Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 459
1.
Neuron ; 112(9): 1426-1443.e11, 2024 May 01.
Article En | MEDLINE | ID: mdl-38442714

Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.


Cerebral Cortex , Glucocorticoids , Neurogenesis , Promyelocytic Leukemia Zinc Finger Protein , Neurogenesis/drug effects , Neurogenesis/physiology , Humans , Animals , Mice , Glucocorticoids/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Female , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Pregnancy , Neurons/metabolism , Neurons/drug effects , Organoids/drug effects , Organoids/metabolism , Gene Expression Regulation, Developmental/drug effects , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Male
2.
Cell Mol Life Sci ; 81(1): 88, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38349408

Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and recent epidemiological studies suggested type 2 diabetes mellitus (T2DM) is an independent risk factor for the development of AF. Zinc finger and BTB (broad-complex, tram-track and bric-a-brac) domain containing 16 (Zbtb16) serve as transcriptional factors to regulate many biological processes. However, the potential effects of Zbtb16 in AF under T2DM condition remain unclear. Here, we reported that db/db mice displayed higher AF vulnerability and Zbtb16 was identified as the most significantly enriched gene by RNA sequencing (RNA-seq) analysis in atrium. In addition, thioredoxin interacting protein (Txnip) was distinguished as the key downstream gene of Zbtb16 by Cleavage Under Targets and Tagmentation (CUT&Tag) assay. Mechanistically, increased Txnip combined with thioredoxin 2 (Trx2) in mitochondrion induced excess reactive oxygen species (ROS) release, calcium/calmodulin-dependent protein kinase II (CaMKII) overactivation, and spontaneous Ca2+ waves (SCWs) occurrence, which could be inhibited through atrial-specific knockdown (KD) of Zbtb16 or Txnip by adeno-associated virus 9 (AAV9) or Mito-TEMPO treatment. High glucose (HG)-treated HL-1 cells were used to mimic the setting of diabetic in vitro. Zbtb16-Txnip-Trx2 signaling-induced excess ROS release and CaMKII activation were also verified in HL-1 cells under HG condition. Furthermore, atrial-specific Zbtb16 or Txnip-KD reduced incidence and duration of AF in db/db mice. Altogether, we demonstrated that interrupting Zbtb16-Txnip-Trx2 signaling in atrium could decrease AF susceptibility via reducing ROS release and CaMKII activation in the setting of T2DM.


Atrial Fibrillation , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Mice , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Carrier Proteins/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Promyelocytic Leukemia Zinc Finger Protein , Reactive Oxygen Species , Thioredoxins/genetics
3.
Int Immunopharmacol ; 130: 111670, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38373386

Type 2 immune responses are critical for host defense, mediate allergy and Th2-high asthma. The transcription factor, promyelocytic leukemia zinc finger (PLZF), has emerged as a significant regulator of type 2 inflammation in the lung; however, its exact mechanism remains unclear. In this review, we summarized recent findings regarding the ability of PLZF to control the development and function of innate lymphoid cells (ILCs), iNKT cells, memory T cells, basophils, and other immune cells that drive type 2 responses. We discussed the important role of PLZF in the pathogenesis of Th2-high asthma. Collectively, prior studies have revealed the critical role of PLZF in the regulation of innate and adaptive immune cells involved in type 2 inflammation in the lung. Therefore, targeting PLZF signaling represents a promising therapeutic approach to suppress Th2-high asthma.


