Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.418
1.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731432

Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.


Cheese , Food Preservation , Hypromellose Derivatives , Propolis , Cheese/microbiology , Cheese/analysis , Propolis/chemistry , Hypromellose Derivatives/chemistry , Food Preservation/methods , Phenols/chemistry , Phenols/analysis , Food Microbiology , Escherichia coli/drug effects
2.
PLoS One ; 19(5): e0302795, 2024.
Article En | MEDLINE | ID: mdl-38743731

BACKGROUND: Natural propolis has been used since decades owing to its broad-spectrum activities. Burn injuries are a global health problem with negative impacts on communities. Bacterial infections usually accompany burns, which demand implementation of antibiotics. Antibiotics abuse led to emergence of microbial drug resistance resulting in poor treatment outcomes. In such instances, the promising alternative would be natural antimicrobials such as propolis. OBJECTIVE: Full chemical profiling of propolis and evaluation of in vitro antibacterial, antioxidant and anti-inflammatory activities as well as in vivo burn healing properties. METHODS: Chemical profiling of propolis was performed using Liquid chromatography (UHPLC/MS-PDA and HPLC-PDA). In vitro assessment was done using Disc Diffusion susceptibility test against Staphylococcus aureus and infected burn wound mice model was used for in vivo assessment. In vitro antioxidant properties of propolis were assessed using DPPH, ABTS and FRAP techniques. The anti-inflammatory effect of propolis was assessed against lipopolysaccharide/interferon-gamma mediated inflammation. RESULTS: UHPLC/MS-PDA results revealed identification of 71 phytochemicals, mainly flavonoids. Upon flavonoids quantification (HPLC-PDA), Pinocembrin, chrysin and galangin recorded high content 21.58±0.84, 22.73±0.68 and 14.26±0.70 mg/g hydroalcoholic propolis extract, respectively. Propolis showed concentration dependent antibacterial activity in vitro and in vivo burn healing via wound diameter reduction and histopathological analysis without signs of skin irritation in rabbits nor sensitization in guinea pigs. Propolis showed promising antioxidant IC50 values 46.52±1.25 and 11.74±0.26 µg/mL whereas FRAP result was 445.29±29.9 µM TE/mg. Anti-inflammatory experiment results showed significant increase of Toll-like receptor 4 (TLR4), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) mRNA levels. Nitric oxide and iNOS were markedly increased in Griess assay and western blot respectively. However, upon testing propolis against LPS/IFN-γ-mediated inflammation, TLR4, IL-6 and TNF-α expression were downregulated at transcriptional and post-transcriptional levels. CONCLUSION: Propolis proved to be a promising natural burn healing agent through its antibacterial, antioxidant and anti-inflammatory activities.


Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Burns , Propolis , Staphylococcus aureus , Wound Healing , Propolis/chemistry , Propolis/pharmacology , Animals , Burns/drug therapy , Burns/pathology , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Wound Healing/drug effects , Staphylococcus aureus/drug effects , Male , Phytochemicals/pharmacology , Phytochemicals/chemistry , Chromatography, High Pressure Liquid , Flavonoids/pharmacology , Microbial Sensitivity Tests
3.
Rocz Panstw Zakl Hig ; 75(1): 75-81, 2024.
Article En | MEDLINE | ID: mdl-38587107

Background: Despite the extensive literature focused on propolis extract, few data exists on the bioactive compounds and biological activities in the Moroccan propolis and its economic value is low. Objective: In this research, the aim was to evaluate the total content of phenols and flavonoids as well as the antioxidant, antibacterial and antifungal activities of Moroccan propolis. Material and Methods: The polyphenol and flavonoid content of the Moroccan propolis from three geographic regions, was quantified in the ethanolic extract by colorimetric methods using folin-ciocalteu and aluminum chloride. The antioxidant activity was evaluated by the DPPH test and expressed as IC50. Disk diffusion and broth microdilution methods were used to examine in vitro antimicrobial activity against known human microorganism pathogens. Results: The obtained data revealed that Moroccan propolis samples presented significant variations in total polyphenols and flavonoids. All samples showed significant antioxidant activity with IC50 values ranging from 4.23±0.5 to 154±0.21 µg/ mL. A strong correlation between total phenolic activity, flavonoids and antioxidant activity was found. The in vitro study of antibacterial activity showed that the propolis samples exhibited a range of growth inhibitory actions against all bacterial strains tested with the highest activity against gram-positive bacteria. Only propolis from the Sidi Bennour region demonstrated an antifungal activity. Conclusion: The study data show that Moroccan propolis extracts have a promising content of antioxidant and antimicrobial compounds that could be exploited to prevent certain diseases linked to oxidative stress and pathogenic infections.


