Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.043
1.
Nat Commun ; 14(1): 1995, 2023 04 08.
Article En | MEDLINE | ID: mdl-37031229

Protein-protein interactions govern most biological processes. New protein assemblies can be introduced through the fusion of selected proteins with di/oligomerization domains, which interact specifically with their partners but not with other cellular proteins. While four-helical bundle proteins (4HB) have typically been assembled from two segments, each comprising two helices, here we show that they can be efficiently segmented in various ways, expanding the number of combinations generated from a single 4HB. We implement a segmentation strategy of 4HB to design two-, three-, or four-chain combinations for the recruitment of multiple protein components. Different segmentations provide new insight into the role of individual helices for 4HB assembly. We evaluate 4HB segmentations for potential use in mammalian cells for the reconstitution of a protein reporter, transcriptional activation, and inducible 4HB assembly. Furthermore, the implementation of trimerization is demonstrated as a modular chimeric antigen receptor for the recognition of multiple cancer antigens.


Cell Physiological Phenomena , Mammals , Protein Conformation , Protein Multimerization , Proteins , Animals , Biological Phenomena , Mammals/physiology , Proteins/chemistry , Proteins/physiology , Cell Physiological Phenomena/physiology , Protein Multimerization/physiology
2.
Life Sci Alliance ; 6(3)2023 03.
Article En | MEDLINE | ID: mdl-36599624

Replication licensing, a prerequisite of DNA replication, helps to ensure once-per-cell-cycle genome duplication. Some DNA replication-initiation proteins are sequentially loaded onto replication origins to form pre-replicative complexes (pre-RCs). ORC and Noc3p bind replication origins throughout the cell cycle, providing a platform for pre-RC assembly. We previously reported that cell cycle-dependent ORC dimerization is essential for the chromatin loading of the symmetric MCM double-hexamers. Here, we used Saccharomyces cerevisiae separation-of-function NOC3 mutants to confirm the separable roles of Noc3p in DNA replication and ribosome biogenesis. We also show that an essential and cell cycle-dependent Noc3p dimerization cycle regulates the ORC dimerization cycle. Noc3p dimerizes at the M-to-G1 transition and de-dimerizes in S-phase. The Noc3p dimerization cycle coupled with the ORC dimerization cycle enables replication licensing, protects nascent sister replication origins after replication initiation, and prevents re-replication. This study has revealed a new mechanism of replication licensing and elucidated the molecular mechanism of Noc3p as a mediator of ORC dimerization in pre-RC formation.


Protein Multimerization , Saccharomyces cerevisiae Proteins , Cell Cycle/genetics , Dimerization , DNA Replication/genetics , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Protein Multimerization/genetics , Protein Multimerization/physiology , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/physiology , Nuclear Proteins/genetics , Nuclear Proteins/physiology
3.
J Biol Chem ; 299(2): 102874, 2023 02.
Article En | MEDLINE | ID: mdl-36623730

Enzymes of the mixed lineage leukemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases are critical for cellular differentiation and development and are regulated by interaction with a conserved subcomplex consisting of WDR5, RbBP5, Ash2L, and DPY30. While pairwise interactions between complex subunits have been determined, the mechanisms regulating holocomplex assembly are unknown. In this investigation, we systematically characterized the biophysical properties of a reconstituted human MLL1 core complex and found that the MLL1-WDR5 heterodimer interacts with the RbBP5-Ash2L-DPY30 subcomplex in a hierarchical assembly pathway that is highly dependent on concentration and temperature. Surprisingly, we found that the disassembled state is favored at physiological temperature, where the enzyme rapidly becomes irreversibly inactivated, likely because of complex components becoming trapped in nonproductive conformations. Increased protein concentration partially overcomes this thermodynamic barrier for complex assembly, suggesting a potential regulatory mechanism for spatiotemporal control of H3K4 methylation. Together, these results are consistent with the hypothesis that regulated assembly of the MLL1 core complex underlies an important mechanism for establishing different H3K4 methylation states in mammalian genomes.