Asthma , Leukemia , Humans , Promyelocytic Leukemia Zinc Finger Protein , Immunity, Innate , Lymphocytes/metabolism , Lung/metabolism , Inflammation , Zinc Fingers , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
4.
Cell Death Differ ; 31(3): 309-321, 2024 03.
Article En | MEDLINE | ID: mdl-38287116

Cisplatin-based chemotherapy improves the control of distant metastases in patients with nasopharyngeal carcinoma (NPC); however, around 30% of patients fail treatment due to acquired drug resistance. Epigenetic regulation is known to contribute to cisplatin resistance; nevertheless, the underlying mechanisms remain poorly understood. Here, we showed that lysine-specific demethylase 5B (KDM5B) was overexpressed and correlates with tumor progression and cisplatin resistance in patients with NPC. We also showed that specific inhibition of KDM5B impaired the progression of NPC and reverses cisplatin resistance, both in vitro and in vivo. Moreover, we found that KDM5B inhibited the expression of ZBTB16 by directly reducing H3K4me3 at the ZBTB16 promoter, which subsequently increased the expression of Topoisomerase II- α (TOP2A) to confer cisplatin resistance in NPC. In addition, we showed that the deubiquitinase USP7 was critical for deubiquitinating and stabilizing KDM5B. More importantly, the deletion of USP7 increased sensitivity to cisplatin by disrupting the stability of KDM5B in NPC cells. Therefore, our findings demonstrated that USP7 stabilized KDM5B and promoted cisplatin resistance through the ZBTB16/TOP2A axis, suggesting that targeting KDM5B may be a promising cisplatin-sensitization strategy in the treatment of NPC.


Cisplatin , Nasopharyngeal Neoplasms , Humans , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Jumonji Domain-Containing Histone Demethylases/genetics , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nuclear Proteins , Promyelocytic Leukemia Zinc Finger Protein , Repressor Proteins , Ubiquitin-Specific Peptidase 7/genetics
6.
Theriogenology ; 215: 321-333, 2024 Feb.
Article En | MEDLINE | ID: mdl-38128225

The transcription factor promyelocytic leukemia zinc finger (PLZF, also known as ZBTB16) is critical for the self-renewal of spermatogonial stem cells (SSCs). However, the function of PLZF in SSCs is not clear. Here, we found that PLZF acted as an epigenetic regulator of stem cell maintenance and self-renewal of germ cells. The PLZF protein interacts with the ten-eleven translocation 1 (TET1) protein and subsequently acts as a modulator to regulate the expression of self-renewal-related genes. Furthermore, Transcription Factor 7-like 2 (TCF7L2) is promoted by the coordination of PLZF and Tri-methylation of lysine 4 on histone H3 (H3K4me3). In addition, testicular single-cell sequencing indicated that TCF7L2 is commonly expressed in the PLZF cluster. We demonstrated that PLZF directly targets TCF7L2 and alters the landscape of histone methylation in the SSCs nucleus. Meanwhile, the RD domain and Zn finger domain of PLZF synergize with H3K4me3 and directly upregulate TCF7L2 expression at the transcriptional level. Additionally, we identified a new association between PLZF and the histone methyltransferase EZH2 at the genomic level. Our study identified a new association between PLZF and H3K4me3, established the novel PLZF&TET1-H3K4me3-TCF7L2 axis at the genomic level which regulates undifferentiated spermatogonia, and provided a platform for studying germ cell development in male domestic animals.


Kruppel-Like Transcription Factors , Spermatogonia , Male , Animals , Spermatogonia/metabolism , Promyelocytic Leukemia Zinc Finger Protein/genetics , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Kruppel-Like Transcription Factors/genetics , Testis/metabolism , Transcription Factors/metabolism
7.
JCI Insight ; 8(22)2023 Nov 22.
Article En | MEDLINE | ID: mdl-37856221

The development of human prenatal adaptive immunity progresses faster than previously appreciated, with the emergence of memory CD4+ T cells alongside regulatory T cells by midgestation. We previously identified a prenatal specific population of promyelocytic leukemia zinc finger-positive (PLZF+) CD4+ T cells with heightened effector potential that were enriched in the developing intestine and accumulated in the cord blood of infants exposed to prenatal inflammation. However, the signals that drive their tissue distribution and effector maturation are unknown. Here, we define the transcriptional and functional heterogeneity of human prenatal PLZF+CD4+ T cells and identify the compartmentalization of T helper-like (Th-like) effector function across the small intestine (SI) and mesenteric lymph nodes (MLNs). IL-7 was more abundant in the SI relative to the MLNs and drove the preferential expansion of naive PLZF+CD4+ T cells via enhanced STAT5 and MEK/ERK signaling. Exposure to IL-7 was sufficient to induce the acquisition of CD45RO expression and rapid effector function in a subset of PLZF+CD4+ T cells, identifying a human analog of memory phenotype CD4+ T cells. Further, IL-7 modulated the differentiation of Th1- and Th17-like PLZF+CD4+ T cells and thus likely contributes to the anatomic compartmentalization of human prenatal CD4+ T cell effector function.