Anti-Infective Agents , Propolis , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Flavonoids/pharmacology , Propolis/pharmacology , Propolis/chemistry , Antifungal Agents/pharmacology , Phenols/pharmacology , Polyphenols , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology
4.
Molecules ; 29(7)2024 Apr 06.
Article En | MEDLINE | ID: mdl-38611922

Propolis extracts have been widely studied due to their popularity in traditional medicine, presenting incredible biodiversity. This study aimed to analyze propolis extracts' phytochemical, physicochemical, and biological activities from four different biogeographic zones of the Huila region (Colombia). The raw material samples were collected by the scraping method and the ethanolic extracts (EEPs) were obtained by cold maceration with ethanol (96%). The physicochemical and sensory characterization was carried out according to the protocols recommended by the Brazilian Ministry of Agriculture and the main components of the EEPs were identified by LC-HRMS analysis. The determination of total phenols and flavonoids was carried out using colorimetric techniques. The antioxidant activity, cytotoxicity, and cell cycle regulation analyses in L929 and HGnF cells were evaluated using DPPH, Alamar Blue, and 7-amino actinomycin D (7-AAD) assays. The propolis samples presented an average yield of 33.1%, humidity between 1.6 and 2.8%, melting point between 54 and 62 °C, ashes between 1.40 and 2.19%, and waxes of 6.6-17.9%, respectively. The sensory characteristics of all samples were heterogeneous, complying with the quality specifications established by international standards. The polyphenolic and total flavonoid content was representative in the samples from Quebradon (255.9 ± 9.2 mg GAE/g, 543.1 ± 8.4 mg QE/g) and Arcadia (543.1 ± 8.4 mg GAE/g, 32.5 ± 1.18 g QE/g) (p < 0.05) that correlated with high antioxidant activity (Quebradon: 37.2 ± 1.2 µmol/g, Arcadia: 38.19 ± 0.7 µmol/g). In the chemical composition analysis, 19 compounds were characterized as phenolic acids and flavonoids, the most representative being chrysoeriol-O-methyl-ether, ellagic acid, and 3,4-O-dimethylcaffeic acid. Regarding biological activity, Quebradon and Arcadia propolis presented low toxicity with IC50 of 2.83 ± 2.3 mg/mL and 4.28 ± 1.4 mg/mL in HGnF cells, respectively, and an arrest of the cell cycle in the G2/M phase of 71.6% and 50.8% compared to the control (11.9%) (p < 0.05). In general, the results of this study contribute to the identification of valid quality criteria to evaluate Colombian propolis, contributing to its study and chemical and biological characterization as a source of raw material for industrial and pharmaceutical use. In addition, Quebradon and Arcadia propolis can be important sources of bioactive molecules for the development of new drugs.


Ascomycota , Propolis , Antioxidants/pharmacology , Colombia , Propolis/pharmacology , Cell Cycle , Ethanol , Flavonoids/pharmacology
5.
Mol Biol Rep ; 51(1): 559, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643306

BACKGROUND: Methylprednisolone (MP) is a pharmaceutical agent employed in the management of Leukemia, which is a systemic malignancy that arises from abnormalities in the hematological system. Numerous investigations in the field of cancer research have directed their attention towards propolis, a natural substance with significant potential as a treatment-supportive agent. Its utilization aims to mitigate the potential adverse effects associated with chemotherapy medications. The objective of this study was to examine the impact of olive oil-based propolis (OEP) and caffeic acid phenethyl ester (CAPE) on the treatment of acute myeloid leukemia, as well as to determine if they exhibit a synergistic effect when combined with the therapeutic support product methylprednisolone. METHODS AND RESULTS: The proliferation of HL-60 cells was quantified using the WST-8 kit. The PI Staining technique was employed to do cell cycle analysis of DNA in cells subjected to OEP, CAPE, and MP, with subsequent measurement by flow cytometry. The apoptotic status of cells was determined by analyzing them using flow cytometry after staining with the Annexin V-APC kit. The quantification of apoptotic gene expression levels was conducted in HL-60 cells. In HL-60 cells, the IC50 dosages of CAPE and MP were determined to be 1 × 10- 6 M and 5 × 10- 4 M, respectively. The HL-60 cells were subjected to apoptosis and halted in the G0/G1 and G2/M phases of the cell cycle after being treated with MP, CAPE, and OEP. CONCLUSIONS: Propolis and its constituents have the potential to serve as effective adjunctive therapies in chemotherapy.


