Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 286
1.
Cell Mol Life Sci ; 79(2): 113, 2022 Jan 31.
Article En | MEDLINE | ID: mdl-35099616

Induction of bone formation by Wnt ligands is inhibited when sclerostin (Scl), an osteocyte-produced antagonist, binds to its receptors, the low-density lipoprotein receptor-related proteins 5 or 6 (LRP5/6). Recently, it was shown that enhanced inhibition is achieved by Scl binding to the co-receptor LRP4. However, it is not clear if the binding of Scl to LRP4 facilitates Scl binding to LRP5/6 or inhibits the Wnt pathway in an LRP5/6-independent manner. Here, using the yeast display system, we demonstrate that Scl exhibits a stronger binding affinity for LRP4 than for LRP6. Moreover, we found stronger Scl binding to LRP6 in the presence of LRP4. We further show that a Scl mutant (SclN93A), which tightly binds LRP4 but not LRP6, does not inhibit the Wnt pathway on its own. We demonstrate that SclN93A competes with Scl for a common binding site on LRP4 and antagonizes Scl inhibition of the Wnt signaling pathway in osteoblasts in vitro. Finally, we demonstrate that 2 weeks of bi-weekly subcutaneous injections of SclN93A fused to the fragment crystallizable (Fc) domain of immunoglobulin (SclN93AFc), which retains the antagonistic activity of the mutant, significantly increases bone formation rate and enhances trabecular volumetric bone fraction, trabecular number, and bone length in developing mice. Our data show that LRP4 serves as an anchor that facilitates Scl-LRP6 binding and that inhibition of the Wnt pathway by Scl depends on its prior binding to LRP4. We further provide evidence that compounds that inhibit Scl-LRP4 interactions offer a potential strategy to promote anabolic bone functions.


Adaptor Proteins, Signal Transducing/metabolism , LDL-Receptor Related Proteins/metabolism , Osteogenesis/drug effects , Recombinant Proteins/pharmacology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Binding, Competitive/drug effects , Binding, Competitive/genetics , Cells, Cultured , Female , HEK293 Cells , Humans , LDL-Receptor Related Proteins/antagonists & inhibitors , LDL-Receptor Related Proteins/chemistry , LDL-Receptor Related Proteins/genetics , Mice , Mice, Inbred C57BL , Mutant Proteins/chemistry , Mutant Proteins/pharmacology , Osteoblasts/drug effects , Osteoblasts/physiology , Osteogenesis/genetics , Protein Binding/drug effects , Protein Binding/genetics , Protein Interaction Domains and Motifs/drug effects , Protein Interaction Domains and Motifs/genetics , RNA, Small Interfering/pharmacology , Recombinant Proteins/chemistry
2.
J Med Chem ; 65(1): 217-233, 2022 01 13.
Article En | MEDLINE | ID: mdl-34962802

Cognitive impairment and learning ability of the brain are directly linked to synaptic plasticity as measured in changes of long-term potentiation (LTP) and long-term depression (LTD) in animal models of brain diseases. LTD reflects a sustained reduction of the synaptic AMPA receptor content based on targeted clathrin-mediated endocytosis. AMPA receptor endocytosis is initiated by dephosphorylation of Tyr876 on the C-terminus of the AMPAR subunit GluA2. The brain-specific striatal-enriched protein tyrosine phosphatase (STEP) is responsible for this process. To identify new, highly effective inhibitors of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization, we performed structure-based design of peptides able to inhibit STEP-GluA2-CT complex formation. Two short peptide derivatives were found as efficient in vitro inhibitors. Our in vivo experiments evidenced that both peptides restore the memory deficits and display anxiolytic and antidepressant effects in a scopolamine-treated rat model. The interference peptides identified and characterized here represent promising lead compounds for novel cognitive enhancers and/or behavioral modulators.