CD4-Positive T-Lymphocytes , Cytokines , Female , Pregnancy , Humans , Cytokines/metabolism , Interleukin-7/metabolism , Promyelocytic Leukemia Zinc Finger Protein/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
10.
Cell Oncol (Dordr) ; 46(4): 1113-1126, 2023 Aug.
Article En | MEDLINE | ID: mdl-36995683

PURPOSE: Androgen-refractory prostate cancer (ARPC) is one of the aggressive human cancers with metastatic capacity and resistance to androgen deprivation therapy (ADT). The present study investigated the genes responsible for ARPC progression and ADT resistance, and their regulatory mechanisms. METHODS: Transcriptome analysis, co-immunoprecipitation, confocal microscopy, and FACS analysis were performed to determine differentially-expressed genes, integrin α3ß4 heterodimer, and cancer stem cell (CSC) population. miRNA array, 3'-UTR reporter assay, ChIP assay, qPCR, and immunoblotting were used to determine differentially-expressed microRNAs, their binding to integrin transcripts, and gene expressions. A xenograft tumor model was used to assess tumor growth and metastasis. RESULTS: Metastatic ARPC cell lines (PC-3 and DU145) exhibiting significant downregulation of ZBTB16 and AR showed significantly upregulated ITGA3 and ITGB4. Silencing either one of the integrin α3ß4 heterodimer significantly suppressed ARPC survival and CSC population. miRNA array and 3'-UTR reporter assay revealed that miR-200c-3p, the most strongly downregulated miRNA in ARPCs, directly bound to 3'-UTR of ITGA3 and ITGB4 to inhibit the gene expression. Concurrently, miR-200c-3p also increased PLZF expression, which, in turn, inhibited integrin α3ß4 expression. Combination treatment with miR-200c-3p mimic and AR inhibitor enzalutamide showed synergistic inhibitory effects on ARPC cell survival in vitro and tumour growth and metastasis of ARPC xenografts in vivo, and the combination effect was greater than the mimic alone. CONCLUSION: This study demonstrated that miR-200c-3p treatment of ARPC is a promising therapeutic approach to restore the sensitivity to anti-androgen therapy and inhibit tumor growth and metastasis.


MicroRNAs , Prostatic Neoplasms , Male , Humans , Down-Regulation/genetics , Prostatic Neoplasms/pathology , Androgens , Promyelocytic Leukemia Zinc Finger Protein/genetics , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Androgen Antagonists , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
11.
Biochem Cell Biol ; 101(3): 235-245, 2023 06 01.
Article En | MEDLINE | ID: mdl-36786377

In the process of orthodontic tooth movement (OTM), periodontal ligament fibroblasts (PDLFs) must undergo osteogenic differentiation. OTM increased the expression of Zinc finger and BTB domain-containing 16 (ZBTB16), which is implicated in osteogenic differentiation. Our goal was to investigate the mechanism of PDLF osteogenic differentiation mediated by ZBTB16. The OTM rat model was established, and PDLFs were isolated and exposed to mechanical force. Hematoxylin-eosin staining, Alizarin Red staining, immunofluorescence, and immunohistochemistry were carried out. The alkaline phosphatase (ALP) activity was measured. Dual-luciferase reporter gene assay and chromatin immunoprecipitation assay were conducted. In OTM models, ZBTB16 was significantly expressed. Additionally, there was an uneven distribution of PDLFs in the OTM group, as well as an increase in fibroblasts and inflammatory infiltration. ZBTB16 interference hindered PDLF osteogenic differentiation and decreased Wnt and ß-catenin levels. Meanwhile, ZBTB16 activated the Wnt/ß-catenin pathway. ZBTB16 also enhanced the expression of the osteogenic molecules osterix, osteocalcin (OCN), osteopontin (OPN), and bone sialo protein (BSP) at mRNA and protein levels. The interactions between Wnt1 and ZBTB16, as well as GCN5 and ZBTB16, were also verified. The adeno-associated virus-shZBTB16 injection also proved to inhibit osteogenic differentiation and reduce tooth movement distance in in vivo tests. ZBTB16 was up-regulated in OTM. Through acetylation modification of ZBTB16, GCN5 regulated the Wnt/ß-catenin signaling pathway and further mediated PDLF osteogenic differentiation.