Caffeic Acids , Leukemia, Myeloid, Acute , Phenylethyl Alcohol/analogs & derivatives , Propolis , Humans , Propolis/pharmacology , Olive Oil , Methylprednisolone/pharmacology , Apoptosis
6.
Planta Med ; 90(6): 454-468, 2024 May.
Article En | MEDLINE | ID: mdl-38599606

Some in vitro and in vivo evidence is consistent with the cardiovascular beneficial activity of propolis. As the single actors responsible for this effect have never been identified, an in-depth investigation of flavonoids isolated from the green propolis of the Caatinga Mimosa tenuiflora was performed and their mechanism of action was described. A comprehensive electrophysiology, functional, and molecular docking approach was applied. Most flavanones and flavones were effective CaV1.2 channel blockers with a potency order of (2S)-sakuranetin > eriodictyol-7,3'-methyl ether > quercetin 3-methyl ether > 5,4'-dihydroxy-6,7-dimethoxyflavanone > santin > axillarin > penduletin > kumatakenin, ermanin and viscosine being weak or modest stimulators. Except for eriodictyol 5-O-methyl ether, all the flavonoids were also effective spasmolytic agents of vascular rings, kumatakenin and viscosine also showing an endothelium-dependent activity. (2S)-Sakuranetin also stimulated KCa1.1 channels both in single myocytes and vascular rings. In silico analysis provided interesting insights into the mode of action of (2S)-sakuranetin within both CaV1.2 and KCa1.1 channels. The green propolis of the Caatinga Mimosa tenuiflora is a valuable source of multi-target vasoactive flavonoids: this evidence reinforces its nutraceutical value in the cardiovascular disease prevention arena.


Flavonoids , Molecular Docking Simulation , Propolis , Vasodilator Agents , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/chemistry , Vasodilator Agents/pharmacology , Vasodilator Agents/isolation & purification , Vasodilator Agents/chemistry , Animals , Propolis/chemistry , Propolis/pharmacology , Mimosa/chemistry , Male , Rats , Phytoalexins
7.
BMC Complement Med Ther ; 24(1): 165, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641781

In this study we develop novel type of antibacterial chitosan-propolis NPs to improve theantimicrobial activity against various pathogens. To this aim, we primarily extracted propolis with methylal and ethanol as green solvents and its encapsulation with chitosan NPs. The developed propolis loaded chitosan NPs indicated antimicrobial and anti-biofilm properties against various gram positive and negative. FTIR revealed the successful encapsulation of the propolis extract with Ethanol (PE) and Methylal (PM) into the chitosan nano career matrix. HPLC and GC-MASS also confirmed the presence of flavonoids and phenols compounds of propolis extracted with both solvents. In addition, we confirmed the total phenolic and flavonoid compounds in propolis by calorimetric method of Folin-Ciocalteu and aluminum trichloride complex formation assays, respectively. PE-CH and PM-CH were optimized regarding physicochemical properties such as particle size, zeta potential, and poly dispersity index (PDI) index. DLS and SEM micrographs confirmed a spherical morphology in a range of 360-420 nm with Z potential values of 30-48 mV and PDI of 0.105-0.166 for PE-CH and PM-CH, respectively. The encapsulation efficiency was evaluated using colorimetric analysis, with median values ranging from 90 to 92%. The MIC values within the range of 2 to 230 µg/ml and MBC values between 3 to 346 µg/ml against both gram-positive and negative bacteria. While both PE and PM showed a significant reduction in the number of E. coli, S. aureus, and S. epidermidis, the use of PE-CH and PM-CH led to a statistically significant and greater reduction in number of E. coli, S. aureus, and S. epidermidis strains on the biofilm, pre-formed biofilm and planktonic phases. Besides, the DPPH assay showed significant antioxidant activity for these NPs within the range of 36 to 92%. MTT assay for MHFB-1, HFF, L929, MDF, and MCF-7 cells exhibited statistically significant differences in each other that show the IC50 between 60-160 µg/ml for normal cells and 20 for cancer cells. Finally the present study indicated that both PM and PM-CH greater than PE and PE-CH in which contain high flavonoid and phenolic contents with a high antioxidation potential antioxidant properties, which could be beneficial for cell proliferation and antibiotic and anticancer applications.


