Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 907
Filtrar
1.
Nanotechnology ; 35(46)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39146954

RESUMEN

Triple-negative breast cancer (TNBC) is considered the most aggressive form of breast cancer owing to the negative expression of targetable bioreceptors. Epithelial to mesenchymal transition (EMT) associated with metastatic abilities is its critical feature. As an attempt to target TNBC, nanotechnology was utilised to augment the effects of drug repurposing. Concerning that, a combination therapeutic module was structured with one of the aspects being a repurposed antihistamine, promethazine hydrochloride loaded PLGA nanoparticles. The as-synthesized nanoparticles were 217 nm in size and fluoresced at 522 nm, rendering them suitable for theranostic applications too. The second feature of the module was a common histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), used as a form of pre-treatment. Experimental studies demonstrated efficient cellular internalisation and significant innate anti-proliferative potential. The use of SAHA sensitised the cells to the drug loaded nanoparticle treatment. Mechanistic studies showed increase in ROS generation, mitochondrial dysfunction followed by apoptosis. Investigations into protein expression also revealed reduction of mesenchymal proteins like vimentin by 1.90 fold; while increase in epithelial marker like E-Cadherin by 1.42 fold, thus indicating an altered EMT dynamics. Further findings also provided better insight into the benefits of SAHA potentiated targeting of tumor spheroids that mimic solid tumors of TNBC. Thus, this study paves the avenue to a more rational translational validation of combining nanotherapeutics with drug repurposing.


Asunto(s)
Apoptosis , Reposicionamiento de Medicamentos , Transición Epitelial-Mesenquimal , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Prometazina , Neoplasias de la Mama Triple Negativas , Vorinostat , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Vorinostat/farmacología , Vorinostat/química , Nanopartículas/química , Línea Celular Tumoral , Prometazina/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Femenino , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Sinergismo Farmacológico , Portadores de Fármacos/química
2.
Microb Pathog ; 193: 106769, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955237

RESUMEN

The bacterium Escherichia coli is one of the main causes of urinary tract infections. The formation of bacterial biofilms, especially associated with the use of urinary catheters, contributes to the establishment of recurrent infections and the development of resistance to treatment. Strains of E. coli that produce extended-spectrum beta-lactamases (ESBL) have a greater ability to form biofilms. In addition, there is a lack of drugs available in the market with antibiofilm activity. Promethazine (PMZ) is an antihistamine known to have antimicrobial activity against different pathogens, including in the form of biofilms, but there are still few studies of its activity against ESBL E. coli biofilms. The aim of this study was to evaluate the antimicrobial activity of PMZ against ESBL E. coli biofilms, as well as to assess the application of this drug as a biofilm prevention agent in urinary catheters. To this end, the minimum inhibitory concentration and minimum bactericidal concentration of PMZ in ESBL E. coli strains were determined using the broth microdilution assay and tolerance level measurement. The activity of PMZ against the cell viability of the in vitro biofilm formation of ESBL E. coli was analyzed by the MTT colorimetric assay and its ability to prevent biofilm formation when impregnated in a urinary catheter was investigated by counting colony-forming units (CFU) and confirmed by scanning electron microscopy (SEM). PMZ showed bactericidal activity and significantly reduced (p < 0.05) the viability of the biofilm being formed by ESBL E. coli at concentrations of 256 and 512 µg/ml, as well as preventing the formation of biofilm on urinary catheters at concentrations starting at 512 µg/ml by reducing the number of CFUs, as also observed by SEM. Thus, PMZ is a promising candidate to prevent the formation of ESBL E. coli biofilms on abiotic surfaces.


Asunto(s)
Antibacterianos , Biopelículas , Escherichia coli , Pruebas de Sensibilidad Microbiana , Prometazina , Catéteres Urinarios , beta-Lactamasas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Prometazina/farmacología , Escherichia coli/efectos de los fármacos , beta-Lactamasas/metabolismo , Catéteres Urinarios/microbiología , Antibacterianos/farmacología , Humanos , Infecciones Urinarias/microbiología , Viabilidad Microbiana/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico
3.
Med Microbiol Immunol ; 213(1): 16, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033094