Cognition/drug effects , Long-Term Potentiation/drug effects , Peptide Fragments/pharmacology , Protein Interaction Domains and Motifs/drug effects , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Receptors, AMPA/antagonists & inhibitors , Animals , Endocytosis , Hippocampus/drug effects , Male , Mice , Neuronal Plasticity , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Rats , Rats, Wistar , Receptors, AMPA/metabolism , Synapses/drug effects
3.
Life Sci ; 288: 120157, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34801511

AIM: High risk Human Papillomavirus (HPV) is an infectious pathogen implicated in a variety of cancers with poor clinical outcome. The mechanism of HPV induced cellular transformation and its intervention remains to be elucidated. Human ADA3 (hADA3), a cellular target of HPV16 E6, is an essential and conserved component of the ADA transcriptional coactivator complex. High risk HPV-E6 binds and functionally inactivates hADA3 to initiate oncogenesis. The aim of this study was to identify the interaction interface between hADA3 and HPV16E6 for designing inhibitory peptides that can potentially disrupt the hADA3-E6 interaction. MATERIAL METHODS: The present investigation employed structure-based in silico tools supported by biochemical validation, in vivo interaction studies and analysis of posttranslational modifications. KEY FINDINGS: First 3D-model of hADA3 was proposed and domains involved in the oncogenic interaction between hADA3 and HPV16E6 were delineated. Rationally designed peptide disrupted hADA3-E6 interaction and impeded malignant properties of cervical cancer cells. SIGNIFICANCE: Intervention of hADA3-E6 interaction thus promises to be a potential strategy to combat HPV induced oncogenic conditions like cervical cancer. The investigation provides mechanistic insights into HPV pathogenesis and shows promise in developing novel therapeutics to treat HPV induced cancers.


Oncogene Proteins, Viral/antagonists & inhibitors , Papillomavirus Infections/complications , Peptide Fragments/pharmacology , Protein Interaction Domains and Motifs/drug effects , Repressor Proteins/antagonists & inhibitors , Sumoylation , Transcription Factors/antagonists & inhibitors , Uterine Cervical Neoplasms/drug therapy , Cell Communication , Cell Transformation, Neoplastic , Female , Humans , Oncogene Proteins, Viral/metabolism , Papillomaviridae/isolation & purification , Papillomavirus Infections/metabolism , Papillomavirus Infections/virology , Protein Conformation , Repressor Proteins/metabolism , Transcription Factors/metabolism , Tumor Cells, Cultured , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology
4.
Molecules ; 26(21)2021 Oct 21.
Article En | MEDLINE | ID: mdl-34770776

PDZ (postsynaptic density (PSD95), discs large (Dlg), and zonula occludens (ZO-1)-dependent interactions are widely distributed within different cell types and regulate a variety of cellular processes. To date, some of these interactions have been identified as targets of small molecules or peptides, mainly related to central nervous system disorders and cancer. Recently, the knowledge of PDZ proteins and their interactions has been extended to various cell types of the immune system, suggesting that their targeting by viral pathogens may constitute an immune evasion mechanism that favors viral replication and dissemination. Thus, the pharmacological modulation of these interactions, either with small molecules or peptides, could help in the control of some immune-related diseases. Deeper structural and functional knowledge of this kind of protein-protein interactions, especially in immune cells, will uncover novel pharmacological targets for a diversity of clinical conditions.


PDZ Domains/drug effects , Peptides/chemistry , Peptides/pharmacology , Protein Interaction Domains and Motifs/drug effects , Animals , Disease Management , Disease Susceptibility , Humans , Immune System Diseases/drug therapy , Immune System Diseases/etiology , Immune System Diseases/metabolism , Models, Molecular , Molecular Targeted Therapy , Peptides/therapeutic use , Protein Binding/drug effects , Protein Conformation , Structure-Activity Relationship
5.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article En | MEDLINE | ID: mdl-34502213

Bone marrow stromal cell antigen 2 (BST-2), also known as CD317 or tetherin, has been identified as a host restriction factor that suppresses the release of enveloped viruses from host cells by physically tethering viral particles to the cell surface; however, this host defense can be subverted by multiple viruses. For example, human immunodeficiency virus (HIV)-1 encodes a specific accessory protein, viral protein U (Vpu), to counteract BST-2 by binding to it and directing its lysosomal degradation. Thus, blocking the interaction between Vpu and BST-2 will provide a promising strategy for anti-HIV therapy. Here, we report a NanoLuc Binary Technology (NanoBiT)-based high-throughput screening assay to detect inhibitors that disrupt the Vpu-BST-2 interaction. Out of more than 1000 compounds screened, four inhibitors were identified with strong activity at nontoxic concentrations. In subsequent cell-based BST-2 degradation assays, inhibitor Y-39983 HCl restored the cell-surface and total cellular level of BST-2 in the presence of Vpu. Furthermore, the Vpu-mediated enhancement of pesudotyped viral particle production was inhibited by Y-39983 HCl. Our findings indicate that our newly developed assay can be used for the discovery of potential antiviral molecules with novel mechanisms of action.