Histones , Leukemia , Protein Multimerization , Temperature , Animals , Humans , DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Methylation , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Multimerization/physiology , Protein Structure, Quaternary
4.
Curr Protein Pept Sci ; 23(12): 862-873, 2022.
Article En | MEDLINE | ID: mdl-36330647

BACKGROUND: Surfactant protein-S (SP-D) is a naturally occurring lung protein with the potential to treat pulmonary infections. A recombinant surfactant protein-D (SP-D) has been produced and was previously found to exist in multiple oligomeric states. INTRODUCTION: Separation and characterization of interconverting oligomeric states of a protein can be difficult using chromatographic methods, so an alternative separation technique was employed for SPD to characterize the different association states that exist. METHODS: Samples of SP-D were analyzed using asymmetrical flow field-flow fractionation (AF4) using UV and multi-angle laser light scattering (MALLS) detection. The AF4 method appears to be able to separate species as small as the monomer up to the dodecamer (the dominant species) to much larger species with a molar mass greater than 5 MDa. RESULTS: Consistent elution of four distinct peaks was observed after repeated injections. The largest species observed under the last peak (labeled as Peak 4) were termed "unstructured multimers" and were resolved fairly well from the other species. The AF4-MALLS data suggest that only a small fraction of Peak 4 truly corresponds to high molar mass unstructured multimers. All other peaks demonstrated significant molar mass homogeneity consistent with AFM results. CONCLUSION: AF4-MALLS technology appears to be a powerful analytical approach to characterize the complex and dynamic interplay among different protein oligomeric species of SP-D in an aqueous solution.


Protein Multimerization , Pulmonary Surfactant-Associated Protein D , Fractionation, Field Flow/methods , Protein Multimerization/physiology , Pulmonary Surfactant-Associated Protein D/chemistry , Recombinant Proteins/chemistry
5.
Front Endocrinol (Lausanne) ; 13: 931573, 2022.
Article En | MEDLINE | ID: mdl-36111299

G protein-coupled receptors (GPCRs) are capable of interacting to form higher order structures such as homomers and heteromers. Heteromerisation in particular has implications for receptor function, with research showing receptors can attain unique expression, ligand binding, signalling and intracellular trafficking upon heteromerisation. As such, GPCR heteromers represent novel drug targets with extensive therapeutic potential. Changes to ligand affinity, efficacy and G protein coupling have all been described, with alterations to these pharmacological aspects now well accepted as common traits for heteromeric complexes. Changes in internalisation and trafficking kinetics, as well as ß-arrestin interactions are also becoming more apparent, however, few studies to date have explicitly looked at the implications these factors have upon the signalling profile of a heteromer. Development of ligands to target GPCR heteromers both experimentally and therapeutically has been mostly concentrated on bivalent ligands due to difficulties in identifying and developing heteromer-specific ligands. Improving our understanding of the pharmacology and physiology of GPCR heteromers will enable further development of heteromer-specific ligands with potential to provide therapeutics with increased efficacy and decreased side effects.


Receptors, G-Protein-Coupled , Signal Transduction , Ligands , Protein Multimerization/physiology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , beta-Arrestins/metabolism
6.
Proteins ; 90(1): 218-228, 2022 01.
Article En | MEDLINE | ID: mdl-34369007

Coiled-coil domain-containing 124 (CCDC124) is a recently discovered ribosome-binding protein conserved in eukaryotes. CCDC124 has regulatory functions on the mediation of reversible ribosomal hibernation and translational recovery by direct attachment to large subunit ribosomal protein uL5, 25S rRNA backbone, and tRNA-binding P/A-site major groove. Moreover, it independently mediates cell division and cellular stress response by facilitating cytokinetic abscission and disulfide stress-dependent transcriptional regulation, respectively. However, the structural characterization and intracellular physiological status of CCDC124 remain unknown. In this study, we employed advanced in silico protein modeling and characterization tools to generate a native-like tertiary structure of CCDC124 and examine the disorder, low sequence complexity, and aggregation propensities, as well as high-order dimeric/oligomeric states. Subsequently, dimerization of CCDC124 was investigated with co-immunoprecipitation (CO-IP) analysis, immunostaining, and a recent live-cell protein-protein interaction method, bimolecular fluorescence complementation (BiFC). Results revealed CCDC124 as a highly disordered protein consisting of low complexity regions at the N-terminus and an aggregation sequence (151-IAVLSV-156) located in the middle region. Molecular docking and post-docking binding free energy analyses highlighted a potential involvement of V153 residue on the generation of high-order dimeric/oligomeric structures. Co-IP, immunostaining, and BiFC analyses were used to further confirm the dimeric state of CCDC124 predominantly localized at the cytoplasm. In conclusion, our findings revealed in silico structural characterization and in vivo subcellular physiological state of CCDC124, suggesting low-complexity regions located at the N-terminus of disordered CCDC124 may regulate the formation of aggregates or high-order dimeric/oligomeric states.