Chitosan , Methyl Ethers , Nanoparticles , Propolis , Propolis/pharmacology , Chitosan/chemistry , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Solvents , Ethanol , Nanoparticles/chemistry , Flavonoids
8.
BMC Complement Med Ther ; 24(1): 154, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582863

BACKGROUND: To assess and compare the effectiveness of propolis mouthwash with chlorhexidine mouthwash in the reduction of plaque and gingivitis. METHODS: A single centre, latin-square cross-over, double masked, randomized controlled clinical trial was conducted on 45 chronic generalized gingivitis subjects who were chosen from the dental clinic of MAHSA University, Malaysia. A total of 45 subjects were randomly assigned into one of the three different groups (n = 15 each) using a computer-generated random allocation sequence: Group A Propolis mouthwash; Group B Chlorhexidine mouthwash; and Group C Placebo mouthwash. Supragingival plaque and gingival inflammation were assessed by full mouth Plaque index (PI) and gingival index (GI) at baseline and after 21 days. The study was divided into three phases, each phase lasted for 21 days separated by a washout period of 15 days in between them. Groups A, B and C were treated with 0.2% Propolis, Chlorhexidine, and Placebo mouthwash, respectively, in phase I. The study subjects were instructed to use the assigned mouthwash twice daily for 1 min for 21 days. On day 22nd, the subjects were recalled for measurement of PI and GI. After phase I, mouthwash was crossed over as dictated by the Latin square design in phase II and III. RESULTS: At baseline, intergroup comparison revealed no statistically significant difference between Groups A, B and C (p > 0.05). On day 21, one-way ANOVA revealed statistically significant difference between the three groups for PI (p < 0.001) and GI (p < 0.001). Bonferroni post-hoc test showed statistically significant difference between Propolis and Chlorhexidine mouthwash (P < 0.001), with higher reduction in the mean plaque and gingival scores in propolis group compared to chlorhexidine and placebo groups. CONCLUSIONS: Propolis mouthwash demonstrated significant improvement in gingival health and plaque reduction. Thus, it could be used as an effective herbal mouthwash alternative to chlorhexidine mouthwash. TRIAL REGISTRATION: The trial was retrospectively registered on 25/07/2019 at clinicaltrials.gov and its identifier is NCT04032548.


Gingivitis , Propolis , Humans , Chlorhexidine/therapeutic use , Mouthwashes/therapeutic use , Propolis/therapeutic use , Gingivitis/drug therapy , Plant Extracts/therapeutic use
9.
Int J Pharm ; 656: 124073, 2024 May 10.
Article En | MEDLINE | ID: mdl-38569977

Traumatic multidrug-resistant bacterial infections are the most threat to wound healing. Lower extremity wounds under diabetic conditions display a significant delay during the healing process. To overcome these challenges, the utilization of protein-based nanocomposite dressings is crucial in implementing a successful regenerative medicine approach. These dressings hold significant potential as polymer scaffolds, allowing them to mimic the properties of the extracellular matrix (ECM). So, the objective of this study was to develop a nanocomposite film using dialdehyde-xanthan gum/soy protein isolate incorporated with propolis (PP) and halloysite nanotubes (HNTs) (DXG-SPI/PP/HNTs). In this protein-polysaccharide hybrid system, the self-healing capability was demonstrated through Schiff bonds, providing a favorable environment for cell encapsulation in the field of tissue engineering. To improve the properties of the DXG-SPI film, the incorporation of polyphenols found in PP, particularly flavonoids, is proposed. The synthesized films were subjected to investigations regarding degradation, degree of swelling, and mechanical characteristics. Additionally, halloysite nanotubes (HNTs) were introduced into the DXG-SPI/PP nanocomposite films as a reinforcing filler with varying concentrations of 3 %, 5 %, and 7 % by weight. The scanning electron microscope (SEM) analysis confirmed the proper embedding and dispersion of HNTs onto the DXG-SPI/PP nanocomposite films, leading to functional interfacial interactions. The structure and crystallinity of the synthesized nanocomposite films were characterized using Fourier Transform Infrared Spectrometry (FTIR) and X-ray diffraction (XRD), respectively. Moreover, the developed DXG-SPI/PP/HNTs nanocomposite films significantly improved cell growth of NIH-3T3 fibroblast cells in the presence of PP and HNTs, indicating their cytocompatibility. The antibacterial activity of the nanocomposite was evaluated against Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus), which are commonly associated with wound infections. Overall, our findings suggest that the synthesis of DXG-SPI/PP/HNTs nanocomposite scaffolds holds great promise as a clinically relevant biomaterial and exhibits strong potential for numerous challenging biomedical applications.