Anti-HIV Agents/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , High-Throughput Screening Assays/methods , Human Immunodeficiency Virus Proteins/antagonists & inhibitors , Protein Interaction Domains and Motifs/drug effects , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Antigens, CD/metabolism , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , HIV Infections/metabolism , HIV Infections/virology , HeLa Cells , Human Immunodeficiency Virus Proteins/metabolism , Humans , Nanotechnology/methods , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication
6.
Cells ; 10(9)2021 09 15.
Article En | MEDLINE | ID: mdl-34572081

Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α. An inhibitor of integrin αvß3, PKC, or PKA did not inhibit TNF-α-induced L-plastin phosphorylation. Inhibitors of Src and PI3-K and not Rho or Rho-kinase reduced tyrosine phosphorylation of TRAF-6, suggesting that Src and PI3-K regulate TRAF-6 phosphorylation, and Rho and Rho-kinase are downstream of TRAF-6 regulation. Osteoclasts expressing constitutively active or kinase-defective Src proteins were used to determine the role of Src on L-plastin phosphorylation; similarly, the effect of Rho was confirmed by transducing TAT-fused constitutively active (V14) or dominant-negative (N19) Rho proteins into osteoclasts. Pull-down analysis with glutathione S-transferase-fused SH2 and SH3 domains of Src and PI3-K demonstrated coprecipitation of L-plastin and TRAF-6 with the SH3 and SH2 domains of the PI3-K and Src proteins. However, the actual order of the interaction of proteins requires further elucidation; a comprehensive screening should corroborate the initial findings of protein interactions via the SH2/SH3 domains. Ultimately, inhibition of the interaction of proteins with SH2/SH3 could reduce L-plastin phosphorylation and affect NSZ formation and bone resorption in conditions that display osteoclast activation and bone loss.


Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Osteoclasts/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Actins/metabolism , Animals , Bone Resorption/metabolism , Mice , Mice, Inbred C57BL , Osteoclasts/cytology , Osteoclasts/drug effects , Phosphorylation/drug effects , Protein Interaction Domains and Motifs/drug effects , Receptors, Tumor Necrosis Factor, Type I/drug effects , Signal Transduction/drug effects , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , src Homology Domains/drug effects , src-Family Kinases/metabolism
7.
Eur J Immunol ; 51(10): 2441-2451, 2021 10.
Article En | MEDLINE | ID: mdl-34287839

Inhibition of the BCL6 BTB domain results in killing Diffuse Large B-cell Lymphoma (DLBL) cells, reducing the T-cell dependent germinal center (GC) reaction in mice, and reversing GC hyperplasia in nonhuman primates. The available BCL6 BTB-specific inhibitors are poorly water soluble, thus, limiting their absorption in vivo and our understanding of therapeutic strategy targeting GC. We synthesized a prodrug (AP-4-287) from a potent BCL6 BTB inhibitor (FX1) with improved aqueous solubility and pharmacokinetics (PK) in mice. We also evaluated its in vivo biological activity on humoral immune responses using the sheep red blood cells (SRBC)-vaccination mouse model. AP-4-287 had a significant higher aqueous solubility and was readily converted to FX1 in vivo after intraperitoneally (i.p.) administration, but a shorter half-life in vivo. Importantly, AP-4-287 treatment led to a reversible effect on (1) the reduction in the frequency of splenic Ki67+ CD4+ T cells, Tfh cells, and GC B cells; (2) lower GC formation following vaccination; and (3) a decrease in the titers of antigen-specific IgG and IgM antibodies. Our study advances the preclinical development of drug targeting BCL6 BTB domain for the treatment of diseases that are associated with abnormal BCL6 elevation.


Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Protein Interaction Domains and Motifs/drug effects , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antibody Formation/drug effects , Cell Differentiation/drug effects , Cell Differentiation/immunology , Chemistry Techniques, Synthetic , Germinal Center/drug effects , Germinal Center/immunology , Germinal Center/metabolism , Immunity, Humoral/drug effects , Immunomodulation/drug effects , Indoles/administration & dosage , Indoles/chemical synthesis , Indoles/pharmacokinetics , Mice , Prodrugs/administration & dosage , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Proto-Oncogene Proteins c-bcl-6/chemistry , Proto-Oncogene Proteins c-bcl-6/metabolism , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Thiazolidinediones/administration & dosage , Thiazolidinediones/chemical synthesis , Thiazolidinediones/pharmacokinetics
8.
Cell Chem Biol ; 28(12): 1716-1727.e6, 2021 12 16.
Article En | MEDLINE | ID: mdl-34289376

