cell Movement/genetics , Retroviridae Infections/immunology , T-Lymphocytes, Cytotoxic/immunology , Mice, Inbred C57BL , Friend murine leukemia virus/immunology , Gene Knockout Techniques , CD8-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems , Cytotoxicity, Immunologic
5.
Front Immunol ; 15: 1367040, 2024.
Article En | MEDLINE | ID: mdl-38745661

Background: In recent years, immunotherapy has been emerging as a promising alternative therapeutic method for cancer patients, offering potential benefits. The expression of PD-L1 by tumors can inhibit the T-cell response to the tumor and allow the tumor to evade immune surveillance. To address this issue, cancer immunotherapy has shown promise in disrupting the interaction between PD-L1 and its ligand PD-1. Methods: We used mirror-image phage display technology in our experiment to screen and determine PD-L1 specific affinity peptides (PPL-C). Using CT26 cells, we established a transplanted mouse tumor model to evaluate the inhibitory effects of PPL-C on tumor growth in vivo. We also demonstrated that PPL-C inhibited the differentiation of T regulatory cells (Tregs) and regulated the production of cytokines. Results: In vitro, PPL-C has a strong affinity for PD-L1, with a binding rate of 0.75 µM. An activation assay using T cells and mixed lymphocytes demonstrated that PPL-C inhibits the interaction between PD-1 and PD-L1. PPL-C or an anti-PD-L1 antibody significantly reduced the rate of tumor mass development in mice compared to those given a control peptide (78% versus 77%, respectively). The results of this study demonstrate that PPL-C prevents or retards tumor growth. Further, immunotherapy with PPL-C enhances lymphocyte cytotoxicity and promotes proliferation in CT26-bearing mice. Conclusion: PPL-C exhibited antitumor and immunoregulatory properties in the colon cancer. Therefore, PPL-C peptides of low molecular weight could serve as effective cancer immunotherapy.


B7-H1 Antigen , Immunotherapy , Peptides , Animals , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Mice , Peptides/immunology , Cell Line, Tumor , Immunotherapy/methods , Humans , T-Lymphocytes, Regulatory/immunology , Female , Mice, Inbred BALB C , Programmed Cell Death 1 Receptor/immunology , Cytokines/metabolism , Lymphocyte Activation/immunology , Immunomodulation/drug effects , Colonic Neoplasms/therapy , Colonic Neoplasms/immunology
6.
Scand J Immunol ; 99(6): e13364, 2024 Jun.
Article En | MEDLINE | ID: mdl-38720521

Mucosal-associated invariant T-cells (MAIT) are unconventional T-cells with cytotoxic and pro-inflammatory properties. Previous research has reported contradictory findings on their role in cancerogenesis with data being even scarcer in haematological malignancies. Here, we report the results of a systematic analysis of MAIT cells in treatment-naïve patients with a broad range of haematological malignancies. We analysed peripheral blood of 204 patients and 50 healthy subjects. The pool of haematological patients had a statistically significant lower both the absolute value (median values, 0.01 × 109/L vs. 0.05 × 109/L) of MAIT cells and their percentage (median values 0.94% vs. 2.56%) among T-cells compared to the control group. Separate analysis showed that the decrease in the absolute number of MAIT cells is significant in patients with acute myeloid leukaemia, myeloproliferative neoplasms, plasma cell myeloma, B-cell non-Hodgkin lymphomas, otherwise not specified, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma compared to the control population. Furthermore, in haematological malignancies, MAIT cells overexpress PD-1 (average values, 51.7% vs. 6.7%), HLA-DR (average values, 40.2% vs. 7%), CD38 (average values, 25.9% vs. 4.9%) and CD69 (average values, 40.2% vs. 9.2%). Similar results were obtained when comparing patients with individual malignancies to the control population. Our data show that the depletion of circulating MAIT cells is a common observation in a broad spectrum of haematological malignancies. In addition to their reduced numbers, MAIT cells acquire an activated/exhausted phenotype.