Cell Cycle Proteins , Intracellular Signaling Peptides and Proteins , Protein Multimerization/physiology , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary
7.
Biosystems ; 210: 104551, 2021 Dec.
Article En | MEDLINE | ID: mdl-34597710

By analogy with virions, the binding of biologically-inspired nanoparticles (NPs) with ligands to the cellular membrane containing receptors depends on the multivalent ligand-receptor interaction, membrane bending, and cytoskeleton deformation. The interplay of these factors results in the existence of the potential minimum and activation barrier on the pathway towards full absorption of a NP. Herein, I hypothesize and show theoretically that the interaction of a NP, bound to one cell, with another cell can stabilize the potential minimum and increase the corresponding activation barrier, i.e., NPs can mediate the formation of long-living pairs of cells and aggregates containing a few cells inside blood and lymphatic vessels.


Blood Cells/metabolism , Lymph/cytology , Lymph/metabolism , Nanoparticles/metabolism , Protein Multimerization/physiology , Animals , Cell Aggregation/physiology , Humans , Lipid Bilayers/metabolism
8.
J Endocrinol ; 252(1): R23-R39, 2021 11 24.
Article En | MEDLINE | ID: mdl-34663757

Ghrelin is a peptide hormone secreted primarily by the stomach that acts upon the growth hormone secretagogue receptor (GHSR1), a G protein-coupled receptor whose functions include growth hormone secretion, appetite regulation, energy expenditure, regulation of adiposity, and insulin release. Following the discovery that GHSR1a stimulates food intake, receptor antagonists were developed as potential therapies to regulate appetite. However, despite reductions in signalling, the desired effects on appetite were absent. Studies in the past 15 years have demonstrated GHSR1a can interact with other transmembrane proteins, either by direct binding (i.e. heteromerisation) or via signalling cross-talk. These interactions have various effects on GHSR1a signalling including preferential coupling to one pathway (i.e. biased signalling), coupling to a unique G protein (G protein switching), suppression of GHSR1a signalling, and enhancement of signalling by both receptors. While many of these interactions have been shown in cells overexpressing the proteins of interest and remain to be verified in tissues, substantial evidence exists showing that GHSR1a and the dopamine receptor D1 (DRD1) form heteromers, which promote synaptic plasticity and formation of hippocampal memory. Additionally, a reduction in GHSR1a-DRD1 complexes in favour of establishment of GHSR1a-Aß complexes correlates with Alzheimer's disease, indicating that GHSR1a heteromers may have pathological functions. Herein, we summarise the evidence published to date describing interactions between GHSR1a and transmembrane proteins, discuss the experimental strengths and limitations of these studies, describe the physiological evidence for each interaction, and address their potential as novel drug targets for appetite regulation, Alzheimer's disease, insulin secretion, and inflammation.


Multiprotein Complexes/physiology , Protein Multimerization/physiology , Receptors, Ghrelin/physiology , Animals , Ghrelin/metabolism , Ghrelin/physiology , Humans , Multiprotein Complexes/metabolism , Protein Binding/physiology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/physiology , Receptors, Ghrelin/metabolism , Signal Transduction/physiology
9.
mBio ; 12(5): e0262521, 2021 10 26.
Article En | MEDLINE | ID: mdl-34700375