Osteogenesis , beta Catenin , Rats , Animals , Osteogenesis/genetics , beta Catenin/metabolism , Acetylation , Tooth Movement Techniques , Periodontal Ligament , Wnt Signaling Pathway/genetics , Cell Differentiation , Cells, Cultured , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Histone Acetyltransferases/metabolism
12.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article En | MEDLINE | ID: mdl-36768269

The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.


Cryopreservation , Glial Cell Line-Derived Neurotrophic Factor Receptors , Promyelocytic Leukemia Zinc Finger Protein , Spermatogonia , Stem Cells , Humans , Male , Biomarkers/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Promyelocytic Leukemia Zinc Finger Protein/genetics , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Spermatogonia/metabolism , Stem Cells/metabolism , Testis/metabolism , Zinc Fingers
13.
Cell Mol Immunol ; 20(4): 379-388, 2023 04.
Article En | MEDLINE | ID: mdl-36693920

Group 3 innate lymphoid cells (ILC3s) play important roles in maintaining intestinal homeostasis by protecting the host from pathogen infections and tissue inflammation. The transcription factor PLZF (promyelocytic leukemia zinc finger), encoded by zinc finger BTB domain containing 16 (Zbtb16), is highly and transiently expressed in ILC precursors (ILCPs). However, the role of PLZF in regulating ILC3 development and function remains unknown. Here, we show that PLZF was specifically expressed in mature intestinal ILC3s compared with other ILC subsets. PLZF was dispensable for ILC3 development. However, PLZF deficiency in ILC3s resulted in increased innate interleukin-22 (IL-22) secretion and protection against gut infection and inflammation. Mechanistically, PLZF negatively regulated IL-22 expression by ILC3s in a cell-intrinsic manner by binding to the IL-22 promoter region for transcriptional repression. Together, our data suggest that PLZF restricts intestinal ILC3 function to regulate gut immune homeostasis.


Immunity, Innate , Lymphocytes , Promyelocytic Leukemia Zinc Finger Protein , Humans , Gene Expression , Inflammation/metabolism , Transcription Factors/metabolism , Promyelocytic Leukemia Zinc Finger Protein/metabolism
14.
Int Immunopharmacol ; 114: 109559, 2023 Jan.
Article En | MEDLINE | ID: mdl-36525795

Clarifying the pathogenesis of asthma and/or identifying the specific pathway underlying oral asthma tolerance (OT) would be of great significance. In our previous study, promyelocytic leukemia zinc finger (PLZF), which reportedly regulates memory phenotypes, was found to promote ovalbumin (OVA)-induced OT. Therefore, this study aimed to explore the regulatory effects of PLZF on memory phenotypes in asthma and OT mouse models. We found that Zbtb16 (encoding PLZF) and PLZF+ cells were highly increased in OT lungs compared with asthmatic lungs. PLZF was co-expressed with GATA3, and IL-4+PLZF+ cells were significantly lower in OT lungs than in asthmatic lungs. Notably, memory cells were decreased in OT mice, and these mice had PLZF+ cells that expressed lower levels of CD44 than those of asthmatic mice. When Zbtb16 was overexpressed in splenic lymphocytes, the number of CD44+ cells decreased. There were increased memory cells in splenic lymphocytes after treatment with the supernatant of OVA-treated airway epithelial cells; however, this was reversed by Zbtb16 overexpression. Early respiratory syncytial virus infection increased memory cells and reduced PLZF+ cells in the OT mice. Collectively, these results indicate that PLZF may reduce the proportion of memory cells, thereby, promoting the establishment of OT.