Anti-Bacterial Agents , Antioxidants , Clay , Nanocomposites , Nanotubes , Polysaccharides, Bacterial , Propolis , Soybean Proteins , Wound Healing , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Nanotubes/chemistry , Clay/chemistry , Wound Healing/drug effects , Animals , Propolis/chemistry , Propolis/pharmacology , Propolis/administration & dosage , Polysaccharides, Bacterial/chemistry , Mice , Soybean Proteins/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/administration & dosage , Nanocomposites/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
10.
Neurobiol Aging ; 139: 20-29, 2024 Jul.
Article En | MEDLINE | ID: mdl-38583392

Brazilian green propolis (propolis) is a chemically complex resinous substance that is a potentially viable therapeutic agent for Alzheimer's disease. Herein, propolis induced a transient increase in intracellular Ca2+ concentration ([Ca2+]i) in Neuro-2A cells; moreover, propolis-induced [Ca2+]i elevations were suppressed prior to 24-h pretreatment with amyloid-ß. To reveal the effect of [Ca2+]i elevation on impaired cognition, we performed memory-related behavioral tasks in APP-KI mice relative to WT mice at 4 and 12 months of age. Propolis, at 300-1000 mg/kg/d for 8 wk, significantly ameliorated cognitive deficits in APP-KI mice at 4 months, but not at 12 months of age. Consistent with behavioral observations, injured hippocampal long-term potentiation was markedly ameliorated in APP-KI mice at 4 months of age following repeated propolis administration. In addition, repeated administration of propolis significantly activated intracellular calcium signaling pathway in the CA1 region of APP-KI mice. These results suggest a preventive effect of propolis on cognitive decline through the activation of intracellular calcium signaling pathways in CA1 region of AD mice model.


Alzheimer Disease , Calcium , Cognitive Dysfunction , Disease Models, Animal , Propolis , Animals , Propolis/therapeutic use , Propolis/administration & dosage , Propolis/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Alzheimer Disease/psychology , Alzheimer Disease/etiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/drug therapy , Calcium/metabolism , Mice, Transgenic , Calcium Signaling/drug effects , Long-Term Potentiation/drug effects , Male , Amyloid beta-Peptides/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects , Mice
11.
Molecules ; 29(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38675683

The vegetation of the Canary Islands is characterized by a large number of endemic species confined to different altitudinal levels. It can be assumed that these circumstances determine the characteristic features of the chemical composition of local beekeeping products, including propolis. We report, for the first time, the chemical composition of propolis from Tenerife (Canary Islands). The volatile emissions of three propolis samples collected from different apiaries are represented by 162 C1-C20 compounds, of which 144 were identified using the HS-SPME/GC-MS technique. The main group of volatiles, consisting of 72 compounds, is formed by terpenoids, which account for 42-68% of the total ion current (TIC) of the chromatograms. The next most numerous groups are formed by C6-C17 alkanes and alkenes (6-32% TIC) and aliphatic C3-C11 carbonyl compounds (7-20% TIC). The volatile emissions also contain C1-C6 aliphatic acids and C2-C8 alcohols, as well as their esters. Peaks of 138 organic C3-C34 compounds were recorded in the chromatograms of the ether extracts of the studied propolis. Terpene compounds form the most numerous group, but their number and content in different samples is within very wide limits (9-63% TIC), which is probably due to the origin of the samples from apiaries located at different altitudes. A peculiarity of the chemical composition of the extractive substances is the almost complete absence of phenylcarboxylic acids and flavonoids, characteristic of Apis mellifera propolis from different regions of Eurasia and North America. Aromatic compounds of propolis from Tenerife are represented by a group of nine isomeric furofuranoid lignans, as well as alkyl- and alkenyl-substituted derivatives of salicylic acid and resorcinol.