RESUMEN

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei, an intracellular pathogen with a high mortality rate and significant antibiotic resistance. The high mortality rate and resistance to antibiotics have drawn considerable attention from researchers studying melioidosis. This study evaluated the effects of various concentrations (75, 50, and 25 µg/mL) of promethazine hydrochloride (PTZ), a potent antihistamine, on biofilm formation and lipase activity after 24 h of exposure to B. thailandensis E264. A concentration-dependent decrease in both biofilm biomass and lipase activity was observed. RT-PCR analysis revealed that PTZ treatment not only made the biofilm structure loose but also reduced the expression of btaR1, btaR2, btaR3, and scmR. Single gene knockouts of quorum sensing (QS) receptor proteins (∆btaR1, ∆btaR2, and ∆btaR3) were successfully constructed. Deletion of btaR1 affected biofilm formation in B. thailandensis, while deletion of btaR2 and btaR3 led to reduced lipase activity. Molecular docking and biological performance results demonstrated that PTZ inhibits biofilm formation and lipase activity by suppressing the expression of QS-regulated genes. This study found that repositioning PTZ reduced biofilm formation in B. thailandensis E264, suggesting a potential new approach for combating melioidosis.


Asunto(s)
Biopelículas , Burkholderia , Reposicionamiento de Medicamentos , Prometazina , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Burkholderia/efectos de los fármacos , Burkholderia/fisiología , Burkholderia/genética , Prometazina/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Lipasa/metabolismo , Lipasa/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Percepción de Quorum/efectos de los fármacos
4.
Future Microbiol ; 19(6): 495-508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629920

RESUMEN

Aim: To evaluate the action of promethazine, fluoxetine and carbonyl cyanide 3-chlorophenylhydrazone as efflux pump inhibitors (EPIs) against multidrug-resistant Pseudomonas aeruginosa. Methods: The effect of the compounds was evaluated in planktonic cells and bacterial biofilms. Accumulation tests were performed with ethidium bromide to prove their action as EPIs. Then, they were associated with antimicrobials. Results: Effect on planktonic cells and biofilms was found. Assays with ethidium bromide indicate their action as EPIs. Significant reductions in the metabolic activity of biofilms were observed after the association with the antimicrobials, especially for meropenem. Conclusion: It is possible to prove the action of these compounds as EPIs for P. aeruginosa and demonstrate the relevance of efflux pumps in antimicrobial resistance.


[Box: see text].


Asunto(s)
Antibacterianos , Biopelículas , Reposicionamiento de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Prometazina/farmacología , Proteínas de Transporte de Membrana/metabolismo , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Hidrazonas
5.
Drug Dev Ind Pharm ; 50(1): 11-22, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38054848

RESUMEN

OBJECTIVE: The present work aims to develop mucoadhesive thermosensitive nasal in situ gel for Promethazine hydrochloride using quality by design (QbD) approach. It can reduce nasal mucociliary clearance (MCC) and increase residence of the drug on nasal mucosa. This might increase drug absorption to improve bioavailability of the drug as compared to oral dosage form. SIGNIFICANCE: Promethazine hydrochloride is an antiemetic drug administered by oral, parenteral and rectal routes. These routes have poor patient compliance or low bioavailability. Nasal route is a better alternative as it has large surface area, high drug absorption rate and no first pass effect. Its only limitation is short drug retention time due to MCC. By formulating a mucoadhesive in situ gel, the MCC can be reduced, and drug absorption will be prolonged. Thus, improving bioavailability. METHOD: In-situ gel was prepared by cold method having material attributes as concentration of Poloxamer 407 (X1) as gelling agent and hydroxypropyl methyl cellulose K4M (X2) as mucoadhesive agent. Critical Quality Attributes (CQA) were gelation temperature, mucoadhesive force and ex-vivo diffusion. Central composite design (CCD) was adopted for optimization. RESULT: Optimized formulation satisfied all the CQA significant for nasal administration. Moreover, the formulation was found to be stable in accelerated stability studies for 3 months. CONCLUSION: It can be concluded that since the drug can easily permeate through nasal mucosa and can gain access directly in the brain without undergoing first pass metabolism along with increased residence due to mucoadhesion, mucoadhesive in situ gel has potential to increase drug bioavailability.