GAS41 is an emerging oncogene overexpressed and implicated in multiple cancers, including non-small cell lung cancer (NSCLC). GAS41 is a dimeric protein that contains the YEATS domain, which is involved in the recognition of lysine-acylated histones. Here, we report the development of GAS41 YEATS inhibitors by employing a fragment-based screening approach. These inhibitors bind to GAS41 YEATS domain in a channel constituting a recognition site for acylated lysine on histone proteins. To enhance inhibitory activity, we developed a dimeric analog with nanomolar activity that blocks interactions of GAS41 with acetylated histone H3. Our lead compound engages GAS41 in cells, blocks proliferation of NSCLC cells, and modulates expression of GAS41-dependent genes, validating on-target mechanism of action. This study demonstrates that disruption of GAS41 protein-protein interactions may represent an attractive approach to target lung cancer cells. This work exemplifies the use of bivalent inhibitors as a general strategy to block challenging protein-protein interactions.


Amides/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Thiophenes/pharmacology , Transcription Factors/antagonists & inhibitors , Amides/chemistry , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Cells, Cultured , Drug Screening Assays, Antitumor , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Molecular Structure , Protein Interaction Domains and Motifs/drug effects , Thiophenes/chemistry , Transcription Factors/metabolism
9.
Mol Cancer Ther ; 20(9): 1743-1754, 2021 09.
Article En | MEDLINE | ID: mdl-34158349

Activating mutations in RAS are found in approximately 30% of human cancers, resulting in the delivery of a persistent signal to critical downstream effectors that drive tumorigenesis. RAS-driven malignancies respond poorly to conventional cancer treatments and inhibitors that target RAS directly are limited; therefore, the identification of new strategies and/or drugs to disrupt RAS signaling in tumor cells remains a pressing therapeutic need. Taking advantage of the live-cell bioluminescence resonance energy transfer (BRET) methodology, we describe the development of a NanoBRET screening platform to identify compounds that modulate binding between activated KRAS and the CRAF kinase, an essential effector of RAS that initiates ERK cascade signaling. Using this strategy, libraries containing synthetic compounds, targeted inhibitors, purified natural products, and natural product extracts were evaluated. These efforts resulted in the identification of compounds that inhibit RAS/RAF binding and in turn suppress RAS-driven ERK activation, but also compounds that have the deleterious effect of enhancing the interaction to upregulate pathway signaling. Among the inhibitor hits identified, the majority were compounds derived from natural products, including ones reported to alter KRAS nanoclustering (ophiobolin A), to impact RAF function (HSP90 inhibitors and ROS inducers) as well as some with unknown targets and activities. These findings demonstrate the potential for this screening platform in natural product drug discovery and in the development of new therapeutic agents to target dysregulated RAS signaling in human disease states such as cancer.


Bioluminescence Resonance Energy Transfer Techniques/methods , Fibroblasts/drug effects , High-Throughput Screening Assays/methods , Protein Interaction Domains and Motifs/drug effects , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , ras Proteins/agonists , ras Proteins/antagonists & inhibitors , Animals , Fibroblasts/metabolism , Humans , Ligands , Nanotechnology/methods , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins c-raf/metabolism , ras Proteins/metabolism
10.
Neurotherapeutics ; 18(3): 1678-1691, 2021 07.
Article En | MEDLINE | ID: mdl-33987813

The continuous adherence to the conventional "one target, one drug" paradigm has failed so far to provide effective therapeutic solutions for heterogeneous and multifactorial diseases as amyotrophic lateral sclerosis (ALS), a rare progressive and chronic, debilitating neurological disease for which no cure is available. The present study is aimed at finding innovative solutions and paradigms for therapy in ALS pathogenesis, by exploiting new insights from Network Medicine and drug repurposing strategies. To identify new drug-ALS disease associations, we exploited SAveRUNNER, a recently developed network-based algorithm for drug repurposing, which quantifies the proximity of disease-associated genes to drug targets in the human interactome. We prioritized 403 SAveRUNNER-predicted drugs according to decreasing values of network similarity with ALS. Among catecholamine, dopamine, serotonin, histamine, and GABA receptor modulators, as well as angiotensin-converting enzymes, cyclooxygenase isozymes, and serotonin transporter inhibitors, we found some interesting no customary ALS drugs, including amoxapine, clomipramine, mianserin, and modafinil. Furthermore, we strengthened the SAveRUNNER predictions by a gene set enrichment analysis that confirmed modafinil as a drug with the highest score among the 121 identified drugs with a score > 0. Our results contribute to gathering further proofs of innovative solutions for therapy in ALS pathogenesis.