Gas Chromatography-Mass Spectrometry , Propolis , Volatile Organic Compounds , Propolis/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Spain , Terpenes/chemistry , Terpenes/analysis , Solid Phase Microextraction
12.
Int J Biol Macromol ; 267(Pt 1): 131452, 2024 May.
Article En | MEDLINE | ID: mdl-38593895

Nanofibers hold significant promise for wound healing applications, but their potential is limited by their large diameter. To overcome this limitation, the development of nanofibrous systems with refined nanonets (approximately 20 nm in diameter) represents a notable improvement. In this study, a composite of polycaprolactone/collagen (PCLC) nano-fiber/nets (NFNs) was fabricated using benign solvents (acetic acid and formic acid) via the electro-spinning/netting (ESN) technique, harnessing the regenerative potential of collagen as a biological macromolecule. Additionally, to enhance the natural attributes of the NFNs structure, Propolis extract, renowned for its wound healing properties, was incorporated. Five ESN solutions were prepared: PCL, PCLC, PCLC/Pro 5 %, PCLC/Pro 10 %, and PCLC/Pro 15 %. NaCl salt was introduced into all ESN solutions to improve nanonets formation. FE-SEM imaging demonstrated successful nano-net formation in all ESN solutions except for the PCL formulation. The fabricated scaffolds exhibited spider-like nanonets with the addition of collagen and further enhanced nano-net formation with Propolis incorporation. Trunk nanofibers showed filamentous structures without any beads, with an average diameter of 164-728 nm, while the diameter of branched fibers (nanonets) was approximately 20 nm. WVTR values of the NFNs were comparable to commercial dressings such as Tegaderm. The results also demonstrated the potent cytoprotective effects of Propolis-loaded NFNs in a dose-dependent manner. Furthermore, the viability of HFF-2 cells after 72 h of culture on PCLC NFNs significantly increased compared to PCL nanofibers. The highest cell viability was observed in PCLC/Pro 15 % nanofibers after 24, 48, and 72 h of cell culture, indicating the proliferative effect of Propolis extract in nanoformulated form. Additionally, the scaffolds exhibited a hemocompatibility of <3 %, further highlighting their potential in wound healing therapeutics.


Collagen , Nanofibers , Polyesters , Propolis , Wound Healing , Propolis/chemistry , Propolis/pharmacology , Nanofibers/chemistry , Wound Healing/drug effects , Polyesters/chemistry , Collagen/chemistry , Animals , Spiders , Humans , Tissue Scaffolds/chemistry
13.
Food Funct ; 15(9): 4983-4999, 2024 May 07.
Article En | MEDLINE | ID: mdl-38606532

Propolis is a resinous mixture produced by honeybees which has been used since ancient times for its useful properties. However, its chemical composition and bioactivity may vary, depending on the geographical area of origin and the type of tree bees use for collecting pollen. In this context, this research aimed to investigate the total phenolic content (using the Folin-Ciocalteu assay) and the total antioxidant capacity (using the FRAP, DPPH, and ABTS assays) of three black poplar (Populus nigra L.) propolis (BPP) solutions (S1, S2, and S3), as well as the chemical composition (HPLC-ESI-MSn) and biological activities (effect on cell viability, genotoxic/antigenotoxic properties, and anti-inflammatory activity, and effect on ROS production) of the one which showed the highest antioxidant activity (S1). The hydroalcoholic BPP solution S1 was a prototype of an innovative, research-type product by an Italian nutraceutical manufacturer. In contrast, hydroalcoholic BPP solutions S2 and S3 were conventional products purchased from local pharmacy stores. For the three extracts, 50 phenolic compounds, encompassing phenolic acids and flavonoids, were identified. In summary, the results showed an interesting chemical profile and the remarkable antioxidant, antigenotoxic, anti-inflammatory and ROS-modulating activities of the innovative BPP extract S1, paving the way for future research. In vivo investigations will be a possible line to take, which may help corroborate the hypothesis of the potential health benefits of this product, and even stimulate further ameliorations of the new prototype.