Asunto(s)
Antieméticos , Prometazina , Humanos , Prometazina/metabolismo , Prometazina/farmacología , Administración Intranasal , Mucosa Nasal/metabolismo , Antieméticos/metabolismo , Excipientes/metabolismo , Geles/farmacología , Sistemas de Liberación de Medicamentos/métodos
6.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37791895

RESUMEN

This study evaluated the antibiofilm activity of promethazine, deferiprone, and Manuka honey against Staphylococcus aureus and Pseudomonas aeruginosa in vitro and ex vivo in a wound model on porcine skin. The minimum inhibitory concentrations (MICs) and the effects of the compounds on biofilms were evaluated. Then, counting colony-forming units (CFUs) and confocal microscopy were performed on biofilms cultivated on porcine skin for evaluation of the compounds. For promethazine, MICs ranging from 97.66 to 781.25 µg/ml and minimum biofilm eradication concentration (MBEC) values ranging from 195.31 to 1562.5 µg/ml were found. In addition to reducing the biomass of both species' biofilms. As for deferiprone, the MICs were 512 and >1024 µg/ml, the MBECs were ≥1024 µg/ml, and it reduced the biomass of biofilms. Manuka honey had MICs of 10%-40%, MBECs of 20 to >40% and reduced the biomass of S. aureus biofilms only. Concerning the analyses in the ex vivo model, the compounds reduced (P < .05) CFU counts for both bacterial species, altering the biofilm architecture. The action of the compounds on biofilms in in vitro and ex vivo tests raises the possibility of using them against biofilm-associated wounds. However, further studies are needed to characterize the mechanisms of action and their effectiveness on biofilms in vivo.


Asunto(s)
Miel , Staphylococcus aureus , Animales , Porcinos , Prometazina/farmacología , Deferiprona/farmacología , Biopelículas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
7.
Biofouling ; 39(2): 189-203, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37144566

RESUMEN

This study evaluated the antimicrobial activity of promethazine against Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus mutans and its effect on the antimicrobial susceptibility of biofilms grown in vitro and ex vivo on porcine heart valves. Promethazine was evaluated alone and in combination with vancomycin and oxacillin against Staphylococcus spp. and vancomycin and ceftriaxone against S. mutans in planktonic form and biofilms grown in vitro and ex vivo. Promethazine minimum inhibitory concentration range was 24.4-95.31 µg/mL and minimum biofilm eradication concentration range was 781.25-3.125 µg/mL. Promethazine interacted synergistically with vancomycin, oxacillin and ceftriaxone against biofilms in vitro. Promethazine alone reduced (p < 0.05) the CFU-counts of biofilms grown on heart valves for Staphylococcus spp., but not for S. mutans, and increased (p < 0.05) the activity of vancomycin, oxacillin and ceftriaxone against biofilms of Gram-positive cocci grown ex vivo. These findings bring perspectives for repurposing promethazine as adjuvant in the treatment of infective endocarditis.


Asunto(s)
Endocarditis , Cocos Grampositivos , Humanos , Vancomicina/farmacología , Antibacterianos/farmacología , Prometazina/farmacología , Ceftriaxona/farmacología , Biopelículas , Oxacilina/farmacología , Staphylococcus , Pruebas de Sensibilidad Microbiana
8.
Biofouling ; 39(2): 218-230, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37122169

RESUMEN

Trichosporon spp. are emerging opportunistic fungi associated with invasive infections, especially in patients with haematological malignancies. The present study investigated the in vitro inhibition of efflux pumps by promethazine (PMZ) as a strategy to control T. asahii and T. inkin. Planktonic cells were evaluated for antifungal susceptibility to PMZ, as well as inhibition of efflux. The effect of PMZ was also studied in Trichosporon biofilms. PMZ inhibited T. asahii and T. inkin planktonic cells at concentrations ranging from 32 to 256 µg ml-1. Subinhibitory concentrations of PMZ inhibited efflux activity in Trichosporon. Biofilms were completely eradicated by PMZ. PMZ potentiated the action of antifungals, affected the morphology, changed the amount of carbohydrates and proteins and reduced the amount of persister cells inside biofilms. The results showed indirect evidences of the occurrence of efflux pumps in Trichosporon and opens a perspective for the use of this target in the control of trichosporonosis.


Asunto(s)
Antifúngicos , Trichosporon , Humanos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Prometazina/farmacología , Prometazina/metabolismo , Biopelículas , Plancton , Pruebas de Sensibilidad Microbiana
9.
Front Endocrinol (Lausanne) ; 14: 1068925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843581