Algorithms , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Drug Repositioning/methods , Gene Regulatory Networks/genetics , Protein Interaction Domains and Motifs/genetics , Amyotrophic Lateral Sclerosis/diagnosis , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/therapeutic use , Gene Regulatory Networks/drug effects , Humans , Protein Interaction Domains and Motifs/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
11.
Int J Oncol ; 59(1)2021 Jul.
Article En | MEDLINE | ID: mdl-33982774

Androgen receptor (AR) and/or its constitutively active splicing variants (AR­Vs), such as AR­V7 and ARv567es, is required for prostate cancer cell growth and survival, and cancer progression. Proliferating cell nuclear antigen (PCNA) is preferentially overexpressed in all cancers and executes its functions through interaction with numerous partner proteins. The aim of the present study was to investigate the potential role of PCNA in the regulation of AR activity. An identical consensus sequence of the PCNA­interacting protein­box (PIP­box) was identified at the N­terminus of human, mouse and rat AR proteins. It was found that PCNA complexes with the full­length AR (AR­FL) and AR­V7, which can be attenuated by the small molecule PIP­box inhibitor, T2AA. PCNA also complexes with ARv567es and recombinant AR protein. The PCNA inhibitors, PCNA­I1S and T2AA, inhibited AR transcriptional activity and the expression of AR target genes in LNCaP­AI and 22Rv1 cells, but not in AR­negative PC­3 cells. The knockdown of PCNA expression reduced dihydrotestosterone­stimulated AR transcriptional activity and abolished the inhibitory effect of PCNA­I1S on AR activity. The PCNA inhibitor, PCNA­I1, exerted additive growth inhibitory effects with androgen deprivation and enzalutamide in cells expressing AR­FL or AR­FL/AR­V7, but not in AR­negative PC­3 cells. Finally, R9­AR­PIP, a small peptide mimicking AR PIP­box, was found to bind to GFP­PCNA at Kd of 2.73 µM and inhibit the expression of AR target genes, AR transcriptional activity and the growth of AR­expressing cells. On the whole, these data strongly suggest that AR is a PCNA partner protein and interacts with PCNA via the PIP­box and that targeting the PCNA­AR interaction may represent an innovative and selective therapeutic strategy against prostate cancer, particularly castration­resistant prostate cancers overexpressing constitutively active AR­Vs.


Proliferating Cell Nuclear Antigen/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Benzamides/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Nitriles/pharmacology , Phenols/pharmacology , Phenylthiohydantoin/pharmacology , Proliferating Cell Nuclear Antigen/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Interaction Domains and Motifs/drug effects , Receptors, Androgen/genetics , Signal Transduction
12.
PLoS Pathog ; 17(5): e1009549, 2021 05.
Article En | MEDLINE | ID: mdl-33984068

The antiviral innate immune response mainly involves type I interferon (IFN) in mammalian cells. The contribution of the RNA silencing machinery remains to be established, but several recent studies indicate that the ribonuclease DICER can generate viral siRNAs in specific conditions. It has also been proposed that type I IFN and RNA silencing could be mutually exclusive antiviral responses. In order to decipher the implication of DICER during infection of human cells with alphaviruses such as the Sindbis virus and Semliki forest virus, we determined its interactome by proteomics analysis. We show that DICER specifically interacts with several double-stranded RNA binding proteins and RNA helicases during viral infection. In particular, proteins such as DHX9, ADAR-1 and the protein kinase RNA-activated (PKR) are enriched with DICER in virus-infected cells. We demonstrate that the helicase domain of DICER is essential for this interaction and that its deletion confers antiviral properties to this protein in an RNAi-independent, PKR-dependent, manner.