Human cytomegalovirus (HCMV) is a herpesvirus that produces disease in transplant patients and newborn children. Entry of HCMV into cells relies on gH/gL trimer (gHgLgO) and pentamer (gHgLUL128-131) complexes that bind cellular receptors. Here, we studied the structure and interactions of the HCMV trimer, formed by AD169 strain gH and gL and TR strain gO proteins, with the human platelet-derived growth factor receptor alpha (PDGFRα). Three trimer surfaces make extensive contacts with three PDGFRα N-terminal domains, causing PDGFRα to wrap around gO in a structure similar to a human hand, explaining the high-affinity interaction. gO is among the least conserved HCMV proteins, with 8 distinct genotypes. We observed high conservation of residues mediating gO-gL interactions but more extensive gO variability in the PDGFRα interface. Comparisons between our trimer structure and a previously determined structure composed of different subunit genotypes indicate that gO variability is accommodated by adjustments in the gO-PDGFRα interface. We identified two loops within gO that were disordered and apparently glycosylated, which could be deleted without disrupting PDGFRα binding. We also identified four gO residues that contact PDGFRα, which when mutated produced markedly reduced receptor binding. These residues fall within conserved contact sites of gO with PDGFRα and may represent key targets for anti-trimer neutralizing antibodies and HCMV vaccines. Finally, we observe that gO mutations distant from the gL interaction site impact trimer expression, suggesting that the intrinsic folding or stability of gO can impact the efficiency of trimer assembly. IMPORTANCE HCMV is a herpesvirus that infects a large percentage of the adult population and causes significant levels of disease in immunocompromised individuals and birth defects in the developing fetus. The virus encodes a complex protein machinery that coordinates infection of different cell types in the body, including a trimer formed of gH, gL, and gO subunits. Here, we studied the interactions of the HCMV trimer with its receptor on cells, the platelet derived growth factor receptor α (PDGFRα), to better understand how HCMV coordinates virus entry into cells. Our results add to our understanding of HCMV strain-specific differences and identify sites on the trimer that represent potential targets for therapeutic antibodies or vaccine development.


Cytomegalovirus/metabolism , Membrane Glycoproteins/metabolism , Protein Multimerization/physiology , Receptors, Platelet-Derived Growth Factor/chemistry , Receptors, Platelet-Derived Growth Factor/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Cryoelectron Microscopy/methods , Cytomegalovirus/chemistry , Cytomegalovirus/genetics , Fibroblasts/virology , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Protein Binding , Receptors, Platelet-Derived Growth Factor/genetics , Viral Envelope Proteins/classification , Viral Envelope Proteins/genetics , Virus Internalization
10.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article En | MEDLINE | ID: mdl-34445785

Protein homo-oligomerization is a very common phenomenon, and approximately half of proteins form homo-oligomeric assemblies composed of identical subunits. The vast majority of such assemblies possess internal symmetry which can be either exploited to help or poses challenges during structure determination. Moreover, aspects of symmetry are critical in the modeling of protein homo-oligomers either by docking or by homology-based approaches. Here, we first provide a brief overview of the nature of protein homo-oligomerization. Next, we describe how the symmetry of homo-oligomers is addressed by crystallographic and non-crystallographic symmetry operations, and how biologically relevant intermolecular interactions can be deciphered from the ordered array of molecules within protein crystals. Additionally, we describe the most important aspects of protein homo-oligomerization in structure determination by NMR. Finally, we give an overview of approaches aimed at modeling homo-oligomers using computational methods that specifically address their internal symmetry and allow the incorporation of other experimental data as spatial restraints to achieve higher model reliability.


Protein Multimerization/physiology , Proteins/chemistry , Algorithms , Humans , Models, Molecular , Molecular Docking Simulation/methods , Protein Conformation , Reproducibility of Results
11.
Neurochem Int ; 149: 105150, 2021 10.
Article En | MEDLINE | ID: mdl-34333057

G-protein coupled receptors exhibit numerous biological functions. The orphan G-protein coupled receptor GPR179 is a central component of a 1 Megadalton large signalling complex in the ON-pathway of the mammalian retina that assembles multiple proteins, including the metabotropic glutamate receptor mGluR6. Dimer formation is a hallmark of G-protein coupled receptors and some use intracellular C-termini for dimerization. Here we tested the dimerization properties of the intracellular C-terminal domains of mGluR6 and GPR179. While the C-termini of GPR179 and mGluR6 did not interact, we detected a robust homodimerization of a proximal region in the GPR179 C-terminus. Mapping studies defined a linear stretch of 64 amino acids as dimerization region. Bioinformatic analysis indicated that this dimerization region might adopt an α-helical structure that is predicted to dimerize by forming a coiled-coil. Based on these data, we speculate that homodimerization of GPR179 might contribute to the formation of large signalling complexes in the mammalian retina.