RESUMEN

Severe burns induce a catecholamine surge, causing severe damage to the organism and raising the possibility of multisystem organ failure. Few strategies are generally acceptable to reduce catecholamine surge and organ injury post-burn. We have previously shown that histamine can amplify the catecholamine surge. In addition, promethazine, a first-generation histamine H1 receptor antagonist, alleviates catecholamine surge and organ injury after severe burns in rats. However, evidence is lacking on whether promethazine benefits patients after severe burns. Currently, sedation and analgesia (such as midazolam and fentanyl) are commonly required for patients after severe burns. It remains unclear if patients after severe burns derive clinical benefit from histamine H1 receptor antagonists combined with sedation and analgesia. This study investigates the therapeutic effect of promethazine on patients after severe burns. Moreover, we test the therapeutic effect of cetirizine, a second-generation histamine H1 receptor antagonist, combined with sedation and analgesia in rats after severe burns. We find that promethazine-pethidine treatment shows a tendency for a lower level of total bilirubin than midazolam-fentanyl in patients 7-day after severe burn. Our study confirms that cetirizine combined with midazolam and fentanyl reduces catecholamine surge and liver and lung damage after severe burns in rats; the effects are better than midazolam and fentanyl treatment. In summary, for the first time, we suggest that histamine H1 receptor antagonist has the potential clinical value of reducing liver injury in patients after severe burns. In addition, we reveal that cetirizine combined with midazolam and fentanyl may be an ideal strategy for treating severe burns.


Asunto(s)
Antagonistas de los Receptores Histamínicos H1 , Prometazina , Ratas , Animales , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Antagonistas de los Receptores Histamínicos H1/farmacología , Prometazina/farmacología , Cetirizina/uso terapéutico , Cetirizina/farmacología , Midazolam/uso terapéutico , Dolor/tratamiento farmacológico , Histamina/farmacología , Fentanilo
10.
ACS Appl Bio Mater ; 5(12): 5911-5923, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36417570

RESUMEN

Drug repurposing presents a workable strategy in tackling antibiotic resistance. Many known drugs have been repurposed for their applications against different targets. Antihistamines that are usually used to treat allergy symptoms can be combined with nanoscale materials to enhance their efficiency. Herein, we explored the antimicrobial properties of a common antihistamine drug, promethazine, in Gram-positive and Gram-negative bacteria. Being positively charged, promethazine was easily incorporated into the mannose-conjugated bovine serum albumin-stabilized promethazine hydrochloride gold nanoclusters. Capping with d-mannose helped in targeting the bacteria by inhibiting their adhesive appendage called pili. Following their uptake, drugs released inside the bacteria caused reactive oxygen species production and membrane permeability alteration, ultimately resulting in bacterial inhibition. Additionally, they were also explored for biofilm eradication. As observed through staining assays, the number of dead cells increased with increasing concentration of drug-loaded gold nanoclusters in the biofilm mass. Therefore, the as-synthesized mannosylated gold nanoclusters incorporated with promethazine were analyzed for potential antibacterial and antibiofilm applications.


Asunto(s)
Antibacterianos , Oro , Oro/farmacología , Antibacterianos/farmacología , Prometazina/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Biopelículas , Bacterias , Antagonistas de los Receptores Histamínicos
11.
Cell Death Dis ; 13(8): 722, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982051

RESUMEN

Sepsis is a life-threatening syndrome with disturbed host responses to severe infections, accounting for the majority of death in hospitalized patients. However, effective medicines are currently scant in clinics due to the poor understanding of the exact underlying mechanism. We previously found that blocking caspase-11 pathway (human orthologs caspase-4/5) is effective to rescue coagulation-induced organ dysfunction and lethality in sepsis models. Herein, we screened our existing chemical pools established in our lab using bacterial outer membrane vesicle (OMV)-challenged macrophages, and found 7-(diethylamino)-1-hydroxy-phenothiazin-3-ylidene-diethylazanium chloride (PHZ-OH), a novel phenothiazinium-based derivative, was capable of robustly dampening caspase-11-dependent pyroptosis. The in-vitro study both in physics and physiology showed that PHZ-OH targeted AP2-associated protein kinase 1 (AAK1) and thus prevented AAK1-mediated LPS internalization for caspase-11 activation. By using a series of gene-modified mice, our in-vivo study further demonstrated that administration of PHZ-OH significantly protected mice against sepsis-associated coagulation, multiple organ dysfunction, and death. Besides, PHZ-OH showed additional protection on Nlrp3-/- and Casp1-/- mice but not on Casp11-/-, Casp1/11-/-, Msr1-/-, and AAK1 inhibitor-treated mice. These results suggest the critical role of AAK1 on caspase-11 signaling and may provide a new avenue that targeting AAK1-mediated LPS internalization would be a promising therapeutic strategy for sepsis. In particular, PHZ-OH may serve as a favorable molecule and an attractive scaffold in future medicine development for efficient treatment of bacterial sepsis.