Asthma , Promyelocytic Leukemia Zinc Finger Protein , Animals , Mice , Asthma/immunology , Asthma/metabolism , Hyaluronan Receptors , Lung , Lymphocytes , Ovalbumin , Phenotype , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism
15.
Acta Pharmacol Sin ; 44(4): 822-831, 2023 Apr.
Article En | MEDLINE | ID: mdl-36216898

The acute promyelocytic leukemia (APL) driver ZBTB16/RARα is generated by the t(11;17) (q23;q21) chromosomal translocation, which is resistant to combined treatment of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) or conventional chemotherapy, resulting in extremely low survival rates. In the current study, we investigated the effects of hyperthermia on the oncogenic fusion ZBTB16/RARα protein to explore a potential therapeutic approach for this variant APL. We showed that Z/R fusion protein expressed in HeLa cells was resistant to ATO, ATRA, and conventional chemotherapeutic agents. However, mild hyperthermia (42 °C) rapidly destabilized the ZBTB16/RARα fusion protein expressed in HeLa, 293T, and OCI-AML3 cells, followed by robust ubiquitination and proteasomal degradation. In contrast, hyperthermia did not affect the normal (i.e., unfused) ZBTB16 and RARα proteins, suggesting a specific thermal sensitivity of the ZBTB16/RARα fusion protein. Importantly, we found that the destabilization of ZBTB16/RARα was the initial step for oncogenic fusion protein degradation by hyperthermia, which could be blocked by deletion of nuclear receptor corepressor (NCoR) binding sites or knockdown of NCoRs. Furthermore, SIAH2 was identified as the E3 ligase participating in hyperthermia-induced ubiquitination of ZBTB16/RARα. In short, these results demonstrate that hyperthermia could effectively destabilize and subsequently degrade the ZBTB16/RARα fusion protein in an NCoR-dependent manner, suggesting a thermal-based therapeutic strategy that may improve the outcome in refractory ZBTB16/RARα-driven APL patients in the clinic.


Hyperthermia, Induced , Leukemia, Promyelocytic, Acute , Humans , Antineoplastic Agents/pharmacology , Arsenic Trioxide/therapeutic use , HeLa Cells , Leukemia, Promyelocytic, Acute/therapy , Leukemia, Promyelocytic, Acute/drug therapy , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/therapeutic use , Promyelocytic Leukemia Zinc Finger Protein/genetics , Tretinoin/pharmacology , Tretinoin/therapeutic use
16.
Clin Lab ; 68(9)2022 Sep 01.
Article En | MEDLINE | ID: mdl-36125151

BACKGROUND: The co-occurrence of myeloid sarcoma (MS) and acute promyelocytic leukemia (APL) is a rare clinical event. METHODS: A 56-year-old man presented with lower extremity paralysis that occurred 6 hours before admission. Magnetic resonance imaging revealed an epidural mass. RESULTS: Histopathological examination demonstrated an extramedullary myeloid malignancy. Bone marrow examination showed abnormal promyelocytes and dysplasia, and an immunophenotyping study indicated very strong myeloperoxidase activity, suggesting APL. CONCLUSIONS: The final diagnosis given was spinal MS with a ZBTB16-RARα variant of APL. The possibility that patients with rapidly progressive neurologic symptoms could have MS and concurrent APL should be considered.