Computational Biology/methods , Protein Multimerization/physiology , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Amino Acid Sequence , Animals , Mice , Receptors, G-Protein-Coupled/metabolism
12.
Nucleic Acids Res ; 49(17): 10136-10149, 2021 09 27.
Article En | MEDLINE | ID: mdl-34403466

Nsp15 is a uridine specific endoribonuclease that coronaviruses employ to cleave viral RNA and evade host immune defense systems. Previous structures of Nsp15 from across Coronaviridae revealed that Nsp15 assembles into a homo-hexamer and has a conserved active site similar to RNase A. Beyond a preference for cleaving RNA 3' of uridines, it is unknown if Nsp15 has any additional substrate preferences. Here, we used cryo-EM to capture structures of Nsp15 bound to RNA in pre- and post-cleavage states. The structures along with molecular dynamics and biochemical assays revealed critical residues involved in substrate specificity, nuclease activity, and oligomerization. Moreover, we determined how the sequence of the RNA substrate dictates cleavage and found that outside of polyU tracts, Nsp15 has a strong preference for purines 3' of the cleaved uridine. This work advances our understanding of how Nsp15 recognizes and processes viral RNA, and will aid in the development of new anti-viral therapeutics.


Endoribonucleases/metabolism , RNA, Viral/metabolism , SARS-CoV-2/genetics , Uridine/chemistry , Viral Nonstructural Proteins/metabolism , COVID-19/virology , Catalytic Domain/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Protein Multimerization/physiology , RNA, Viral/genetics , Substrate Specificity
13.
Biochem Pharmacol ; 192: 114689, 2021 10.
Article En | MEDLINE | ID: mdl-34274353

P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.


Purinergic P2Y Receptor Agonists/metabolism , Purinergic P2Y Receptor Antagonists/metabolism , Receptors, Purinergic P2Y/chemistry , Receptors, Purinergic P2Y/metabolism , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Humans , Protein Multimerization/drug effects , Protein Multimerization/physiology , Purinergic P2Y Receptor Agonists/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
14.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article En | MEDLINE | ID: mdl-34298920

Protein dimerization plays a crucial role in the regulation of numerous biological processes. However, detecting protein dimers in a cellular environment is still a challenge. Here we present a methodology to measure the extent of dimerization of GFP-tagged proteins in living cells, using a combination of fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis of single-color fluorescence fluctuation data. We named this analysis method brightness and diffusion global analysis (BDGA) and adapted it for biological purposes. Using cell lysates containing different ratios of GFP and tandem-dimer GFP (diGFP), we show that the average brightness per particle is proportional to the fraction of dimer present. We further adapted this methodology for its application in living cells, and we were able to distinguish GFP, diGFP, as well as ligand-induced dimerization of FKBP12 (FK506 binding protein 12)-GFP. While other analysis methods have only sporadically been used to study dimerization in living cells and may be prone to errors, this paper provides a robust approach for the investigation of any cytosolic protein using single-color fluorescence fluctuation spectroscopy.


Protein Multimerization/physiology , Proteins/metabolism , Cells, Cultured , Cytosol/metabolism , Dictyostelium/metabolism , Diffusion , Dimerization , Fluorescence , Green Fluorescent Proteins/metabolism , Ligands , Photons , Spectrometry, Fluorescence/methods
15.
Biomed Pharmacother ; 141: 111800, 2021 Sep.
Article En | MEDLINE | ID: mdl-34175819

BACKGROUND: The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with µ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia. METHODS: Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and µ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/µ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity. RESULTS: In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and µ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone. CONCLUSION: The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/µ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.