Alphavirus Infections/drug therapy , Antiviral Agents/pharmacology , DEAD-box RNA Helicases/metabolism , Protein Interaction Domains and Motifs/drug effects , Ribonuclease III/metabolism , Semliki forest virus/drug effects , Virus Replication , eIF-2 Kinase/metabolism , Alphavirus Infections/metabolism , Alphavirus Infections/pathology , DEAD-box RNA Helicases/genetics , HEK293 Cells , Humans , Interferon Type I/pharmacology , Ribonuclease III/genetics , eIF-2 Kinase/genetics
13.
Nat Commun ; 12(1): 2812, 2021 05 14.
Article En | MEDLINE | ID: mdl-33990570

Trastuzumab is the backbone of HER2-directed gastric cancer therapy, but poor patient response due to insufficient cell sensitivity and drug resistance remains a clinical challenge. Here, we report that HER2 is involved in cell mitotic promotion for tumorigenesis by hyperactivating a crucial HER2-SHCBP1-PLK1 axis that drives trastuzumab sensitivity and is targeted therapeutically. SHCBP1 is an Shc1-binding protein but is detached from scaffold protein Shc1 following HER2 activation. Released SHCBP1 responds to HER2 cascade by translocating into the nucleus following Ser273 phosphorylation, and then contributing to cell mitosis regulation through binding with PLK1 to promote the phosphorylation of the mitotic interactor MISP. Meanwhile, Shc1 is recruited to HER2 for MAPK or PI3K pathways activation. Also, clinical evidence shows that increased SHCBP1 prognosticates a poor response of patients to trastuzumab therapy. Theaflavine-3, 3'-digallate (TFBG) is identified as an inhibitor of the SHCBP1-PLK1 interaction, which is a potential trastuzumab sensitizing agent and, in combination with trastuzumab, is highly efficacious in suppressing HER2-positive gastric cancer growth. These findings suggest an aberrant mitotic HER2-SHCBP1-PLK1 axis underlies trastuzumab sensitivity and offer a new strategy to combat gastric cancer.


Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Receptor, ErbB-2/metabolism , Shc Signaling Adaptor Proteins/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Trastuzumab/pharmacology , Animals , Antineoplastic Agents, Immunological/pharmacology , Biflavonoids/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Cycle Proteins/chemistry , Cell Line, Tumor , Cell Nucleus/metabolism , Drug Resistance, Neoplasm/physiology , Female , Gene Knockdown Techniques , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Mice , Microfilament Proteins/metabolism , Middle Aged , Mitosis/drug effects , Models, Biological , Models, Molecular , Phosphoproteins/metabolism , Prognosis , Protein Interaction Domains and Motifs/drug effects , Protein Serine-Threonine Kinases/chemistry , Proto-Oncogene Proteins/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Shc Signaling Adaptor Proteins/antagonists & inhibitors , Shc Signaling Adaptor Proteins/chemistry , Signal Transduction/drug effects , Stomach Neoplasms/pathology , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
14.
Commun Biol ; 4(1): 576, 2021 05 14.
Article En | MEDLINE | ID: mdl-33990683

The Keap1-Nrf2 system is central for mammalian cytoprotection against various stresses and a drug target for disease prevention and treatment. One model for the molecular mechanisms leading to Nrf2 activation is the Hinge-Latch model, where the DLGex-binding motif of Nrf2 dissociates from Keap1 as a latch, while the ETGE motif remains attached to Keap1 as a hinge. To overcome the technical difficulties in examining the binding status of the two motifs during protein-protein interaction (PPI) simultaneously, we utilized NMR spectroscopy titration experiments. Our results revealed that latch dissociation is triggered by low-molecular-weight Keap1-Nrf2 PPI inhibitors and occurs during p62-mediated Nrf2 activation, but not by electrophilic Nrf2 inducers. This study demonstrates that Keap1 utilizes a unique Hinge-Latch mechanism for Nrf2 activation upon challenge by non-electrophilic PPI-inhibiting stimuli, and provides critical insight for the pharmacological development of next-generation Nrf2 activators targeting the Keap1-Nrf2 PPI.


Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , NF-E2-Related Factor 2/antagonists & inhibitors , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology , Binding Sites , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Protein Binding , Protein Conformation
15.
Int J Mol Sci ; 22(5)2021 Mar 02.
Article En | MEDLINE | ID: mdl-33801503

Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.