Anti-Inflammatory Agents , Antioxidants , Populus , Propolis , Propolis/chemistry , Propolis/pharmacology , Populus/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Animals , Antimutagenic Agents/pharmacology , Antimutagenic Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Humans , Phenols/chemistry , Phenols/pharmacology , Phenols/analysis , Cell Survival/drug effects
14.
Tunis Med ; 102(1): 19-25, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38545725

INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver failure, fibrosis, cirrhosis, and liver cancer, which can eventually lead to death. AIM: To investigate the effects of high-intensity interval training (HIIT) and iranian propolis extract on serum levels of transient receptor potential cation channel subfamily V member 4 (TRPV4) and cytochrome P450 2E1 (CYP2E1) proteins in patients with NAFLD. METHODS: Thirty-two patients with NAFLD (mean±standard deviation of age: 45.1±3.6 years; body mass index: 30.0±3.6 kg/m2) were assigned in a randomized control trial to one of the following groups: HIIT (n=8), propolis supplement (n=8), propolis + HIIT (n=8), and controls (n=8). The subjects participated in eight weeks of HIIT (one bout of 1-min intervals at 80-95% of the maximal heart-rate, interspersed by two min at 50-55% of the reserve heart-rate). The Propolis supplement was taken three times a day by the patients in the form of 50 mg tablet after the main meals. Body composition, liver injury test (eg; Alanine- and Aspartate- aminotransferase levels), liver ultrasound and serum levels of TRPV4 and CYP2E1 were measured before and after intervention. One-way analysis of variance was used to compare post-tests among the groups. RESULTS: HIIT significantly reduced serum levels of TRPV4 protein (p=0.001). The reduction in CYP2E1 was not significant in HIIT group (p=0.075). Propolis consumption had no significant effect on serum levels of CYP2E1 protein (p=0.059), and TRPV4 (p=0.072). There was a significant decrease in TRPV4 and CYP2E1 in the HIIT (p=0.001) and propolis supplement (p=0.032) groups. CONCLUSION: HIIT and propolis supplementation can be used to reduce TRPV4 and CYP2E1, which in turn reduces oxidative stress and inflammation in patients with NAFLD.


High-Intensity Interval Training , Non-alcoholic Fatty Liver Disease , Propolis , Humans , Adult , Middle Aged , Non-alcoholic Fatty Liver Disease/therapy , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/pharmacology , Propolis/metabolism , Propolis/pharmacology , Iran , TRPV Cation Channels/metabolism , TRPV Cation Channels/pharmacology , Liver/pathology , Fibrosis
15.
Methods Cell Biol ; 184: 17-32, 2024.
Article En | MEDLINE | ID: mdl-38555156

Myeloid-derived suppressor cells (MDSCs) are a heterogenous myeloid lineage population whose conventional surface phenotype is CD11b+ Gr-1+. Due to their rarity and fragility, analyses using primary isolated MDSCs are extremely difficult. However, counting CD11b+ Gr-1+ cells in associated tissues such as tumors and inflammatory lesions provides critical information regarding MDSC involvement in immune disorders in the tissues. Specific MDSC markers have not been identified, limiting our ability to apply histochemical approaches during MDSCs research. However, profiling surface antigens using multi-colorimetric flow cytometry enables us to easily monitor the abundance of MDSCs in vivo. Monitoring of mouse MDSCs and their subpopulations using flow cytometry is well established. In this article, I exemplify a conventional method of monitoring CD11b+ Gr-1+ cells in mouse adipose tissue after administration of Brazilian propolis ethanol extract, which is a strong inducer of MDSCs.


Myeloid-Derived Suppressor Cells , Propolis , Mice , Animals , Flow Cytometry , Mice, Inbred C57BL
16.
Sci Rep ; 14(1): 6870, 2024 03 22.
Article En | MEDLINE | ID: mdl-38519512

Bee bread is one of the least studied bee products. In this study, ten bee bread samples were characterized using palynology and HS-SPME-GC-MS (headspace solid-phase microextraction gas chromatography-mass spectrometry). In total, over one hundred different volatile components were identified, belonging to different chemical groups. Only ten common components were detected in all the samples. These volatiles were ethanol, ethylene chloride, ethyl acetate, acetic acid, α-pinene, furfural, nonane, nonanal, n-hexane and isovaleric acid. Several other components were commonly shared among various bee bread samples. Over sixty detected compounds have not been previously reported in bee bread. The analysis required a mild extraction temperature of 40 °C, as higher temperatures resulted in the Maillard reaction, leading to the production of furfural. The profile of volatile compounds of the tested bee pollen samples was complex and varied. Some relationships have been shown between botanical origin and volatile organic compound profile.