Asunto(s)
Lipopolisacáridos , Prometazina/farmacología , Sepsis , Animales , Caspasa 1 , Caspasas/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Piroptosis , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
12.
Mediators Inflamm ; 2022: 6886752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873710

RESUMEN

Cerebral ischemia-reperfusion (I/R) incites neurologic damage through a myriad of complex pathophysiological mechanisms, most notably, inflammation and oxidative stress. In I/R injury, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) produces reactive oxygen species (ROS), which promote inflammatory and apoptotic pathways, augmenting ROS production and promoting cell death. Inhibiting ischemia-induced oxidative stress would be beneficial for reducing neuroinflammation and promoting neuronal cell survival. Studies have demonstrated that chlorpromazine and promethazine (C+P) induce neuroprotection. This study investigated how C+P minimizes oxidative stress triggered by ischemic injury. Adult male Sprague-Dawley rats were subject to middle cerebral artery occlusion (MCAO) and subsequent reperfusion. 8 mg/kg of C+P was injected into the rats when reperfusion was initiated. Neurologic damage was evaluated using infarct volumes, neurological deficit scoring, and TUNEL assays. NOX enzymatic activity, ROS production, protein expression of NOX subunits, manganese superoxide dismutase (MnSOD), and phosphorylation of PKC-δ were assessed. Neural SHSY5Y cells underwent oxygen-glucose deprivation (OGD) and subsequent reoxygenation and C+P treatment. We also evaluated ROS levels and NOX protein subunit expression, MnSOD, and p-PKC-δ/PKC-δ. Additionally, we measured PKC-δ membrane translocation and the level of interaction between NOX subunit (p47phox) and PKC-δ via coimmunoprecipitation. As hypothesized, treatment with C+P therapy decreased levels of neurologic damage. ROS production, NOX subunit expression, NOX activity, and p-PKC-δ/PKC-δ were all significantly decreased in subjects treated with C+P. C+P decreased membrane translocation of PKC-δ and lowered the level of interaction between p47phox and PKC-δ. This study suggests that C+P induces neuroprotective effects in ischemic stroke through inhibiting oxidative stress. Our findings also indicate that PKC-δ, NOX, and MnSOD are vital regulators of oxidative processes, suggesting that C+P may serve as an antioxidant.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Isquemia Encefálica/tratamiento farmacológico , Clorpromazina/farmacología , Clorpromazina/uso terapéutico , Masculino , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Prometazina/farmacología , Prometazina/uso terapéutico , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Superóxido Dismutasa/metabolismo
13.
Am J Sports Med ; 50(5): 1317-1327, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35234523

RESUMEN

BACKGROUND: Wnt/ß-catenin signaling suppresses the differentiation of cultured tenocytes, but its roles in tendon repair remain mostly elusive. No chemical compounds are currently available to treat tendon injury. HYPOTHESIS: We hypothesized that the inhibition of Wnt/ß-catenin signaling would accelerate tendon healing. STUDY DESIGN: Controlled laboratory study. METHODS: Tendon-derived cells (TDCs) were isolated from rat Achilles tendons. The right Achilles tendon was injured via a dermal punch, while the left tendon was sham operated. A Wnt/ß-catenin inhibitor, IWR-1, and an antihistamine agent, promethazine (PH), were locally and intramuscularly injected, respectively, for 2 weeks after surgery. The healing tendons were histologically and biomechanically evaluated. RESULTS: The amount of ß-catenin protein was increased in the injured tendons from postoperative weeks 0.5 to 2. Inhibition of Wnt/ß-catenin signaling by IWR-1 in healing tendons improved the histological abnormalities and decreased ß-catenin, but it compromised the biomechanical properties. As we previously reported that antihistamine agents suppressed Wnt/ß-catenin signaling in human chondrosarcoma cells, we examined the effects of antihistamines on TDCs. We found that a first-generation antihistamine agent, PH, increased the expression of the tendon marker genes Mkx and Tnmd in TDCs. Intramuscular injection of PH did not improve histological abnormalities, but it decreased ß-catenin in healing tendons and increased the peak force and stiffness of the healing tendons on postoperative week 2. On postoperative week 8, however, the biomechanical properties of vehicle-treated tendons became similar to those of PH-treated tendons. CONCLUSION: IWR-1 and PH suppressed Wnt/ß-catenin signaling and improved the histological abnormalities of healing tendons. IWR-1, however, compromised the biomechanical properties of healing tendons, whereas PH improved them. CLINICAL RELEVANCE: PH is a candidate repositioned drug that potentially accelerates tendon repair.


