Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047761

RESUMEN

Thermophilic proteins and enzymes are attractive for use in industrial applications due to their resistance against heat and denaturants. Here, we report on a thermophilic protein that is stable at high temperatures (Ttrs, hot 67 °C) but undergoes significant unfolding at room temperature due to cold denaturation. Little is known about the cold denaturation of thermophilic proteins, although it can significantly limit their applications. We investigated the cold denaturation of thermophilic multidomain protein translation initiation factor 2 (IF2) from Thermus thermophilus. IF2 is a GTPase that binds to ribosomal subunits and initiator fMet-tRNAfMet during the initiation of protein biosynthesis. In the presence of 9 M urea, measurements in the far-UV region by circular dichroism were used to capture details about the secondary structure of full-length IF2 protein and its domains during cold and hot denaturation. Cold denaturation can be suppressed by salt, depending on the type, due to the decreased heat capacity. Thermodynamic analysis and mathematical modeling of the denaturation process showed that salts reduce the cooperativity of denaturation of the IF2 domains, which might be associated with the high frustration between domains. This characteristic of high interdomain frustration may be the key to satisfying numerous diverse contacts with ribosomal subunits, translation factors, and tRNA.


Asunto(s)
Frío , Factor 2 Procariótico de Iniciación , Factor 2 Procariótico de Iniciación/química , Biosíntesis de Proteínas , Termodinámica , Calor , Cloruro de Sodio , Cloruro de Sodio Dietético , Desnaturalización Proteica
2.
Biochemistry (Mosc) ; 88(2): 221-230, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37072332

RESUMEN

Eukaryotic and archaeal translation initiation factor 2 (e/aIF2) functions as a heterotrimeric complex. It consists of three subunits (α, ß, γ). α- and ß-subunits are bound to γ-subunit by hydrogen bonds and van der Waals interactions, but do not contact each other. Although main functions of the factor are performed by the γ-subunit, reliable formation of αγ and ßγ complexes is necessary for its proper functioning. In this work, we introduced mutations in the recognition part of the ßγ interface and showed that hydrophobic effect plays a crucial role in the recognition of subunits both in eukaryotes and archaea. Shape and properties of the groove on the surface of γ-subunit facilitates transition of the disordered recognition part of the ß-subunit into an α-helix containing approximately the same number of residues in archaea and eukaryotes. In addition, based on the newly obtained data, it was concluded that in archaea and eukaryotes, transition of the γ-subunit to the active state leads to additional contact between the region of switch 1 and C-terminal part of the ß-subunit, which stabilizes helical conformation of the switch.


Asunto(s)
Eucariontes , Factor 2 Procariótico de Iniciación , Sitios de Unión , Factor 2 Procariótico de Iniciación/química , Eucariontes/genética , Eucariontes/metabolismo , Archaea/genética , Archaea/metabolismo , Guanosina Trifosfato
3.
Nat Commun ; 13(1): 3388, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697706

RESUMEN

During translation initiation, initiation factor 2 (IF2) holds initiator transfer RNA (fMet-tRNAifMet) in a specific orientation in the peptidyl (P) site of the ribosome. Upon subunit joining IF2 hydrolyzes GTP and, concomitant with inorganic phosphate (Pi) release, changes conformation facilitating fMet-tRNAifMet accommodation into the P site and transition of the 70 S ribosome initiation complex (70S-IC) to an elongation-competent ribosome. The mechanism by which IF2 separates from initiator tRNA at the end of translation initiation remains elusive. Here, we report cryo-electron microscopy (cryo-EM) structures of the 70S-IC from Pseudomonas aeruginosa bound to compact IF2-GDP and initiator tRNA. Relative to GTP-bound IF2, rotation of the switch 2 α-helix in the G-domain bound to GDP unlocks a cascade of large-domain movements in IF2 that propagate to the distal tRNA-binding domain C2. The C2-domain relocates 35 angstroms away from tRNA, explaining how IF2 makes way for fMet-tRNAifMet accommodation into the P site. Our findings provide the basis by which IF2 gates the ribosome to the elongation phase.