Propolis , Volatile Organic Compounds , Bees , Animals , Furaldehyde/analysis , Volatile Organic Compounds/analysis , Acetic Acid , Solid Phase Microextraction/methods
17.
Food Chem ; 447: 138928, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38484547

In this study, we established a simple, rapid, and high-throughput method for the analysis and classification of propolis samples. We utilized nanoESI-MS to analyze 37 samples of propolis from China for the first time, obtaining characteristic fingerprint spectra in negative ion mode, which were then integrated with multivariate analysis to explore variations between water extract of propolis (WEP) and ethanol extract of propolis (EEP). Furthermore, we categorized propolis samples based on different climate zones and colors, screening 10 differential metabolites among propolis from various climate zones, and 11 differential metabolites among propolis samples of different color. By employing machine learning models, we achieved high-precision discrimination and prediction between samples from different climate zones and colors, achieving predictive accuracies of 95.6% and 85.6%, respectively. These results highlight the significant potential of the nanoESI-MS coupled with machine learning methodology for precise classification within the realm of food products.


Ascomycota , Propolis , Propolis/chemistry , Mass Spectrometry , Climate , Machine Learning , Spectrometry, Mass, Electrospray Ionization/methods
18.
Cells ; 13(5)2024 Feb 24.
Article En | MEDLINE | ID: mdl-38474354

Aging populations worldwide are placing age-related diseases at the forefront of the research agenda. The therapeutic potential of natural substances, especially propolis and its components, has led to these products being promising agents for alleviating several cellular and molecular-level changes associated with age-related diseases. With this in mind, scientists have introduced a contextual framework to guide future aging research, called the hallmarks of aging. This framework encompasses various mechanisms including genomic instability, epigenetic changes, mitochondrial dysfunction, inflammation, impaired nutrient sensing, and altered intercellular communication. Propolis, with its rich array of bioactive compounds, functions as a potent functional food, modulating metabolism, gut microbiota, inflammation, and immune response, offering significant health benefits. Studies emphasize propolis' properties, such as antitumor, cardioprotective, and neuroprotective effects, as well as its ability to mitigate inflammation, oxidative stress, DNA damage, and pathogenic gut bacteria growth. This article underscores current scientific evidence supporting propolis' role in controlling molecular and cellular characteristics linked to aging and its hallmarks, hypothesizing its potential in geroscience research. The aim is to discover novel therapeutic strategies to improve health and quality of life in older individuals, addressing existing deficits and perspectives in this research area.


Propolis , Humans , Aged , Propolis/metabolism , Propolis/therapeutic use , Quality of Life , Aging/metabolism , Oxidative Stress , Inflammation/drug therapy
19.
Int J Biol Macromol ; 266(Pt 2): 131219, 2024 May.
Article En | MEDLINE | ID: mdl-38556227

BACKGROUND: Propolis is a resinous compound that is obtained from honey bees. It consists of numerous chemical constituents that impart different therapeutic action. The heart is the core of the body and cardiovascular disease (CVD) is a burden for the human being. This article emphasizes how propolis is fruitful in the management of various CVDs. SCOPE AND APPROACH: This review focuses on how various constituents of the propolis (such as terpenes, flavonoids, phenolics, etc.) impart cardio protective actions. KEY FINDING AND CONCLUSION: With the support of various clinical trials and research outcomes, it was concluded that propolis owns niche cardio protective properties that can be a boon for various cardiac problems (both in preventive and therapeutic action) such as atherosclerosis, excessive angiogenesis, hypertension, and many more.


Cardiovascular Diseases , Propolis , Propolis/chemistry , Propolis/therapeutic use , Propolis/pharmacology , Humans , Cardiovascular Diseases/drug therapy , Animals , Flavonoids/therapeutic use , Flavonoids/chemistry , Flavonoids/pharmacology
20.
Appl Radiat Isot ; 207: 111254, 2024 May.
Article En | MEDLINE | ID: mdl-38430826

The irradiation effects on antioxidant potential and on content of phenolic compounds of propolis ethanoic extracts were studied. It was found out that gamma treatment of samples with 2 and 10 kGy had a weak decreasing effect on the total phenolic content (TPC), while no change was observed in the propolis irradiated with 5 kGy. The antiradical activity of extracts was assessed by the DPPH free radical scavenging activity evaluated by Electron Paramagnetic Resonance (EPR) spectroscopy. The EPR results were in agreement with TPC. Some main phenolic compounds of the studied non-irradiated and irradiated samples were identified and compared by ultra-high performance liquid chromatography (UHPLC).


Antioxidants , Propolis , Propolis/chemistry , Phenols/chemistry
...