Asunto(s)
Tendón Calcáneo , Prometazina , Tendón Calcáneo/lesiones , Animales , Fenómenos Biomecánicos , Humanos , Prometazina/metabolismo , Prometazina/farmacología , Ratas , Ratas Sprague-Dawley , Vía de Señalización Wnt , Cicatrización de Heridas/fisiología , beta Catenina/metabolismo , beta Catenina/farmacología
14.
Biomed Pharmacother ; 143: 112174, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34560542

RESUMEN

AIM: To elucidate the potential effect of promethazine on colorectal cancer (CRC) cells and the underlying mechanism. MATERIALS AND METHODS: Targets of the drug promethazine (PMTZ) were identified by DrugBank and comparative toxicogenomic databases (CTD), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed with STRING software. The effects of PMTZ were predicted to be associated with the PI3K/AKT pathway. Cell Counting Kit 8 (CCK-8) assays were used to evaluate the effects of different concentrations of PMTZ on the proliferation of various types of CRC cells. Flow cytometry and Western blotting analyses were used to detect the degree of CRC cell apoptosis and the expression of the apoptosis-related proteins Bcl-2, Bax and caspase-3 after PMTZ treatment. The expression levels of PI3K/AKT pathway-related proteins [PI3K, AKT, phosphorylated (P)-PI3K and p-AKT] in CRC cells treated with PMTZ were analyzed by Western blotting. RESULTS: PMTZ inhibited the proliferation and promoted the apoptosis of CRC cells and suppressed the activation of the PI3K/AKT signaling pathway in a dose-dependent manner. DISCUSSION AND CONCLUSIONS: PMTZ may suppress the proliferation and induce the apoptosis of CRC cells by inhibiting the PI3K/ AKT signaling pathway. This study reported, for the first time, the function of PMTZ in CRC cells and the underlying mechanism and further confirmed the potential antitumor effects of phenothiazine. The combination of bioinformatics analyses and experiments provides informative evidence for the reuse of drugs and the development of new drugs.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa/metabolismo , Prometazina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Células CACO-2 , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Bases de Datos Genéticas , Reposicionamiento de Medicamentos , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Transducción de Señal
15.
Brain Res ; 1763: 147463, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811844

RESUMEN

BACKGROUND: After ischemic stroke, the increased catabolism of glucose (hyperglycolysis) results in the production of reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). A depressive or hibernation-like effect of C + P on brain activity was reported to induce neuroprotection. The current study assesses the effect of C + P on hyperglycolysis and NOX activation. METHODS: Adult male Sprague-Dawley rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by 6 or 24 h of reperfusion. At the onset of reperfusion, rats received C + P with or without temperature control, or phloretin [glucose transporter (GLUT)-1 inhibitor], or cytochalasin B (GLUT-3 inhibitor). We detected brain ROS, apoptotic cell death, and ATP levels along with HIF-1α expression. Cerebral hyperglycolysis was measured by glucose, protein expression of GLUT-1/3, and phosphofructokinase-1 (PFK-1), as well as lactate and lactate dehydrogenase (LDH) at 6 and 24 h of reperfusion. The enzymatic activity of NOX and protein expression of its subunits (gp91phox) were detected. Neural SHSY5Y cells were placed under 2 h of oxygen-glucose deprivation (OGD) followed by reoxygenation for 6 and 24 h with C + P treatment. Cell viability and protein levels of HIF-1α, GLUT-1/3, PFK-1, LDH, and gp91phox were measured. A HIF-1α overexpression vector was transfected into the cells, and then protein levels of HIF-1α, GLUT-1/3, PFK-1, and LDH were quantitated. In sham-operated rats and control cells, the protein levels of HIF-1α, GLUT-1/3, PFK-1, LDH, and gp91phox were measured at 6 and 24 h after C + P administration. RESULTS: C + P reduced the protein elevations after stroke in HIF-1α, glycolytic enzymes, as well as in ROS, cell death, glucose and lactate, but raised ATP levels in the brain. In ischemic rats exposed to GLUT-1/3 inhibitors, ROS, cell death, glucose, and lactate were all decreased, as well as GLUT-1, GLUT-3, LDH, and PFK-1 protein levels. C + P decreased ischemia-induced NOX activation by reducing the enzymatic activity and protein expression of the NOX subunit gp91phox, as was observed in the presence of GLUT-1/3 inhibitors. These markers were significantly decreased following C + P administration with the induced hypothermia, while C + P administration with temperature control at 37 °C induced lesser protection after ischemia stroke. In the OGD/reoxygenation model, C + P treatment increased cell viability and diminished protein levels of HIF-1α, GLUT-1, GLUT-3, PFK-1, LDH, and gp91phox. However, in OGD with HIF-1α overexpression, C + P was unable to effectively reduce the upregulated GLUT-1, GLUT-3, and LDH. In normal conditions, C + P reduced HIF-1α and the levels of key glycolytic enzymes depending on its pharmacological effect. CONCLUSION: C + P, partially depending on hypothermia, attenuates hyperglycolysis and NOX activation through HIF-1α regulation.