Asunto(s)
Factor 2 Procariótico de Iniciación , ARN de Transferencia de Metionina , Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Factor 2 Procariótico de Iniciación/química , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo
4.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34948034

RESUMEN

Substitution of the conserved Histidine 448 present in one of the three consensus elements characterizing the guanosine nucleotide binding domain (IF2 G2) of Escherichia coli translation initiation factor IF2 resulted in impaired ribosome-dependent GTPase activity which prevented IF2 dissociation from the ribosome, caused a severe protein synthesis inhibition, and yielded a dominant lethal phenotype. A reduced IF2 affinity for the ribosome was previously shown to suppress this lethality. Here, we demonstrate that also a reduced IF2 affinity for fMet-tRNA can suppress this dominant lethal phenotype and allows IF2 to support faithful translation in the complete absence of GTP hydrolysis. These results strengthen the premise that the conformational changes of ribosome, IF2, and fMet-tRNA occurring during the late stages of translation initiation are thermally driven and that the energy generated by IF2-dependent GTP hydrolysis is not required for successful translation initiation and that the dissociation of the interaction between IF2 C2 and the acceptor end of fMet-tRNA, which represents the last tie anchoring the factor to the ribosome before the formation of an elongation-competent 70S complex, is rate limiting for both the adjustment of fMet-tRNA in a productive P site and the IF2 release from the ribosome.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , GTP Fosfohidrolasas/metabolismo , Genes Letales , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/química , Hidrólisis , Modelos Moleculares , Fenotipo , Factor 2 Procariótico de Iniciación/genética , Conformación Proteica , Dominios Proteicos , Ribosomas/química , Ribosomas/metabolismo
5.
Biochemistry (Mosc) ; 86(8): 1003-1011, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34488576

RESUMEN

The heterotrimeric (αßγ) translation initiation factor 2 of archaea and eukaryotes (a/eIF2) supplies the P-site of the ribosome with the initiation tRNA. Its two subunits (ß and γ) contain the Cys2-Cys2 motif, which is capable of forming a stable zinc finger structure in the presence of zinc ions. In this work, comparative analysis of the fragments containing Cys2-Cys2 motifs in the aIF2ß and aIF2γ structures from different organisms was carried out and their environments in crystals was analyzed. Based on the obtained data, a conclusion was made that the conformation and role of these fragments in the ß- and γ-subunits of the aIF2 are different.


Asunto(s)
Proteínas Arqueales/química , Cisteína/química , Factores de Iniciación de Péptidos/química , Factor 2 Procariótico de Iniciación/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Iones , Conformación Molecular , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Sulfolobus solfataricus/química , Zinc , Dedos de Zinc
6.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192132

RESUMEN

Initiation of protein synthesis in eukaryotes is a complex process requiring more than 12 different initiation factors, comprising over 30 polypeptide chains. The functions of many of these factors have been established in great detail; however, the precise role of some of them and their mechanism of action is still not well understood. Eukaryotic initiation factor 2A (eIF2A) is a single chain 65 kDa protein that was initially believed to serve as the functional homologue of prokaryotic IF2, since eIF2A and IF2 catalyze biochemically similar reactions, i.e., they stimulate initiator Met-tRNAi binding to the small ribosomal subunit. However, subsequent identification of a heterotrimeric 126 kDa factor, eIF2 (α,ß,γ) showed that this factor, and not eIF2A, was primarily responsible for the binding of Met-tRNAi to 40S subunit in eukaryotes. It was found however, that eIF2A can promote recruitment of Met-tRNAi to 40S/mRNA complexes under conditions of inhibition of eIF2 activity (eIF2α-phosphorylation), or its absence. eIF2A does not function in major steps in the initiation process, but is suggested to act at some minor/alternative initiation events such as re-initiation, internal initiation, or non-AUG initiation, important for translational control of specific mRNAs. This review summarizes our current understanding of the eIF2A structure and function.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Animales , Proteínas Portadoras/metabolismo , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Evolución Molecular , Técnicas de Silenciamiento del Gen , Humanos , Mamíferos , Ratones Noqueados , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Transducción de Señal , Estrés Fisiológico , Relación Estructura-Actividad , Sitio de Iniciación de la Transcripción , Levaduras/genética , Levaduras/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(18): 4649-4654, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29686090