Leukemia, Promyelocytic, Acute , Sarcoma, Myeloid , Humans , Leukemia, Promyelocytic, Acute/complications , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/genetics , Male , Middle Aged , Oncogene Proteins, Fusion , Paraplegia , Peroxidase , Promyelocytic Leukemia Zinc Finger Protein , Sarcoma, Myeloid/complications , Sarcoma, Myeloid/diagnosis , Sarcoma, Myeloid/genetics
19.
Medicina (Kaunas) ; 58(4)2022 Apr 06.
Article En | MEDLINE | ID: mdl-35454359

BACKGROUND: The majority of patients with acute promyelocytic leukemia (APL) manifest a specific chromosomal translocation t(15;17)(q22;q21), characterized by the fusion of RARA and PML genes. However, a proportion of APL cases are due to variant translocations, being t(11;17) (q23;q21) the most common amongst them. With the major exception of ZBTB16-RARA t(11;17) APL, these variant APL cases present similar morphological features as classic APL and are characterized by a lack of differentiation response to retinoids. CASE SUMMARY: We describe the case of variant APL with the ZBTB16-RARA fusion gene, showing a distinct morphology of classical APL, characterized by crystalline intracytoplasmic inclusions in both peripheral blood (PB) and bone marrow (BM) patients' blasts. Our patient was treated with two courses of intensive chemotherapy, initiating maintenance treatment with all-trans retinoic acid (ATRA) on day twenty-eight of the second course. Our patient achieved complete remission (CR) once the intensive chemotherapy was combined with ATRA. CONCLUSIONS: This is the second case described of APL with t(11;17) that showed crystalline intracytoplasmic inclusions. The finding of these morphological features may suggest the presence of a variant translocation with RARA, being that both cases described are related to the presence of t(11;17). Despite induction treatment with intensive chemotherapy that included a seven-day continuous treatment with cytarabine (200 mg/m2), plus daily idarubicin (12 mg/m2) during the first three days, our patient did not achieve complete remission (CR) until scheduled 3 + 7 regimen combined with ATRA treatment was established. This observation suggests that ATRA may be partially effective in some ZBTB16-RARA APLs.


Leukemia, Promyelocytic, Acute , Bone Marrow , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Oncogene Proteins, Fusion/genetics , Promyelocytic Leukemia Zinc Finger Protein/genetics , Translocation, Genetic/genetics , Tretinoin/therapeutic use
20.
Cell Death Differ ; 29(10): 1901-1912, 2022 10.
Article En | MEDLINE | ID: mdl-35449211

T helper 2 (Th2) cytokine production by invariant natural killer T (iNKT) cells is involved in the development of asthma, but the regulation of Th2 cytokines in iNKT cells remains unknown. Although it is known that progranulin (PGRN) induces the production of Th2 cytokines in iNKT cells in vivo, the underlying mechanism is not clear. This study aims to investigate the role of PGRN in iNKT cells. The effects of PGRN on the differentiation of iNKT cells was detected by flow cytometry. Then stimulation of iNKT cells and airway resistance were carried out to evaluate the function of PGRN on iNKT cells. Furthermore, the mechanisms of PGRN in regulating iNKT cells was investigated by RT-PCR, WB, confocal and luciferase reporter assays. The absolute number of iNKT cells decreased in PGRN KO mice despite an increase in the percentage of iNKT cells. Furthermore, analyzing the subsets of iNKT cells, we found that NKT2 cells and their IL-4 production were reduced. Mechanistically, the decrease in NKT2 cells in the PGRN KO mice was caused by increased expression of enhancer of zeste homolog 2 (EZH2), that in turn caused increased degradation and altered nuclear localization of PLZF. Interestingly, PGRN signaling decreased expression of EZH2 and treatment of the PGRN KO mice with the EZH2 specific inhibitor GSK343 rescued the defect in NKT2 differentiation, IL-4 generation, and PLZF expression. Altogether, We have revealed a new pathway (PGRN-EZH2-PLZF), which regulates the Th2 responses of iNKT cells and provides a potentially new target for asthma treatment.


Asthma , Enhancer of Zeste Homolog 2 Protein , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Animals , Cell Differentiation , Cytokines , Interleukin-4 , Mice , Mice, Inbred C57BL , Progranulins
...