Asunto(s)
Clorpromazina/uso terapéutico , Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Prometazina/uso terapéutico , Animales , Clorpromazina/farmacología , Glucosa/deficiencia , Transportador de Glucosa de Tipo 1/efectos de los fármacos , Transportador de Glucosa de Tipo 3/efectos de los fármacos , Hipoxia , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , L-Lactato Deshidrogenasa/efectos de los fármacos , Masculino , NADPH Oxidasa 2/efectos de los fármacos , Fosfofructoquinasa-1/efectos de los fármacos , Prometazina/farmacología , Ratas , Ratas Sprague-Dawley
16.
Molecules ; 26(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920113

RESUMEN

Promethazine, an antihistamine drug used in the clinical treatment of nausea, has been demonstrated the ability to bind Abeta in a transgenic mouse model of Alzheimer's disease. However, so far, all of the studies were performed in vitro using extracted tissues. In this work, we report the design and synthesis of a novel [11C]promethazine PET radioligand for future in vivo studies. The [11C]promethazine was isolated by RP-HPLC with radiochemical purity >95% and molar activity of 48 TBq/mmol. The specificity of the probe was demonstrated using human hippocampal tissues via autoradiography.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/diagnóstico por imagen , Prometazina/farmacología , Radiofármacos/farmacología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Animales , Autorradiografía , Encéfalo/efectos de los fármacos , Humanos , Ratones , Placa Amiloide/diagnóstico , Placa Amiloide/diagnóstico por imagen , Placa Amiloide/patología , Tomografía de Emisión de Positrones , Prometazina/síntesis química , Prometazina/química , Radioquímica , Radiofármacos/síntesis química , Radiofármacos/química
17.
J Neurophysiol ; 125(4): 1269-1278, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625939

RESUMEN

Although synaptic transmission in motor pathways can be regulated by neuromodulators, such as acetylcholine, few studies have examined how cholinergic activity affects cortical and spinal motor circuits following muscle contractions of varying intensities. This was a human, double-blinded, placebo-controlled, crossover study. Participants attended two sessions where they were administered either a placebo or 25 mg of promethazine. Electromyography of the abductor digiti minimi (ADM) was measured for all conditions. Motor evoked potentials (MEPs) were obtained via motor cortical transcranial magnetic stimulation (TMS), and F waves were obtained via ulnar nerve electrical stimulation. MEPs and F waves were examined: 1) when the muscle was at rest; 2) after the muscle had been active; and 3) after the muscle had been fatigued. MEPs were unaffected by muscarinic receptor blockade when measurements were recorded from resting muscle or following a 50% isometric maximal voluntary contraction (MVC). However, muscarinic receptor blockade increased MEP area following a 10-s MVC (P = 0.019) and following a fatiguing 60-s MVC (P = 0.040). F wave area and persistence were not affected by promethazine for any muscle contraction condition. Corticospinal excitability was influenced by cholinergic effects when voluntary drive to the muscle was high. Given that spinal motoneurone excitability remained unaffected, it is likely that cholinergic effects are influential within the motor cortex during strong muscle contractions. Future research should evaluate how cholinergic effects alter the relationship between subcortical structures and the motor cortex, as well as brainstem neuromodulatory pathways and spinal motoneurons.NEW & NOTEWORTHY The relationship between motor function and cholinergic circuitry in the central nervous system is complex. Although many studies have approached this issue at the cellular level, few studies have examined cholinergic mechanisms in humans performing muscle contractions. This study demonstrates that blockade of muscarinic acetylcholine receptors enhances motor evoked potentials (elicited with transcranial magnetic stimulation) following strong muscle contractions, but not weak muscle contractions.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Potenciales Evocados Motores/efectos de los fármacos , Corteza Motora/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Contracción Muscular/efectos de los fármacos , Fatiga Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Prometazina/farmacología , Médula Espinal/efectos de los fármacos , Adulto , Estudios Cruzados , Método Doble Ciego , Estimulación Eléctrica , Electromiografía , Femenino , Humanos , Masculino , Antagonistas Muscarínicos/administración & dosificación , Prometazina/administración & dosificación , Tractos Piramidales/efectos de los fármacos , Estimulación Magnética Transcraneal , Adulto Joven
18.
PLoS Pathog ; 16(12): e1009126, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33351859