Analgesics, Opioid/administration & dosage , Endothelin A Receptor Antagonists/administration & dosage , Morphine/administration & dosage , Protein Multimerization/physiology , Receptor, Endothelin A/metabolism , Receptors, Opioid, mu/metabolism , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Pain Measurement/drug effects , Pain Measurement/methods , Peptides, Cyclic/administration & dosage , Protein Multimerization/drug effects
16.
Biochemistry ; 60(23): 1836-1852, 2021 06 15.
Article En | MEDLINE | ID: mdl-34015918

HU is a bacterial nucleoid-associated protein. Two homologues, known as HU-A, and HU-B, are found in Escherichia coli within which the early, late, and stationary phases of growth are dominated by HU-AA, HU-BB, and HU-AB dimers, respectively. Here, using genetic manipulation, mass spectrometry, spectroscopy, chromatography, and electrophoretic examination of glutaraldehyde-mediated cross-linking of subunits, in combination with experiments involving mixing, co-expression, unfolding, and refolding of HU chains, we show that the spontaneous formation of HU-AB heterodimers that is reported to occur upon mixing of wild-type HU-AA and HU-BB homodimers does not occur if chains possess N-terminal extensions. We show that N-terminal extensions interfere with the conversion of homodimers into heterodimers. We also show that heterodimers are readily formed at anticipated levels by chains possessing N-terminal extensions in vivo, when direct chain-chain interactions are facilitated through production of HU-A and HU-B chains from proximal genes located upon the same plasmid. From the data, two explanations emerge regarding the mechanism by which N-terminal extensions happen to adversely affect the conversion of homodimers into heterodimers. (1) The disappearance of the α-amino group at HU's N-terminus impacts the intersubunit stacking of ß-sheets at HU's dimeric interface, reducing the ease with which subunits dissociate from each other. Simultaneously, (2) the presence of an N-terminal extension appears to sterically prevent the association of HU-AA and HU-BB homodimers into a critically required, heterotetrameric intermediate (within which homodimers could otherwise exchange subunits without releasing monomers into solution, by remaining physically associated with each other).


Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Amino Acid Sequence/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/ultrastructure , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Plasmids/genetics , Protein Conformation , Protein Multimerization/physiology
17.
Int J Mol Sci ; 22(9)2021 Apr 26.
Article En | MEDLINE | ID: mdl-33926037

The 20S proteasome, which is composed of layered α and ß heptameric rings, is the core complex of the eukaryotic proteasome involved in proteolysis. The α7 subunit is a component of the α ring, and it self-assembles into a homo-tetradecamer consisting of two layers of α7 heptameric rings. However, the structure of the α7 double ring in solution has not been fully elucidated. We applied cryo-electron microscopy to delineate the structure of the α7 double ring in solution, revealing a structure different from the previously reported crystallographic model. The D7-symmetrical double ring was stacked with a 15° clockwise twist and a separation of 3 Å between the two rings. Two more conformations, dislocated and fully open, were also identified. Our observations suggest that the α7 double-ring structure fluctuates considerably in solution, allowing for the insertion of homologous α subunits, finally converting to the hetero-heptameric α rings in the 20S proteasome.


Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/ultrastructure , Cryoelectron Microscopy/methods , Cytoplasm/metabolism , Humans , Proteasome Endopeptidase Complex/genetics , Protein Multimerization/physiology , Protein Subunits/metabolism
18.
Biochem Pharmacol ; 188: 114560, 2021 06.
Article En | MEDLINE | ID: mdl-33844984

Emerging evidence suggests that G protein coupled receptor 55 (GPR55) may influence adrenoceptor function/activity in the cardiovascular system. Whether this reflects direct interaction (dimerization) between receptors or signalling crosstalk has not been investigated. This study explored the interaction between GPR55 and the alpha 1A-adrenoceptor (α1A-AR) in the cardiovascular system and the potential to influence function/signalling activities. GPR55 and α1A-AR mediated changes in both cardiac and vascular function was assessed in male wild-type (WT) and GPR55 homozygous knockout (GPR55-/-) mice by pressure volume loop analysis and isolated vessel myography, respectively. Dimerization of GPR55 with the α1A-AR was examined in transfected Chinese hamster ovary-K1 (CHO-K1) cells via Bioluminescence Resonance Energy Transfer (BRET). GPR55 and α1A-AR mediated signalling (extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation) was investigated in neonatal rat ventricular cardiomyocytes using AlphaScreen proximity assays. GPR55-/- mice exhibited both enhanced pressor and inotropic responses to A61603 (α1A-AR agonist), while in isolated vessels, A61603 induced vasoconstriction was attenuated by a GPR55-dependent mechanism. Conversely, GPR55-mediated vasorelaxation was not altered by pharmacological blockade of α1A-ARs with tamsulosin. While cellular studies demonstrated that GPR55 and α1A-AR failed to dimerize, pharmacological blockade of GPR55 altered α1A-AR mediated signalling and reduced ERK1/2 phosphorylation. Taken together, this study provides evidence that GPR55 and α1A-AR do not dimerize to form heteromers, but do interact at the signalling level to modulate the function of α1A-AR in the cardiovascular system.