RESUMEN

The interaction between the ribosomal-stalk protein L7/12 (L12) and initiation factor 2 (IF2) is essential for rapid subunit association, but the underlying mechanism is unknown. Here, we have characterized the L12-IF2 interaction on Escherichia coli ribosomes using site-directed mutagenesis, fast kinetics, and molecular dynamics (MD) simulations. Fifteen individual point mutations were introduced into the C-terminal domain of L12 (L12-CTD) at helices 4 and 5, which constitute the common interaction site for translational GTPases. In parallel, 15 point mutations were also introduced into IF2 between the G4 and G5 motifs, which we hypothesized as the potential L12 interaction sites. The L12 and IF2 mutants were tested in ribosomal subunit association assay in a stopped-flow instrument. Those amino acids that caused defective subunit association upon substitution were identified as the molecular determinants of L12-IF2 interaction. Further, MD simulations of IF2 docked onto the L12-CTD pinpointed the exact interacting partners-all of which were positively charged on L12 and negatively charged on IF2, connected by salt bridges. Lastly, we tested two pairs of charge-reversed mutants of L12 and IF2, which significantly restored the yield and the rate of formation of the 70S initiation complex. We conclude that complementary charge-based interaction between L12-CTD and IF2 is the key for fast subunit association. Considering the homology of the G domain, similar mechanisms may apply for L12 interactions with other translational GTPases.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/química , Proteínas Ribosómicas/química , Secuencias de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
8.
Nat Commun ; 8(1): 1475, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29133802

RESUMEN

Initiation factor (IF) 2 controls the fidelity of translation initiation by selectively increasing the rate of 50S ribosomal subunit joining to 30S initiation complexes (ICs) that carry an N-formyl-methionyl-tRNA (fMet-tRNAfMet). Previous studies suggest that rapid 50S subunit joining involves a GTP- and fMet-tRNAfMet-dependent "activation" of IF2, but a lack of data on the structure and conformational dynamics of 30S IC-bound IF2 has precluded a mechanistic understanding of this process. Here, using an IF2-tRNA single-molecule fluorescence resonance energy transfer signal, we directly observe the conformational switch that is associated with IF2 activation within 30S ICs that lack IF3. Based on these results, we propose a model of IF2 activation that reveals how GTP, fMet-tRNAfMet, and specific structural elements of IF2 drive and regulate this conformational switch. Notably, we find that domain III of IF2 plays a pivotal, allosteric, role in IF2 activation, suggesting that this domain can be targeted for the development of novel antibiotics.


Asunto(s)
Escherichia coli/fisiología , Factor 2 Procariótico de Iniciación/fisiología , Biosíntesis de Proteínas/fisiología , Subunidades Ribosómicas Grandes Bacterianas/fisiología , Subunidades Ribosómicas Pequeñas Bacterianas/fisiología , Regulación Alostérica/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Transferencia Resonante de Energía de Fluorescencia/métodos , Guanosina Trifosfato/metabolismo , Cinética , Modelos Biológicos , Mutación , Factor 2 Procariótico de Iniciación/química , Conformación Proteica , Dominios Proteicos/fisiología , ARN de Transferencia de Metionina/metabolismo , Imagen Individual de Molécula/métodos
9.
Protein Sci ; 25(9): 1722-33, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27364543

RESUMEN

Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two ß-sheets with each four anti-parallel strands, followed by a C-terminal α-helix. In line with its role as linker between G3 and subdomain C1, this helix has no well-defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB-fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA-binding modules such as IF2-C2, IF1 and subdomains II of elongation factors EF-Tu and EF-G. Structural comparisons have resulted in a model that describes the interaction between IF2-G3 and the 30S ribosomal subunit.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus stearothermophilus/química , Modelos Moleculares , Factor 2 Procariótico de Iniciación/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Proteínas Bacterianas/metabolismo , Geobacillus stearothermophilus/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Dominios Proteicos , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
10.
Sci Adv ; 2(3): e1501502, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26973877