Alkyl and Aryl Transferases/metabolism , Enzyme Inhibitors/pharmacology , Peptide Fragments/pharmacology , Protein Interaction Domains and Motifs/drug effects , rap GTP-Binding Proteins/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/genetics , Humans , Protein Prenylation , Substrate Specificity , Xanthines/pharmacology , rap GTP-Binding Proteins/chemistry , rap GTP-Binding Proteins/genetics
16.
Front Immunol ; 12: 586521, 2021.
Article En | MEDLINE | ID: mdl-33717067

Antibodies recognizing the amino-terminal domain of receptor subunit proteins modify the receptor efficiency to controlling transmitter release in isolated nerve endings (e.g., synaptosomes) indirectly confirming their presence in these particles but also allowing to speculate on their subunit composition. Western blot analysis and confocal microscopy unveiled the presence of the GluA1, GluA2, GluA3, and GluA4 receptor subunits in cortical synaptosomes. Functional studies confirmed the presence of presynaptic release-regulating AMPA autoreceptors in these terminals, whose activation releases [3H]D-aspartate ([3H]D-Asp, here used as a marker of glutamate) in a NBQX-dependent manner. The AMPA autoreceptors traffic in a constitutive manner, since entrapping synaptosomes with the pep2-SVKI peptide (which interferes with the GluA2-GRIP1/PICK1 interaction) amplified the AMPA-evoked releasing activity, while the inactive pep2-SVKE peptide was devoid of activity. Incubation of synaptosomes with antibodies recognizing the NH2 terminus of the GluA2 and the GluA3 subunits increased, although to a different extent, the GluA2 and 3 densities in synaptosomal membranes, also amplifying the AMPA-evoked glutamate release in a NBQX-dependent fashion. We then analyzed the releasing activity of complement (1:300) from both treated and untreated synaptosomes and found that the complement-induced overflow occurred in a DL-t-BOA-sensitive, NBQX-insensitive fashion. We hypothesized that anti-GluA/GluA complexes in neuronal membranes could trigger the classic pathway of activation of the complement, modifying its releasing activity. Accordingly, the complement-evoked release of [3H]D-Asp from antiGluA2 and anti-GluA3 antibody treated synaptosomes was significantly increased when compared to untreated terminals and facilitation was prevented by omitting the C1q component of the immunocomplex. Antibodies recognizing the NH2 terminus of the GluA1 or the GluA4 subunits failed to affect both the AMPA and the complement-evoked tritium overflow. Our results suggest the presence of GluA2/GluA3-containing release-regulating AMPA autoreceptors in cortical synaptosomes. Incubation of synaptosomes with commercial anti-GluA2 or anti-GluA3 antibodies amplifies the AMPA-evoked exocytosis of glutamate through a complement-independent pathway, involving an excessive insertion of AMPA autoreceptors in plasma membranes but also affects the complement-dependent releasing activity, by promoting the classic pathway of activation of the immunocomplex. Both events could be relevant to the development of autoimmune diseases typified by an overproduction of anti-GluA subunits.


Antibodies/pharmacology , Protein Interaction Domains and Motifs/drug effects , Protein Subunits/antagonists & inhibitors , Receptors, AMPA/antagonists & inhibitors , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cerebral Cortex/metabolism , Complement C1q/immunology , Fluorescent Antibody Technique , Male , Mice , Receptors, AMPA/chemistry , Synaptosomes/drug effects , Synaptosomes/metabolism
17.
J Hematol Oncol ; 14(1): 47, 2021 03 20.
Article En | MEDLINE | ID: mdl-33743795

BACKGROUND: B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia. METHODS: We worked with BCP-ALL mononuclear bone marrow patients' cells and BCP-ALL cell lines, and performed Chromatin Immunoprecipitations followed by Sequencing (ChIP-Seq), co-immunoprecipitations (co-IP), proximity ligation assays (PLA), luciferase reporter assays and mouse xenograft models. RESULTS: We demonstrated that CBFA2T3 transcript levels correlate with RUNX1 expression in the pediatric t(12;21) ETV6-RUNX1 BCP-ALL. By ChIP-Seq in BCP-ALL patients' cells and cell lines, we found that RUNX1 is recruited on its promoter and on an enhancer of CBFA2T3 located - 2 kb upstream CBFA2T3 promoter and that, subsequently, the transcription factor RUNX1 drives both RUNX1 and CBFA2T3 expression. We demonstrated that, mechanistically, RUNX1 and CBFA2T3 can be part of the same complex allowing CBFA2T3 to strongly potentiate the activity of the transcription factor RUNX1. Finally, we characterized a CBFA2T3-mimicking peptide that inhibits the interaction between RUNX1 and CBFA2T3, abrogating the activity of this transcription complex and reducing BCP-ALL lymphoblast proliferation. CONCLUSIONS: Altogether, our findings reveal a novel and important activation loop between the transcription regulator CBFA2T3 and the transcription factor RUNX1 that promotes BCP-ALL proliferation, supporting the development of an innovative therapeutic approach based on the NHR2 subdomain of CBFA2T3 protein.