Hematologic Neoplasms , Mucosal-Associated Invariant T Cells , Programmed Cell Death 1 Receptor , Humans , Mucosal-Associated Invariant T Cells/immunology , Hematologic Neoplasms/immunology , Male , Female , Middle Aged , Aged , Adult , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Antigens, CD/metabolism , Aged, 80 and over , Antigens, Differentiation, T-Lymphocyte/metabolism , Lymphocyte Count , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/immunology , Immunophenotyping , Young Adult , Membrane Glycoproteins/immunology , Lectins, C-Type
7.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(5): 485-489, 2024 May 12.
Article Zh | MEDLINE | ID: mdl-38706074

Programmed cell death 1 (PD-1) and its ligands, PD-L1 and PD-L2, expressed on a variety of immune cells, play multiple regulatory roles in the host immune response to Mycobacterium tuberculosis infection. In this study, we reviewed that the regulatory roles of PD-1/PD-L1, PD-L2 signaling in the host adaptive immune response, such as the innate response of macrophages, and the interaction between T cells and macrophages in response to MTB. In addition, during MTB infection, PD-1/PD-L1, PD-L2 signaling is also involved in the host inflammatory response, as well as the potential roles of PD-1/PD-L1, PD-L2 in the diagnosis and treatment of tuberculosis.


B7-H1 Antigen , Macrophages , Mycobacterium tuberculosis , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , Signal Transduction , Tuberculosis , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Mycobacterium tuberculosis/immunology , Macrophages/immunology , Macrophages/metabolism , Immunity, Innate , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Adaptive Immunity
8.
Cancer Res ; 84(10): 1597-1612, 2024 May 15.
Article En | MEDLINE | ID: mdl-38588411

Resistance to immune checkpoint blockade (ICB) therapy represents a formidable clinical challenge limiting the efficacy of immunotherapy. In particular, prostate cancer poses a challenge for ICB therapy due to its immunosuppressive features. A ketogenic diet (KD) has been reported to enhance response to ICB therapy in some other cancer models. However, adverse effects associated with continuous KD were also observed, demanding better mechanistic understanding and optimized regimens for using KD as an immunotherapy sensitizer. In this study, we established a series of ICB-resistant prostate cancer cell lines and developed a highly effective strategy of combining anti-PD1 and anti-CTLA4 antibodies with histone deacetylase inhibitor (HDACi) vorinostat, a cyclic KD (CKD), or dietary supplementation of the ketone body ß-hydroxybutyrate (BHB), which is an endogenous HDACi. CKD and BHB supplementation each delayed prostate cancer tumor growth as monotherapy, and both BHB and adaptive immunity were required for the antitumor activity of CKD. Single-cell transcriptomic and proteomic profiling revealed that HDACi and ketogenesis enhanced ICB efficacy through both cancer cell-intrinsic mechanisms, including upregulation of MHC class I molecules, and -extrinsic mechanisms, such as CD8+ T-cell chemoattraction, M1/M2 macrophage rebalancing, monocyte differentiation toward antigen-presenting cells, and diminished neutrophil infiltration. Overall, these findings illuminate a potential clinical path of using HDACi and optimized KD regimens to enhance ICB therapy for prostate cancer. SIGNIFICANCE: Optimized cyclic ketogenic diet and 1,3-butanediol supplementation regimens enhance the efficacy of immune checkpoint blockade in prostate cancer through epigenetic and immune modulations, providing dietary interventions to sensitize tumors to immunotherapy.


Diet, Ketogenic , Drug Resistance, Neoplasm , Epigenesis, Genetic , Immune Checkpoint Inhibitors , Prostatic Neoplasms , Male , Diet, Ketogenic/methods , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/diet therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Epigenesis, Genetic/drug effects , Animals , Cell Line, Tumor , Vorinostat/pharmacology , Vorinostat/therapeutic use , Vorinostat/administration & dosage , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , 3-Hydroxybutyric Acid , Xenograft Model Antitumor Assays , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors
9.
Sci Immunol ; 9(94): eadh0085, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669317

Thymic negative selection of the T cell receptor (TCR) repertoire is essential for establishing self-tolerance and acquired allograft tolerance following organ transplantation. However, it is unclear whether and how peripheral clonal deletion of alloreactive T cells induces transplantation tolerance. Here, we establish that programmed cell death protein 1 (PD-1) is a hallmark of alloreactive T cells and is associated with clonal expansion after alloantigen encounter. Moreover, we found that diphtheria toxin receptor (DTR)-mediated ablation of PD-1+ cells reshaped the TCR repertoire through peripheral clonal deletion of alloreactive T cells and promoted tolerance in mouse transplantation models. In addition, by using PD-1-specific depleting antibodies, we found that antibody-mediated depletion of PD-1+ cells prevented heart transplant rejection and the development of experimental autoimmune encephalomyelitis (EAE) in humanized PD-1 mice. Thus, these data suggest that PD-1 is an attractive target for peripheral clonal deletion and induction of immune tolerance.