RESUMEN

Throughout the four phases of protein biosynthesis-initiation, elongation, termination, and recycling-the ribosome is controlled and regulated by at least one specified translational guanosine triphosphatase (trGTPase). Although the structural basis for trGTPase interaction with the ribosome has been solved for the last three steps of translation, the high-resolution structure for the key initiation trGTPase, initiation factor 2 (IF2), complexed with the ribosome, remains elusive. We determine the structure of IF2 complexed with a nonhydrolyzable guanosine triphosphate analog and initiator fMet-tRNAi (Met) in the context of the Escherichia coli ribosome to 3.7-Å resolution using cryo-electron microscopy. The structural analysis reveals previously unseen intrinsic conformational modes of the 70S initiation complex, establishing the mutual interplay of IF2 and initator transfer RNA (tRNA) with the ribsosome and providing the structural foundation for a mechanistic understanding of the final steps of translation initiation.


Asunto(s)
Factor 2 Procariótico de Iniciación/química , Ribosomas/química , Microscopía por Crioelectrón , Modelos Moleculares , Conformación Proteica
11.
Biochimie ; 121: 197-203, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26700147

RESUMEN

In Archaea and Eukaryotes, the binding of Met-tRNAi(Met) to the P-site of the ribosome is mediated by translation initiation factor 2 (a/eIF2) which consists of three subunits: α, ß and γ. Here, we present the high-resolution structure of intact aIF2γ from Sulfolobus solfataricus (SsoIF2γ) in complex with GTP analog, GDPCP. The comparison of the nucleotide-binding pockets in this structure and in the structure of the ribosome-bound form of EF-Tu reveals their close conformation similarity. The nucleotide-binding pocket conformation observed in this structure could be consider as corresponding to intermediate conformation of EF-Tu nucleotide-binding pocket in its transition from the GTP-bound form to the GDP-bound one. Three clusters of well defined water molecules are associated with amino acid residues of the SsoIF2γ nucleotide-binding pocket and stabilize its conformation. We suppose that two water bridges between the oxygen atoms of the GTP γ-phosphate and negatively charged residues of the pocket can serve as ways to transmit protons arising from the catalytic reaction.


Asunto(s)
Factor 2 Procariótico de Iniciación/metabolismo , Sulfolobus solfataricus/metabolismo , Catálisis , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Factor 2 Procariótico de Iniciación/química , Unión Proteica , Ribosomas/metabolismo , Solventes/química , Agua/metabolismo , Difracción de Rayos X
12.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1668-83, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26249348

RESUMEN

The translation-libration-screw model first introduced by Cruickshank, Schomaker and Trueblood describes the concerted motions of atomic groups. Using TLS models can improve the agreement between calculated and experimental diffraction data. Because the T, L and S matrices describe a combination of atomic vibrations and librations, TLS models can also potentially shed light on molecular mechanisms involving correlated motions. However, this use of TLS models in mechanistic studies is hampered by the difficulties in translating the results of refinement into molecular movement or a structural ensemble. To convert the matrices into a constituent molecular movement, the matrix elements must satisfy several conditions. Refining the T, L and S matrix elements as independent parameters without taking these conditions into account may result in matrices that do not represent concerted molecular movements. Here, a mathematical framework and the computational tools to analyze TLS matrices, resulting in either explicit decomposition into descriptions of the underlying motions or a report of broken conditions, are described. The description of valid underlying motions can then be output as a structural ensemble. All methods are implemented as part of the PHENIX project.


Asunto(s)
Proteínas/química , Algoritmos , Animales , Calmodulina/química , Humanos , Modelos Moleculares , Movimiento (Física) , Factor 2 Procariótico de Iniciación/química , Conformación Proteica
13.
J Mol Biol ; 427(9): 1819-34, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25596426

RESUMEN

Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex. These results strongly suggest that 30S IC-driven changes in the stability of IF2 and the conformational dynamics of the IF2·tRNA sub-complex regulate the efficiency and fidelity of subunit joining during translation initiation.


Asunto(s)
Factor 2 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Molecular , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/genética , ARN Mensajero/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química
14.
J Mol Biol ; 427(9): 1801-18, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25308340

RESUMEN

Ribosomal subunit joining is a key checkpoint in the bacterial translation initiation pathway during which initiation factors (IFs) regulate association of the 30S initiation complex (IC) with the 50S subunit to control formation of a 70S IC that can enter into the elongation stage of protein synthesis. The GTP-bound form of IF2 accelerates subunit joining, whereas IF3 antagonizes subunit joining and plays a prominent role in maintaining translation initiation fidelity. The molecular mechanisms through which IF2 and IF3 collaborate to regulate the efficiency of 70S IC formation, including how they affect the dynamics of subunit joining, remain poorly defined. Here, we use single-molecule fluorescence resonance energy transfer to monitor the interactions between IF2 and the GTPase-associated center (GAC) of the 50S subunit during real-time subunit joining reactions in the absence and presence of IF3. In the presence of IF3, IF2-mediated subunit joining becomes reversible, and subunit joining events cluster into two distinct classes corresponding to formation of shorter- and longer-lifetime 70S ICs. Inclusion of IF3 within the 30S IC was also found to alter the conformation of IF2 relative to the GAC, suggesting that IF3's regulatory effects may stem in part from allosteric modulation of IF2-GAC interactions. The results are consistent with a model in which IF3 can exert control over the efficiency of subunit joining by modulating the conformation of the 30S IC, which in turn influences the formation of stabilizing intersubunit contacts and thus the reaction's degree of reversibility.


Asunto(s)
Factor 2 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Molecular , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/genética , Factor 3 Procariótico de Iniciación/química , Factor 3 Procariótico de Iniciación/genética , ARN Mensajero/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química
15.
Elife ; 3: e03574, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25233066

RESUMEN

While small molecule inhibitors of the bacterial ribosome have been instrumental in understanding protein translation, no such probes exist to study ribosome biogenesis. We screened a diverse chemical collection that included previously approved drugs for compounds that induced cold sensitive growth inhibition in the model bacterium Escherichia coli. Among the most cold sensitive was lamotrigine, an anticonvulsant drug. Lamotrigine treatment resulted in the rapid accumulation of immature 30S and 50S ribosomal subunits at 15 °C. Importantly, this was not the result of translation inhibition, as lamotrigine was incapable of perturbing protein synthesis in vivo or in vitro. Spontaneous suppressor mutations blocking lamotrigine activity mapped solely to the poorly characterized domain II of translation initiation factor IF2 and prevented the binding of lamotrigine to IF2 in vitro. This work establishes lamotrigine as a widely available chemical probe of bacterial ribosome biogenesis and suggests a role for E. coli IF2 in ribosome assembly.


Asunto(s)
Escherichia coli/metabolismo , Ribosomas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Triazinas/farmacología , Secuencia de Aminoácidos , Frío , Escherichia coli/efectos de los fármacos , Lamotrigina , Datos de Secuencia Molecular , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Estrés Fisiológico/efectos de los fármacos , Triazinas/química
16.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 1921-34, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24100312

RESUMEN

In macromolecular X-ray crystallography, diffraction data sets are traditionally characterized by the highest resolution dhigh of the reflections that they contain. This measure is sensitive to individual reflections and does not refer to the eventual data incompleteness and anisotropy; it therefore does not describe the data well. A physically relevant and robust measure that provides a universal way to define the `actual' effective resolution deff of a data set is introduced. This measure is based on the accurate calculation of the minimum distance between two immobile point scatterers resolved as separate peaks in the Fourier map calculated with a given set of reflections. This measure is applicable to any data set, whether complete or incomplete. It also allows characterizion of the anisotropy of diffraction data sets in which deff strongly depends on the direction. Describing mathematical objects, the effective resolution deff characterizes the `geometry' of the set of measured reflections and is irrelevant to the diffraction intensities. At the same time, the diffraction intensities reflect the composition of the structure from physical entities: the atoms. The minimum distance for the atoms typical of a given structure is a measure that is different from and complementary to deff; it is also a characteristic that is complementary to conventional measures of the data-set quality. Following the previously introduced terms, this value is called the optical resolution, dopt. The optical resolution as defined here describes the separation of the atomic images in the `ideal' crystallographic Fourier map that would be calculated if the exact phases were known. The effective and optical resolution, as formally introduced in this work, are of general interest, giving a common `ruler' for all kinds of crystallographic diffraction data sets.


Asunto(s)
Cristalografía por Rayos X/métodos , Análisis de Fourier , Difracción de Rayos X/métodos , Anisotropía , Simulación por Computador , Sustancias Macromoleculares/química , Modelos Químicos , Distribución Normal , Factor 2 Procariótico de Iniciación/química
17.
Proc Natl Acad Sci U S A ; 110(39): 15662-7, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24029018

RESUMEN

The initiation of protein synthesis uses initiation factor 2 (IF2) in prokaryotes and a related protein named eukaryotic initiation factor 5B (eIF5B) in eukaryotes. IF2 is a GTPase that positions the initiator tRNA on the 30S ribosomal initiation complex and stimulates its assembly to the 50S ribosomal subunit to make the 70S ribosome. The 3.1-Å resolution X-ray crystal structures of the full-length Thermus thermophilus apo IF2 and its complex with GDP presented here exhibit two different conformations (all of its domains except C2 domain are visible). Unlike all other translational GTPases, IF2 does not have an effecter domain that stably contacts the switch II region of the GTPase domain. The domain organization of IF2 is inconsistent with the "articulated lever" mechanism of communication between the GTPase and initiator tRNA binding domains that has been proposed for eIF5B. Previous cryo-electron microscopy reconstructions, NMR experiments, and this structure show that IF2 transitions from being flexible in solution to an extended conformation when interacting with ribosomal complexes.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Cristalografía por Rayos X , Methanobacterium/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Thermus thermophilus/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(39): 15656-61, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24029017

RESUMEN

Translation initiation factor 2 (IF2) promotes 30S initiation complex (IC) formation and 50S subunit joining, which produces the 70S IC. The architecture of full-length IF2, determined by small angle X-ray diffraction and cryo electron microscopy, reveals a more extended conformation of IF2 in solution and on the ribosome than in the crystal. The N-terminal domain is only partially visible in the 30S IC, but in the 70S IC, it stabilizes interactions between IF2 and the L7/L12 stalk of the 50S, and on its deletion, proper N-formyl-methionyl(fMet)-tRNA(fMet) positioning and efficient transpeptidation are affected. Accordingly, fast kinetics and single-molecule fluorescence data indicate that the N terminus promotes 70S IC formation by stabilizing the productive sampling of the 50S subunit during 30S IC joining. Together, our data highlight the dynamics of IF2-dependent ribosomal subunit joining and the role played by the N terminus of IF2 in this process.


Asunto(s)
Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Subunidades Ribosómicas/metabolismo , Thermus thermophilus/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Proteínas Mutantes/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Subunidades Ribosómicas Grandes Bacterianas , Subunidades Ribosómicas Pequeñas Bacterianas , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Difracción de Rayos X
19.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 925-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23695237

RESUMEN

Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2-GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.


Asunto(s)
Guanosina Difosfato/química , Guanosina Trifosfato/química , Factor 2 Procariótico de Iniciación/química , Thermus thermophilus/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Molecular , Factor 2 Procariótico de Iniciación/metabolismo , Thermus thermophilus/metabolismo , Difracción de Rayos X
20.
Curr Opin Struct Biol ; 22(6): 797-803, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22959417

RESUMEN

During the last decade groundbreaking progress has been made towards the understanding of structure and function of cell's translational machinery. Cryo-electron microscopic (cryo-EM) and X-ray crystallographic structures of cytoplasmic ribosomes from several bacterial and eukaryotic species are now available in various ligand-bound states. Significant advances have also been made in structural studies on ribosomes of the cellular organelles, such as those present in the chloroplasts and mitochondria, using cryo-EM techniques. Here we review the progress made in structure determination of the mitochondrial ribosomes, with an emphasis on the mammalian mitochondrial ribosome and one of its translation initiation factors, and discuss challenges that lie ahead in obtaining their high-resolution structures.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Animales , Humanos , Membranas Mitocondriales/metabolismo , Péptidos/química , Péptidos/metabolismo , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...