Protein Multimerization/physiology , Receptors, Adrenergic, alpha-1/genetics , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Cannabinoid/deficiency , Receptors, Cannabinoid/genetics , Adrenergic alpha-1 Receptor Agonists/pharmacology , Animals , Animals, Newborn , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Pregnancy , Protein Multimerization/drug effects , Rats , Rats, Sprague-Dawley
19.
Cell Cycle ; 20(8): 808-818, 2021 04.
Article En | MEDLINE | ID: mdl-33794722

The cyclin D-CDK4/6 complex has two distinct functions. Its kinase-dependent role involves its ability to act as serine/threonine kinase, responsible for phosphorylation of substrates required for cell cycle transitions, while its kinase-independent function involves its ability to act as a reservoir for p27Kip1. This association sequesters p27 from cyclin E-CDK2 complexes, allowing them to remain active. The aim of this current study is two-fold: to understand the contribution of the kinase-dependent and kinase-independent functions of CDK4 and CDK6 in epithelial cells and to directly compare CDK4 and CDK6 in a simple model system, TGF-ß treatment, where arrest is initiated by the expression of p15Ink4b. Cells that overexpressed a catalytically inactive, p15-insensitive CDK6 variant (p27 sequestration only mutant) were able to overcome TGF-ß-mediated arrest by maintaining CDK2 activity, while cells expressing the identical mutations in CDK4 were not. This result can be partially explained by the presence of a previously unidentified cyclin D-CDK6 dimer, which serves as a sink for free p27 during TGF-ß treatment, enabling CDK2 to remain inhibitor free. The use of the TGF-ß model system and the characterization of CDK pool dynamics and p27 switching is relevant to the CDK4/6 specific inhibitors, such as palbociclib, whose mechanism of action may resemble that of p15.


Cell Cycle Checkpoints/physiology , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 6/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Multimerization/physiology , Transforming Growth Factor beta/toxicity , Cell Cycle Checkpoints/drug effects , Cells, Cultured , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Cyclins/antagonists & inhibitors , Cyclins/metabolism , Humans , Protein Multimerization/drug effects
20.
Pflugers Arch ; 473(9): 1361-1376, 2021 09.
Article En | MEDLINE | ID: mdl-33591421

Rhodopsin is the light receptor in rod photoreceptor cells that initiates scotopic vision. Studies on the light receptor span well over a century, yet questions about the organization of rhodopsin within the photoreceptor cell membrane still persist and a consensus view on the topic is still elusive. Rhodopsin has been intensely studied for quite some time, and there is a wealth of information to draw from to formulate an organizational picture of the receptor in native membranes. Early experimental evidence in apparent support for a monomeric arrangement of rhodopsin in rod photoreceptor cell membranes is contrasted and reconciled with more recent visual evidence in support of a supramolecular organization of rhodopsin. What is known so far about the determinants of forming a supramolecular structure and possible functional roles for such an organization are also discussed. Many details are still missing on the structural and functional properties of the supramolecular organization of rhodopsin in rod photoreceptor cell membranes. The emerging picture presented here can serve as a springboard towards a more in-depth understanding of the topic.


Cell Membrane/chemistry , Retinal Rod Photoreceptor Cells/chemistry , Rhodopsin/chemistry , Animals , Cell Membrane/metabolism , Humans , Protein Multimerization/physiology , Protein Structure, Secondary , Retinal Rod Photoreceptor Cells/metabolism , Rhodopsin/metabolism
...