Clonal Deletion , Immune Tolerance , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Animals , Programmed Cell Death 1 Receptor/immunology , Mice , Clonal Deletion/immunology , Immune Tolerance/immunology , Humans , Encephalomyelitis, Autoimmune, Experimental/immunology , Heart Transplantation , T-Lymphocytes/immunology , Mice, Knockout , Mice, Inbred BALB C , Female
10.
Nat Commun ; 15(1): 3552, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670972

Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.


B7-H1 Antigen , Immunotherapy, Adoptive , Programmed Cell Death 1 Receptor , Receptors, Chimeric Antigen , T-Lymphocytes , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Humans , Immunotherapy, Adoptive/methods , Mice , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Xenograft Model Antitumor Assays , Female , CRISPR-Cas Systems , Mice, Inbred NOD
11.
ACS Nano ; 18(17): 11070-11083, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38639726

Effective antitumor immunotherapy depends on evoking a cascade of cancer-immune cycles with lymph nodes (LNs) as the initial sites for activating antitumor immunity, making drug administration through the lymphatic system highly attractive. Here, we describe a nanomedicine with dual responsiveness to pH and enzyme for a programmed activation of antitumor immune through the lymphatic system. The proposed nanomedicine can release the STING agonist diABZI-C2-NH2 in the LNs' acidic environment to activate dendritic cells (DCs) and T cells. Then, the remaining nanomedicine hitchhikes on the activated T cells (PD-1+ T cells) through binding to PD-1, resulting in an effective delivery into tumor tissues owing to the tumor-homing capacity of PD-1+ T cells. The enzyme matrix metalloproteinase-2 (MMP-2) being enriched in tumor tissue triggers the release of PD-1 antibody (aPD-1) which exerts immune checkpoint blockade (ICB) therapy. Eventually, the nanomedicine delivers a DNA methylation inhibitor GSK-3484862 (GSK) into tumor cells, and then the latter combines with granzyme B (GZMB) to trigger tumor cell pyroptosis. Consequently, the pyroptotic tumor cells induce robust immunogenic cell death (ICD) enhancing the DCs maturation and initiating the cascading antitumor immune response. Study on a 4T1 breast tumor mouse model demonstrates the prominent antitumor therapeutic outcome of this nanomedicine through creating a positive feedback loop of cancer-immunity cycles including immune activation in LNs, T cell-mediated drug delivery, ICB therapy, and tumor cell pyroptosis-featured ICD.


Nanomedicine , Animals , Mice , Humans , Immunotherapy , Female , Lymph Nodes/immunology , Lymph Nodes/drug effects , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor
12.
Front Immunol ; 15: 1383456, 2024.
Article En | MEDLINE | ID: mdl-38660299

The programmed death-1 receptor (PD-1) acts as a T-cell brake, and its interaction with ligand-1 (PD-L-1) interferes with signal transduction of the T-cell receptor. This leads to suppression of T-cell survival, proliferation, and activity in the tumor microenvironment resulting in compromised anticancer immunity. PD-1/PD-L-1 interaction blockade shown remarkable clinical success in various cancer immunotherapies. To date, most PD-1/PD-L-1 blockers approved for clinical use are monoclonal antibodies (mAbs); however, their therapeutic use are limited owing to poor clinical responses in a proportion of patients. mAbs also displayed low tumor penetration, steep production costs, and incidences of immune-related side effects. This strongly indicates the importance of developing novel inhibitors as cancer immunotherapeutic agents. Recently, advancements in the small molecule-based inhibitors (SMIs) that directly block the PD-1/PD-L-1 axis gained attention from the scientific community involved in cancer research. SMIs demonstrated certain advantages over mAbs, including longer half-lives, low cost, greater cell penetration, and possibility of oral administration. Currently, several SMIs are in development pipeline as potential therapeutics for cancer immunotherapy. To develop new SMIs, a wide range of structural scaffolds have been explored with excellent outcomes; biphenyl-based scaffolds are most studied. In this review, we analyzed the development of mAbs and SMIs targeting PD-1/PD-L-1 axis for cancer treatment. Altogether, the present review delves into the problems related to mAbs use and a detailed discussion on the development and current status of SMIs. This article may provide a comprehensive guide to medicinal chemists regarding the potential structural scaffolds required for PD-1/PD-L-1 interaction inhibition.


B7-H1 Antigen , Immune Checkpoint Inhibitors , Immunotherapy , Neoplasms , Programmed Cell Death 1 Receptor , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Animals , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Antibodies, Monoclonal/therapeutic use
13.
World J Gastroenterol ; 30(13): 1815-1835, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38659481

Colorectal cancer (CRC) is a complex disease with diverse etiologies and clinical outcomes. Despite considerable progress in development of CRC therapeutics, challenges remain regarding the diagnosis and management of advanced stage metastatic CRC (mCRC). In particular, the five-year survival rate is very low since mCRC is currently rarely curable. Over the past decade, cancer treatment has significantly improved with the introduction of cancer immunotherapies, specifically immune checkpoint inhibitors. Therapies aimed at blocking immune checkpoints such as PD-1, PD-L1, and CTLA-4 target inhibitory pathways of the immune system, and thereby enhance anti-tumor immunity. These therapies thus have shown promising results in many clinical trials alone or in combination. The efficacy and safety of immunotherapy, either alone or in combination with CRC, have been investigated in several clinical trials. Clinical trials, including KEYNOTE-164 and CheckMate 142, have led to Food and Drug Administration approval of the PD-1 inhibitors pembrolizumab and nivolumab, respectively, for the treatment of patients with unresectable or metastatic microsatellite instability-high or deficient mismatch repair CRC. Unfortunately, these drugs benefit only a small percentage of patients, with the benefits of immunotherapy remaining elusive for the vast majority of CRC patients. To this end, primary and secondary resistance to immunotherapy remains a significant issue, and further research is necessary to optimize the use of immunotherapy in CRC and identify biomarkers to predict the response. This review provides a comprehensive overview of the clinical trials involving immune checkpoint inhibitors in CRC. The underlying rationale, challenges faced, and potential future steps to improve the prognosis and enhance the likelihood of successful trials in this field are discussed.


Clinical Trials as Topic , Colorectal Neoplasms , Immune Checkpoint Inhibitors , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Immunotherapy/methods , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Treatment Outcome , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology
14.
J Exp Med ; 221(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38634869

We previously reported two siblings with inherited PD-1 deficiency who died from autoimmune pneumonitis at 3 and 11 years of age after developing other autoimmune manifestations, including type 1 diabetes (T1D). We report here two siblings, aged 10 and 11 years, with neonatal-onset T1D (diagnosed at the ages of 1 day and 7 wk), who are homozygous for a splice-site variant of CD274 (encoding PD-L1). This variant results in the exclusive expression of an alternative, loss-of-function PD-L1 protein isoform in overexpression experiments and in the patients' primary leukocytes. Surprisingly, cytometric immunophenotyping and single-cell RNA sequencing analysis on blood leukocytes showed largely normal development and transcriptional profiles across lymphoid and myeloid subsets in the PD-L1-deficient siblings, contrasting with the extensive dysregulation of both lymphoid and myeloid leukocyte compartments in PD-1 deficiency. Our findings suggest that PD-1 and PD-L1 are essential for preventing early-onset T1D but that, unlike PD-1 deficiency, PD-L1 deficiency does not lead to fatal autoimmunity with extensive leukocytic dysregulation.


B7-H1 Antigen , Diabetes Mellitus, Type 1 , Child , Child, Preschool , Humans , Infant, Newborn , Autoimmunity , B7-H1 Antigen/deficiency , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Homozygote , Programmed Cell Death 1 Receptor/deficiency , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology
15.
Regul Toxicol Pharmacol ; 149: 105616, 2024 May.
Article En | MEDLINE | ID: mdl-38561147

Pharmacokinetic (PK) models are increasingly submitted to the FDA to support first-in-human (FIH) dose selection of immune-oncology products. To examine whether a simple PK modeling (SPM) using clearance for scaling was acceptable for dose estimation, FIH(SPM) doses were computed and compared to doses that were safely administered to patients. We concluded that the SPM approach is acceptable in FIH dose estimation, but the variables should be carefully selected for CD3 constructs. For CD3 constructs, use of 60 kg BWh, a clearance exponent of 0.75, and a targeted plasma concentration based on relevant and/or sensitive activity assays was an acceptable approach for FIH dose selection; use of 0.85 as the scaling factor is questionable at this time as it resulted in a FIH dose that was too close to the AHD for one product (7%). Immune activating mAbs were not sensitive to changes in the clearance exponent (0.75-0.85) or body weight (60-70 kg). For PD-1/PD-L1 mAbs, using products' in vitro EC50 in the model resulted in suboptimal FIH doses and clinical data of closely related products informed FIH dose selection. PK models submitted by sponsors were diverse in methods, assumptions, and variables, and the resulting FIH doses were not always optimal.


Models, Biological , Humans , Dose-Response Relationship, Drug , B7-H1 Antigen/immunology , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/administration & dosage , Programmed Cell Death 1 Receptor/immunology , Neoplasms/immunology , Neoplasms/drug therapy , CD3 Complex/immunology , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/blood
16.
Int Immunopharmacol ; 132: 111934, 2024 May 10.
Article En | MEDLINE | ID: mdl-38574701

PD-1/PD-L1 blockade therapy has brought great success to cancer treatment. Nevertheless, limited beneficiary populations and even hyperprogressive disease (HPD) greatly constrain the application of PD-1/PD-L1 inhibitors in clinical treatment. HPD is a special pattern of disease progression with rapid tumor growth and even serious consequences of patient death, which requires urgent attention. Among the many predisposing causes of HPD, regulatory T cells (Tregs) are suspected because they are amplified in cases of HPD. Tregs express PD-1 thus PD-1/PD-L1 blockade therapy may have an impact on Tregs which leads to HPD. Tregs are a subset of CD4+ T cells expressing FoxP3 and play critical roles in suppressing immunity. Tregs migrate toward tumors in the presence of chemokines to suppress antitumor immune responses, causing cancer cells to grow and proliferate. Studies have shown that deleting Tregs could enhance the efficacy of PD-1/PD-L1 blockade therapy and reduce the occurrence of HPD. This suggests that immunotherapy combined with Treg depletion may be an effective means of avoiding HPD. In this review, we summarized the immunosuppressive-related functions of Tregs in antitumor therapy and focused on advances in therapy combining Tregs depletion with PD-1/PD-L1 blockade in clinical studies. Moreover, we provided an outlook on Treg-targeted HPD early warning for PD-1/PD-L1 blockade therapy.


B7-H1 Antigen , Disease Progression , Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/therapeutic use , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Immunotherapy/methods
17.
Adv Sci (Weinh) ; 11(18): e2310163, 2024 May.
Article En | MEDLINE | ID: mdl-38460167

Intrinsic immunosuppressive tumor microenvironment (ITM) and insufficient tumor infiltration of T cells severely impede the progress of glioblastoma (GBM) immunotherapy. In this study, it is identify that inhibiting the expression of glucose transporter 1 (GLUT1) can facilitate the prevention of lactate excretion from tumor glycolysis, which significantly alleviates the lactate-driven ITM by reducing immunosuppressive tumor-associated macrophages (TAMs) and regulatory T cells (Tregs). Simultaneously, the findings show that the generated inflammatory cytokine IFN-γ during immune activation aggravates the immune escape by upregulating immune checkpoint programmed death-ligand 1 (PD-L1) in tumor cells and TAMs. Therefore, an injectable thermogel loaded with a GLUT1 inhibitor BAY-876 and a PD-1/PD-L1 blocker BMS-1 (Gel@B-B) for dual-regulation of metabolism and immunity of GBM is developed. Consequently, in situ injection of Gel@B-B significantly delays tumor growth and prolongs the survival of the orthotopic GBM mouse model. By actively exposing tumor antigens to antigen-presenting cells, the GBM vaccine combined with Gel@B-B is found to significantly increase the fraction of effector T cells (Th1/CTLs) in the tumor microenvironment, thereby remarkably mitigating tumor recurrence long-term. This study may provide a promising strategy for GBM immunotherapy.


B7-H1 Antigen , Glioblastoma , Immunotherapy , Lactic Acid , Tumor Microenvironment , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/drug therapy , Animals , Mice , Immunotherapy/methods , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , B7-H1 Antigen/immunology , B7-H1 Antigen/antagonists & inhibitors , Disease Models, Animal , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Cell Line, Tumor , Gels , Immune Checkpoint Inhibitors/pharmacology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects
18.
Cancer Cell ; 42(5): 780-796.e6, 2024 May 13.
Article En | MEDLINE | ID: mdl-38518774

Emerging as the most potent and durable combinational immunotherapy, dual anti-PD-1 and CTLA-4 immune checkpoint blockade (ICB) therapy notoriously increases grade 3-5 immune-related adverse events (irAEs) in patients. Accordingly, attempts to improve the antitumor potency of anti-PD-1+CTLA-4 ICB by including additional therapeutics have been largely discouraged due to concerns of further increasing fatal toxicity. Here, we screened ∼3,000 Food and Drug Administration (FDA)-approved drugs and identified clofazimine as a potential third agent to optimize anti-PD-1+CTLA-4 ICB. Remarkably, clofazimine outperforms ICB dose reduction or steroid treatment in reversing lethality of irAEs, but unlike the detrimental effect of steroids on antitumor efficacy, clofazimine potentiates curative responses in anti-PD-1+CTLA-4 ICB. Mechanistically, clofazimine promotes E2F1 activation in CD8+ T cells to overcome resistance and counteracts pathogenic Th17 cells to abolish irAEs. Collectively, clofazimine potentiates the antitumor efficacy of anti-PD-1+CTLA-4 ICB, curbs intractable irAEs, and may fill a desperate clinical need to improve patient survival.


CTLA-4 Antigen , Clofazimine , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Clofazimine/pharmacology , Clofazimine/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Animals , Humans , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Female , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Th17 Cells/drug effects , Th17 Cells/immunology
19.
Hematol Oncol Clin North Am ; 38(3): 599-616, 2024 Jun.
Article En | MEDLINE | ID: mdl-38493074

Immune checkpoint inhibitors are rapidly transforming the care of patients with esophagogastric cancer. Particularly, anti-PD-1 therapy has demonstrated promising efficacy in metastatic and resectable disease. In this review, the authors discuss landmark clinical trials, highlight challenges and opportunities in this field, and propose potential directions for future work.


Esophageal Neoplasms , Immune Checkpoint Inhibitors , Immunotherapy , Stomach Neoplasms , Humans , Esophageal Neoplasms/therapy , Esophageal Neoplasms/immunology , Stomach Neoplasms/therapy , Stomach Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Clinical Trials as Topic
20.
J Immunol ; 212(10): 1540-1552, 2024 May 15.
Article En | MEDLINE | ID: mdl-38517295

Severe SARS-CoV-2 infection is associated with significant immune dysregulation involving different immune cell subsets. In this study, when analyzing critically ill COVID-19 patients versus those with mild disease, we observed a significant reduction in total and memory B cell subsets but an increase in naive B cells. Moreover, B cells from COVID-19 patients displayed impaired effector functions, evidenced by diminished proliferative capacity, reduced cytokine, and Ab production. This functional impairment was accompanied by an increased apoptotic potential upon stimulation in B cells from severely ill COVID-19 patients. Our further studies revealed the expansion of B cells expressing coinhibitory molecules (PD-1, PD-L1, TIM-1, VISTA, CTLA-4, and Gal-9) in intensive care unit (ICU)-admitted patients but not in those with mild disease. The coinhibitory receptor expression was linked to altered IgA and IgG expression and increased the apoptotic capacity of B cells. Also, we found a reduced frequency of CD24hiCD38hi regulatory B cells with impaired IL-10 production. Our mechanistic studies revealed that the upregulation of PD-L1 was linked to elevated plasma IL-6 levels in COVID-19 patients. This implies a connection between the cytokine storm and altered B cell phenotype and function. Finally, our metabolomic analysis showed a significant reduction in tryptophan but elevation of kynurenine in ICU-admitted COVID-19 patients. We found that kynurenine promotes PD-L1 expression in B cells, correlating with increased IL-6R expression and STAT1/STAT3 activation. Our observations provide novel insights into the complex interplay of B cell dysregulation, implicating coinhibitory receptors, IL-6, and kynurenine in impaired B cell effector functions, potentially contributing to the pathogenesis of COVID-19.


COVID-19 , SARS-CoV-2 , Humans , COVID-19/immunology , Male , Middle Aged , Female , SARS-CoV-2/immunology , Aged , B-Lymphocytes/immunology , B-Lymphocyte Subsets/immunology , Severity of Illness Index , Adult , Apoptosis/immunology , Critical Illness , Interleukin-10/immunology , Interleukin-10/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Interleukin-6/metabolism , Interleukin-6/immunology
...