Antineoplastic Agents/pharmacology , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Peptides/pharmacology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Protein Interaction Maps/drug effects , Repressor Proteins/metabolism , Antineoplastic Agents/chemistry , Cell Line, Tumor , Child , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation, Leukemic/drug effects , Humans , Peptides/chemistry , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Interaction Domains and Motifs/drug effects , Repressor Proteins/chemistry , Repressor Proteins/genetics , Transcriptional Activation/drug effects
18.
Nat Commun ; 12(1): 1505, 2021 03 08.
Article En | MEDLINE | ID: mdl-33686072

Survivin's dual function as apoptosis inhibitor and regulator of cell proliferation is mediated via its interaction with the export receptor CRM1. This protein-protein interaction represents an attractive target in cancer research and therapy. Here, we report a sophisticated strategy addressing Survivin's nuclear export signal (NES), the binding site of CRM1, with advanced supramolecular tweezers for lysine and arginine. These were covalently connected to small peptides resembling the natural, self-complementary dimer interface which largely overlaps with the NES. Several biochemical methods demonstrated sequence-selective NES recognition and interference with the critical receptor interaction. These data were strongly supported by molecular dynamics simulations and multiscale computational studies. Rational design of lysine tweezers equipped with a peptidic recognition element thus allowed to address a previously unapproachable protein surface area. As an experimental proof-of-principle for specific transport signal interference, this concept should be transferable to any protein epitope with a flanking well-accessible lysine.


Karyopherins/chemistry , Karyopherins/metabolism , Protein Interaction Domains and Motifs/drug effects , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Survivin/chemistry , Survivin/metabolism , Binding Sites , Cell Proliferation , Humans , Inhibitor of Apoptosis Proteins/metabolism , Models, Molecular , Nuclear Export Signals , Protein Binding , Protein Conformation , Exportin 1 Protein
19.
Angew Chem Int Ed Engl ; 60(18): 10279-10285, 2021 04 26.
Article En | MEDLINE | ID: mdl-33683787

The receptor binding domain (RBD) of the spike glycoprotein of the coronavirus SARS-CoV-2 (CoV2-S) binds to the human angiotensin-converting enzyme 2 (ACE2) representing the initial contact point for leveraging the infection cascade. We used an automated selection process and identified an aptamer that specifically interacts with CoV2-S. The aptamer does not bind to the RBD of CoV2-S and does not block the interaction of CoV2-S with ACE2. Nevertheless, infection studies revealed potent and specific inhibition of pseudoviral infection by the aptamer. The present study opens up new vistas in developing SARS-CoV2 infection inhibitors, independent of blocking the ACE2 interaction of the virus, and harnesses aptamers as potential drug candidates and tools to disentangle hitherto inaccessible infection modalities, which is of particular interest in light of the increasing number of escape mutants that are currently being reported.


Antiviral Agents/pharmacology , Aptamers, Nucleotide/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Aptamers, Nucleotide/chemistry , Binding Sites/drug effects , COVID-19/metabolism , Drug Discovery , HEK293 Cells , Humans , Protein Binding/drug effects , Protein Interaction Domains and Motifs/drug effects , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , SELEX Aptamer Technique , Spike Glycoprotein, Coronavirus/chemistry
20.
Angew Chem Int Ed Engl ; 60(18): 10273-10278, 2021 04 26.
Article En | MEDLINE | ID: mdl-33684258

The receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike (S) protein plays a central role in mediating the first step of virus infection to cause disease: virus binding to angiotensin-converting enzyme 2 (ACE2) receptors on human host cells. Therefore, S/RBD is an ideal target for blocking and neutralization therapies to prevent and treat coronavirus disease 2019 (COVID-19). Using a target-based selection approach, we developed oligonucleotide aptamers containing a conserved sequence motif that specifically targets S/RBD. Synthetic aptamers had high binding affinity for S/RBD-coated virus mimics (KD ≈7 nM) and also blocked interaction of S/RBD with ACE2 receptors (IC50 ≈5 nM). Importantly, aptamers were able to neutralize S protein-expressing viral particles and prevent host cell infection, suggesting a promising COVID-19 therapy strategy.


Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Aptamers, Nucleotide/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/chemistry , Aptamers, Nucleotide/chemistry , Base Sequence , COVID-19/metabolism , HEK293 Cells , Humans , Protein Interaction Domains and Motifs/drug effects , Protein Interaction Maps/drug effects , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry
...