RESUMEN

Embedded in an extracellular matrix, biofilm-residing bacteria are protected from diverse physicochemical insults. In accordance, in the human host the general recalcitrance of biofilm-grown bacteria hinders successful eradication of chronic, biofilm-associated infections. In this study, we demonstrate that upon addition of promethazine, an FDA approved drug, antibiotic tolerance of in vitro biofilm-grown bacteria can be abolished. We show that following the addition of promethazine, diverse antibiotics are capable of efficiently killing biofilm-residing cells at minimal inhibitory concentrations. Synergistic effects could also be observed in a murine in vivo model system. PMZ was shown to increase membrane potential and interfere with bacterial respiration. Of note, antibiotic killing activity was elevated when PMZ was added to cells grown under environmental conditions that induce low intracellular proton levels. Our results imply that biofilm-grown bacteria avoid antibiotic killing and become tolerant by counteracting intracellular alkalization through the adaptation of metabolic and transport functions. Abrogation of antibiotic tolerance by interfering with the cell's bioenergetics promises to pave the way for successful eradication of biofilm-associated infections. Repurposing promethazine as a biofilm-sensitizing drug has the potential to accelerate the introduction of new treatments for recalcitrant, biofilm-associated infections into the clinic.


Asunto(s)
Biopelículas/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Prometazina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Animales , Tolerancia a Medicamentos/fisiología , Humanos , Ratones , Ratones Endogámicos BALB C , Infecciones por Pseudomonas
19.
Anticancer Agents Med Chem ; 20(8): 1017-1027, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32271699

RESUMEN

BACKGROUND: Targeting evolutionarily conserved proteins in malignant cells and the adapter proteins involved in signalling that generates from such proteins may play a cardinal role in the selection of anti-cancer drugs. Drugs targeting these proteins could be of importance in developing anti-cancer drugs. OBJECTIVES: We inferred that drugs like loperamide and promethazine that act as antagonists of proteins conserved in cancer cells like voltage-gated Calcium channels (Cav), Calmodulin (CaM) and drug efflux (ABCB1) pump may have the potential to be re-purposed as an anti-cancer agent in Prostate Cancer (PCa). METHODS: Growth and cytotoxic assays were performed by selecting loperamide and promethazine to target Cav, CaM and drug efflux (ABCB1) pumps to elucidate their effects on androgen-independent PC3 and DU145 PCa cell lines. RESULT: We show that loperamide and promethazine in doses of 80-100µg/ml exert oncocidal effects when tested in DU145 and PC3 cell lines. Diphenhydramine, which shares its targets with promethazine, except the CaM, failed to exhibit oncocidal effects. CONCLUSION: Anti-cancer effects can be of significance if structural analogues of loperamide and promethazine that specifically target Cav, CaM and ABCB1 drug efflux pumps can be synthesized, or these two drugs could be re-purposed after human trials in PCa.


Asunto(s)
Antineoplásicos/farmacología , Canales de Calcio Tipo L/metabolismo , Calmodulina/antagonistas & inhibidores , Difenhidramina/farmacología , Loperamida/farmacología , Prometazina/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Andrógenos/metabolismo , Antineoplásicos/química , Calmodulina/metabolismo , Proliferación Celular/efectos de los fármacos , Difenhidramina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Loperamida/química , Estructura Molecular , Prometazina/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
Future Microbiol ; 15: 9-20, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32043371

RESUMEN

Aim: To evaluate the inhibition of efflux pumps by using promethazine (PMZ) as a strategy to control Fusarium solani species complex (FSSC). Materials & methods: The susceptibility of FSSC strains to PMZ and the interaction between PMZ and antifungals were evaluated. The efflux pump activity was confirmed by flow cytometry with rhodamine 6G. Finally, PMZ was tested against FSSC biofilms. Results: PMZ inhibited FSSC planktonic growth and showed synergism with antifungals. PMZ reduced R6G efflux and inhibited cell adhesion, impaired the development of biofilms and disrupted mature biofilms. PMZ-challenged biofilms showed increased sensitivity to amphotericin B. Conclusion: The study provides indirect evidence of the occurrence of efflux pumps in FSSC and opens a perspective for this target in the control of fusariosis.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Proteínas Fúngicas/antagonistas & inhibidores , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Prometazina/farmacología , Anfotericina B/farmacología , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Humanos , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Voriconazol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA