Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.946
1.
Trends Neurosci ; 47(5): 324-325, 2024 May.
Article En | MEDLINE | ID: mdl-38553385

A recent study by Kumar et al. identified several biological pathways that regulate the levels of endogenous alpha-synuclein (α-synuclein). They specifically highlighted the N-terminal acetylation (NTA) pathway as an important factor in maintaining the stability of endogenous α-synuclein, suggesting targeting the NTA pathway as a potential therapeutic approach.


Synucleinopathies , alpha-Synuclein , Acetylation , Humans , Synucleinopathies/metabolism , Synucleinopathies/genetics , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Animals , Protein Processing, Post-Translational/physiology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
2.
J Vis Exp ; (199)2023 09 15.
Article En | MEDLINE | ID: mdl-37782089

Gene expression control occurs partially by modifications in chromatin structure, including the addition and removal of posttranslational modifications to histone tails. Histone post-translational modifications (HPTMs) can either facilitate gene expression or repression. For example, acetylation of histone tail lysine residues neutralizes the positive charge and reduces interactions between the tail and negatively charged DNA. The decrease in histone tail-DNA interactions results in increased accessibility of the underlying DNA, allowing for increased transcription factor access. The acetylation mark also serves as a recognition site for bromodomain-containing transcriptional activators, together resulting in enhanced gene expression. Histone marks can be dynamically regulated during cell differentiation and in response to different cellular environments and stimuli. While next-generation sequencing approaches have begun to characterize genomic locations for individual histone modifications, only one modification can be examined concurrently. Given that there are hundreds of different HPTMs, we have developed a high throughput, quantitative measure of global HPTMs that can be used to screen histone modifications prior to conducting more extensive genome sequencing approaches. This protocol describes a flow cytometry-based method to detect global HPTMs and can be conducted using cells in culture or isolated cells from in vivo tissues. We present example data from isolated mouse brain microglia to demonstrate the sensitivity of the assay to detect global shifts in HPTMs in response to a bacteria-derived immune stimulus (lipopolysaccharide). This protocol allows for the rapid and quantitative assessment of HPTMs and can be applied to any transcriptional or epigenetic regulator that can be detected by an antibody.


Brain , Histones , Microglia , Protein Processing, Post-Translational , Animals , Mice , Acetylation , Brain/metabolism , DNA/genetics , Flow Cytometry , Histones/genetics , Histones/metabolism , Microglia/metabolism , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology
3.
J Biol Chem ; 299(7): 104843, 2023 07.
Article En | MEDLINE | ID: mdl-37209820

Protein posttranslation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.


Protein Methyltransferases , Protein Processing, Post-Translational , Humans , Methylation , Protein Methyltransferases/metabolism , Protein Processing, Post-Translational/physiology , Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs
4.
Cells ; 12(6)2023 03 14.
Article En | MEDLINE | ID: mdl-36980236

The importance of estrogenic signaling for a broad spectrum of biological processes, including reproduction, cancer development, energy metabolism, memory and learning, and so on, has been well documented. Among reported estrogen receptors, estrogen receptor alpha (ERα) has been known to be a major mediator of cellular estrogenic signaling. Accumulating evidence has shown that the regulations of ERα gene transcription, splicing, and expression across the tissues are highly complex. The ERα promoter region is composed of multiple leader exons and 5'-untranslated region (5'-UTR) exons. Differential splicing results in multiple ERα proteins with different molecular weights and functional domains. Furthermore, various post-translational modifications (PTMs) further impact ERα cellular localization, ligand affinity, and therefore functionality. These splicing isoforms and PTMs are differentially expressed in a tissue-specific manner, mediate certain aspects of ERα signaling, and may work even antagonistically against the full-length ERα. The fundamental understanding of the ERα splicing isoforms in normal physiology is limited and association studies of the splicing isoforms and the PTMs are scarce. This review aims to summarize the functional diversity of these ERα variants and the PTMs in normal physiological processes, particularly as studied in transgenic mouse models.


Estrogen Receptor alpha , Protein Processing, Post-Translational , Animals , Mice , Alternative Splicing/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Exons , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Processing, Post-Translational/physiology
5.
Molecules ; 27(15)2022 Jul 29.
Article En | MEDLINE | ID: mdl-35956818

Deciphering the protein posttranslational modification (PTM) code is one of the greatest biochemical challenges of our time. Phosphorylation and ubiquitylation are key PTMs that dictate protein function, recognition, sub-cellular localization, stability, turnover and fate. Hence, failures in their regulation leads to various disease. Chemical protein synthesis allows preparation of ubiquitinated and phosphorylated proteins to study their biochemical properties in great detail. However, monitoring these modifications in intact cells or in cell extracts mostly depends on antibodies, which often have off-target binding. Here, we report that the most widely used antibody for ubiquitin (Ub) phosphorylated at serine 65 (pUb) has significant off-targets that appear during mitosis. These off-targets are connected to polo-like kinase 1 (PLK1) mediated phosphorylation of cell cycle-related proteins and the anaphase promoting complex subunit 1 (APC1).


Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome , Cell Cycle Proteins , Mitosis , Protein Processing, Post-Translational , Ubiquitin , Antibodies/genetics , Antibodies/metabolism , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Mitosis/genetics , Mitosis/physiology , Phosphorylation , Protein Binding/genetics , Protein Binding/physiology , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Serine/genetics , Serine/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , Polo-Like Kinase 1
6.
J Proteome Res ; 21(8): 1857-1867, 2022 08 05.
Article En | MEDLINE | ID: mdl-35772009

Histones are the building units of nucleosomes, which constitute chromatin. Histone post-translational modifications (PTMs) play an essential role in epigenetic gene regulation. The Plasmodium falciparum genome encodes canonical and variant histones and a collection of conserved enzymes for histone PTMs and chromatin remodeling. Herein, we profiled the P. falciparum histone PTMs during the development of gametocytes, the obligatory stage for parasite transmission. Mass spectrometric analysis of histones extracted from the early, middle, and late stages of gametocytes identified 457 unique histone peptides with 90 PTMs, of which 50% were novel. The gametocyte histone PTMs display distinct patterns from asexual stages, with many new methylation sites in histones H3 and H3.3 (e.g., K14, K18, and K37). Quantitative analyses revealed a high abundance of acetylation in H3 and H4, mono-methylation of H3/H3.3 K37, and ubiquitination of H3BK112, suggesting that these PTMs play critical roles in gametocytes. Gametocyte histones also showed extensive and unique combinations of PTMs. These data indicate that the parasite harbors distinct transcription regulation mechanisms during gametocyte development and lay the foundation for further characterization of epigenetic regulation in the life cycle of the malaria parasite.


Gametogenesis , Histones , Plasmodium falciparum , Protein Processing, Post-Translational , Acetylation , Epigenesis, Genetic/genetics , Gametogenesis/genetics , Gametogenesis/physiology , Histones/genetics , Histones/metabolism , Humans , Life Cycle Stages/genetics , Life Cycle Stages/physiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology
7.
Essays Biochem ; 66(2): 147-154, 2022 08 05.
Article En | MEDLINE | ID: mdl-35678302

Proper regulation of protein homeostasis (proteostasis) is essential for all organisms to survive. A diverse range of post-translational modifications (PTMs) allow precise control of protein abundance, function and cellular localisation. In eukaryotic cells, ubiquitination is a widespread, essential PTM that regulates most, if not all cellular processes. Ubiquitin is added to target proteins via a well-defined enzymatic cascade involving a range of conjugating enzymes and ligases, while its removal is catalysed by a class of enzymes known as deubiquitinases (DUBs). Many human diseases have now been linked to DUB dysfunction, demonstrating the importance of these enzymes in maintaining cellular function. These findings have led to a recent explosion in studying the structure, molecular mechanisms and physiology of DUBs in mammalian systems. Plant DUBs have however remained relatively understudied, with many DUBs identified but their substrates, binding partners and the cellular pathways they regulate only now beginning to emerge. This review focuses on the most recent findings in plant DUB biology, particularly on newly identified DUB substrates and how these offer clues to the wide-ranging roles that DUBs play in the cell. Furthermore, the future outlook on how new technologies in mammalian systems can accelerate the plant DUB field forward is discussed.


Deubiquitinating Enzymes , Plant Proteins , Plants , Proteostasis , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Proteostasis/genetics , Proteostasis/physiology , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination/genetics , Ubiquitination/physiology
8.
J Vis Exp ; (183)2022 05 05.
Article En | MEDLINE | ID: mdl-35604167

Flat cultures of mammalian cells are a widely used in vitro approach for understanding cell physiology, but this system is limited in modeling solid tissues due to unnaturally rapid cell replication. This is particularly challenging when modeling mature chromatin, as fast replicating cells are frequently involved in DNA replication and have a heterogeneous polyploid population. Presented below is a workflow for modeling, treating, and analyzing quiescent chromatin modifications using a three-dimensional (3D) cell culture system. Using this protocol, hepatocellular carcinoma cell lines are grown as reproducible 3D spheroids in an incubator providing active nutrient diffusion and low shearing forces. Treatment with sodium butyrate and sodium succinate induced an increase in histone acetylation and succinylation, respectively. Increases in levels of histone acetylation and succinylation are associated with a more open chromatin state. Spheroids are then collected for isolation of cell nuclei, from which histone proteins are extracted for the analysis of their post-translational modifications. Histone analysis is performed via liquid chromatography coupled online with tandem mass spectrometry, followed by an in-house computational pipeline. Finally, examples of data representation to investigate the frequency and occurrence of combinatorial histone marks are shown.


Cell Culture Techniques, Three Dimensional , Histones , Liver , Protein Processing, Post-Translational , Acetylation , Animals , Cell Culture Techniques, Three Dimensional/methods , Chromatin/physiology , Chromatography, Liquid , Histones/analysis , Histones/metabolism , Liver/metabolism , Mammals/metabolism , Protein Processing, Post-Translational/physiology , Spheroids, Cellular/metabolism
9.
Nat Commun ; 13(1): 783, 2022 02 10.
Article En | MEDLINE | ID: mdl-35145108

Infinium methylation arrays are not available for the vast majority of non-human mammals. Moreover, even if species-specific arrays were available, probe differences between them would confound cross-species comparisons. To address these challenges, we developed the mammalian methylation array, a single custom array that measures up to 36k CpGs per species that are well conserved across many mammalian species. We designed a set of probes that can tolerate specific cross-species mutations. We annotate the array in over 200 species and report CpG island status and chromatin states in select species. Calibration experiments demonstrate the high fidelity in humans, rats, and mice. The mammalian methylation array has several strengths: it applies to all mammalian species even those that have not yet been sequenced, it provides deep coverage of conserved cytosines facilitating the development of epigenetic biomarkers, and it increases the probability that biological insights gained in one species will translate to others.


Conserved Sequence , DNA Methylation , Mammals/genetics , Mammals/metabolism , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Animals , Biomarkers , CpG Islands , Epigenesis, Genetic , Humans , Mice , Mutation , Rats , Transcriptome
10.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article En | MEDLINE | ID: mdl-35216074

Osmotic stress can be detrimental to plants, whose survival relies heavily on proteomic plasticity. Protein ubiquitination is a central post-translational modification in osmotic-mediated stress. In this study, we used the K-Ɛ-GG antibody enrichment method integrated with high-resolution mass spectrometry to compile a list of 719 ubiquitinated lysine (K-Ub) residues from 450 Arabidopsis root membrane proteins (58% of which are transmembrane proteins), thereby adding to the database of ubiquitinated substrates in plants. Although no ubiquitin (Ub) motifs could be identified, the presence of acidic residues close to K-Ub was revealed. Our ubiquitinome analysis pointed to a broad role of ubiquitination in the internalization and sorting of cargo proteins. Moreover, the simultaneous proteome and ubiquitinome quantification showed that ubiquitination is mostly not involved in membrane protein degradation in response to short osmotic treatment but that it is putatively involved in protein internalization, as described for the aquaporin PIP2;1. Our in silico analysis of ubiquitinated proteins shows that two E2 Ub-conjugating enzymes, UBC32 and UBC34, putatively target membrane proteins under osmotic stress. Finally, we revealed a positive role for UBC32 and UBC34 in primary root growth under osmotic stress.


Arabidopsis/metabolism , Arabidopsis/physiology , Osmotic Pressure/physiology , Plant Roots/metabolism , Plant Roots/physiology , Ubiquitination/physiology , Lysine/metabolism , Membrane Proteins/metabolism , Protein Processing, Post-Translational/physiology , Proteome/metabolism , Proteomics/methods , Ubiquitin/metabolism , Ubiquitinated Proteins/metabolism
11.
Biochem Pharmacol ; 197: 114907, 2022 03.
Article En | MEDLINE | ID: mdl-35007523

Phosphorylation of proteins is one of the most extensively investigated post-translational protein modifications. Threonine, serine and tyrosine in proteins are the most commonly phosphorylated amino acids. Dysregulated cancer-related signaling pathways due to aberrant phosphorylation status of the key protein(s) in these pathways exist in most malignancies. Intensive studies in the recent decade have implicated long non-coding RNAs (lncRNAs) in the precise regulation of protein phosphorylation in cancers. In this review, we systematically delve into recent advance that underlines the multidimensional role of lncRNAs in modulating protein phosphorylation, regulating cancerous signaling and impacting prognosis of gastrointestinal (GI) cancers including hepatocellular carcinoma, colorectal cancer, gastric cancer, esophageal cancer, and pancreatic cancer. LncRNAs regulate protein phosphorylation via directly binding to the target protein(s), interacting with the partner protein(s) of the target protein(s) or lncRNAs-encoded small peptides. Although there are still extensive studies on disclosing the intricate interactions between lncRNAs and proteins and their impacts on protein phosphorylation, we believe that targeting lncRNAs controlling phosphorylation of key protein(s) in cancerous signaling pathways might provide novel paths for precision therapeutics of GI cancers in the future.


Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Protein Processing, Post-Translational/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gastrointestinal Neoplasms/drug therapy , Humans , Phosphorylation/drug effects , Phosphorylation/physiology , Protein Processing, Post-Translational/drug effects
12.
Cell Mol Life Sci ; 79(2): 94, 2022 Jan 25.
Article En | MEDLINE | ID: mdl-35079870

Numerous post-translational modifications (PTMs) govern the collective metabolism of a cell through altering the structure and functions of proteins. The action of the most prevalent PTMs, encompassing phosphorylation, methylation, acylations, ubiquitination and glycosylation is well documented. A less explored protein PTM, conversion of peptidylarginine to citrulline, is the subject of this review. The process of citrullination is catalysed by peptidylarginine deiminases (PADs), a family of conserved enzymes expressed in a variety of human tissues. Accumulating evidence suggest that citrullination plays a significant role in regulating cellular metabolism and gene expression by affecting a multitude of pathways and modulating the chromatin status. Here, we will discuss the biochemical nature of arginine citrullination, the enzymatic machinery behind it and also provide information on the pathological consequences of citrullination in the development of inflammatory diseases (rheumatoid arthritis, multiple sclerosis, psoriasis, systemic lupus erythematosus, periodontitis and COVID-19), cancer and thromboembolism. Finally, developments on inhibitors against protein citrullination and recent clinical trials providing a promising therapeutic approach to inflammatory disease by targeting citrullination are discussed.


Autoimmune Diseases/pathology , Citrullination/physiology , Inflammation/pathology , Protein Processing, Post-Translational/physiology , Protein-Arginine Deiminases/metabolism , COVID-19/pathology , Citrulline/biosynthesis , Energy Metabolism/physiology , Extracellular Traps/immunology , Gene Expression Regulation/genetics , Humans , Neoplasms/pathology , SARS-CoV-2/immunology , Thromboembolism/pathology
13.
Neurosci Lett ; 767: 136302, 2022 01 10.
Article En | MEDLINE | ID: mdl-34710551

Beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is a key drug target against Alzheimer's Disease however, due to its promiscuous proteolytic activity, little is known about its physiological functions. Previous studies have analysed BACE1 cleavage products to examine BACE1 interactions and determine substrates, but these studies cannot establish non-enzymatic (and potentially functional) associations. This study used the biotin identification proximity assay to establish the BACE1 interactome in healthy neuronal cells and identified interactions involved in BACE1 trafficking, post-translational modification and substrates. Furthermore, this method has identified a putative novel role for BACE1 in sex hormone signalling and haem regulation through interaction with the progesterone receptor membrane component 2 (PGRC2). Data are available via ProteomeXchange with identifier PXD021464.


Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Neurons/metabolism , Animals , Cell Line , Membrane Proteins/metabolism , Mice , Protein Processing, Post-Translational/physiology , Protein Transport/physiology , Receptors, Progesterone/metabolism
14.
Mol Pharmacol ; 101(1): 24-32, 2022 01.
Article En | MEDLINE | ID: mdl-34689119

DNA topoisomerases regulate the topological state of DNA, relaxing DNA supercoils and resolving catenanes and knots that result from biologic processes, such as transcription and replication. DNA topoisomerase II (TOP2) enzymes achieve this by binding DNA and introducing an enzyme-bridged DNA double-strand break (DSB) where each protomer of the dimeric enzyme is covalently attached to the 5' end of the cleaved DNA via an active site tyrosine phosphodiester linkage. The enzyme then passes a second DNA duplex through the DNA break, before religation and release of the enzyme. However, this activity is potentially hazardous to the cell, as failure to complete religation leads to persistent TOP2 protein-DNA covalent complexes, which are cytotoxic. Indeed, this property of topoisomerase has been exploited in cancer therapy in the form of topoisomerase poisons which block the religation stage of the reaction cycle, leading to an accumulation of topoisomerase-DNA adducts. A number of parallel cellular processes have been identified that lead to removal of these covalent TOP2-DNA complexes, facilitating repair of the resulting protein-free DSB by standard DNA repair pathways. These pathways presumably arose to repair spontaneous stalled or poisoned TOP2-DNA complexes, but understanding their mechanisms also has implications for cancer therapy, particularly resistance to anti-cancer TOP2 poisons and the genotoxic side effects of these drugs. Here, we review recent progress in the understanding of the processing of TOP2 DNA covalent complexes, the basic components and mechanisms, as well as the additional layer of complexity posed by the post-translational modifications that modulate these pathways. SIGNIFICANCE STATEMENT: Multiple pathways have been reported for removal and repair of TOP2-DNA covalent complexes to ensure the timely and efficient repair of TOP2-DNA covalent adducts to protect the genome. Post-translational modifications, such as ubiquitination and SUMOylation, are involved in the regulation of TOP2-DNA complex repair. Small molecule inhibitors of these post-translational modifications may help to improve outcomes of TOP2 poison chemotherapy, for example by increasing TOP2 poison cytotoxicity and reducing genotoxicity, but this remains to be determined.


DNA Repair/physiology , DNA Topoisomerases, Type II/metabolism , Topoisomerase II Inhibitors/pharmacology , DNA Breaks/drug effects , DNA Damage/drug effects , DNA Damage/physiology , DNA Repair/drug effects , DNA Topoisomerases, Type II/genetics , Humans , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/physiology
15.
Mol Cell Biol ; 42(1): e0037321, 2022 01 20.
Article En | MEDLINE | ID: mdl-34694912

In our previously published studies, RNA polymerase II transcription initiation complexes were assembled from yeast nuclear extracts onto immobilized transcription templates and analyzed by quantitative mass spectrometry. In addition to the expected basal factors and coactivators, we discovered that the uncharacterized protein Gds1/YOR355W showed activator-stimulated association with promoter DNA. Gds1 coprecipitated with the histone H4 acetyltransferase NuA4, and its levels often tracked with NuA4 in immobilized-template experiments. GDS1 deletion led to a reduction in H4 acetylation in vivo and caused other phenotypes consistent with a partial loss of NuA4 activity. Genome-wide chromatin immunoprecipitation revealed that the reduction in H4 acetylation was strongest at ribosomal protein gene promoters and other genes with high NuA4 occupancy. Therefore, while Gds1 is not a stoichiometric subunit of NuA4, we propose that it interacts with and modulates NuA4 in specific promoter contexts. Gds1 has no obvious metazoan homolog, but the Alphafold2 algorithm predicts that a section of Gds1 resembles the winged-helix/forkhead domain found in DNA-binding proteins such as the FOX transcription factors and histone H1.


Histone Acetyltransferases/metabolism , Protein Processing, Post-Translational/physiology , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Acetylation , Chromatin Immunoprecipitation/methods , DNA-Binding Proteins/metabolism , Histone Acetyltransferases/genetics , Histones/metabolism , Nucleosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic/genetics
16.
J Med Virol ; 94(1): 342-348, 2022 01.
Article En | MEDLINE | ID: mdl-34528721

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The S protein is the key viral protein for associating with ACE2, the receptor for SARS-CoV-2. There are many kinds of posttranslational modifications in S protein. However, the detailed mechanism of palmitoylation of SARS-CoV-2 S remains to be elucidated. In our current study, we characterized the palmitoylation of SARS-CoV-2 S. Both the C15 and cytoplasmic tail of SARS-CoV-2 S were palmitoylated. Fatty acid synthase inhibitor C75 and zinc finger DHHC domain-containing palmitoyltransferase (ZDHHC) inhibitor 2-BP reduced the palmitoylation of S. Interestingly, palmitoylation of SARS-CoV-2 S was not required for plasma membrane targeting of S but was critical for S-mediated syncytia formation and SARS-CoV-2 pseudovirus particle entry. Overexpression of ZDHHC2, ZDHHC3, ZDHHC4, ZDHHC5, ZDHHC8, ZDHHC9, ZDHHC11, ZDHHC14, ZDHHC16, ZDHHC19, and ZDHHC20 promoted the palmitoylation of S. Furthermore, those ZDHHCs were identified to associate with SARS-CoV-2 S. Our study not only reveals the mechanism of S palmitoylation but also will shed important light into the role of S palmitoylation in syncytia formation and virus entry.


Cell Membrane/metabolism , Giant Cells/metabolism , Lipoylation/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Acyltransferases/antagonists & inhibitors , COVID-19/pathology , Cell Line , HEK293 Cells , Humans , Protein Processing, Post-Translational/physiology
17.
J Am Soc Mass Spectrom ; 33(1): 189-197, 2022 Jan 05.
Article En | MEDLINE | ID: mdl-34928623

Proteolysis is one of the most important protein post-translational modifications (PTMs) that influences the functions, activities, and structures of nearly all proteins during their lifetime. To facilitate the targeted identification of low-abundant proteolytic products, we devised a strategy incorporating a novel biotinylated reagent PFP (pentafluorophenyl)-Rink-biotin to specifically target, enrich and identify proteolytic N-termini. Within the PFP-Rink-biotin reagent, a mass spectrometry (MS)-cleavable feature was designed to assist in the unambiguous confirmation of the enriched proteolytic N-termini. The proof-of-concept study was performed with multiple standard proteins whose N-termini were successfully modified, enriched and identified by a signature ion (SI) in the MS/MS fragmentation, along with the determination of N-terminal peptide sequences by multistage tandem MS of the complementary fragment generated after the cleavage of MS-cleavable bond. For large-scale application, the enrichment and identification of protein N-termini from Escherichia coli cells were demonstrated, facilitated by an in-house developed NTermFinder bioinformatics workflow. We believe this approach will be beneficial in improving the confidence of identifying proteolytic substrates in a native cellular environment.


Peptide Hydrolases , Protein Processing, Post-Translational/physiology , Proteins , Tandem Mass Spectrometry/methods , Biotin/chemistry , Computational Biology/methods , Fluorobenzenes/chemistry , Fluorocarbons/chemistry , Peptide Hydrolases/analysis , Peptide Hydrolases/metabolism , Phenols/chemistry , Proteins/chemistry , Proteins/metabolism , Proteolysis
18.
Nat Cell Biol ; 24(1): 99-111, 2022 01.
Article En | MEDLINE | ID: mdl-34961794

Histone variants and the associated post-translational modifications that govern the stemness of haematopoietic stem cells (HSCs) and differentiation thereof into progenitors (HSPCs) have not been well defined. H3.3 is a replication-independent H3 histone variant in mammalian systems that is enriched at both H3K4me3- and H3K27me3-marked bivalent genes as well as H3K9me3-marked endogenous retroviral repeats. Here we show that H3.3, but not its chaperone Hira, prevents premature HSC exhaustion and differentiation into granulocyte-macrophage progenitors. H3.3-null HSPCs display reduced expression of stemness and lineage-specific genes with a predominant gain of H3K27me3 marks at their promoter regions. Concomitantly, loss of H3.3 leads to a reduction of H3K9me3 marks at endogenous retroviral repeats, opening up binding sites for the interferon regulatory factor family of transcription factors, allowing the survival of rare, persisting H3.3-null HSCs. We propose a model whereby H3.3 maintains adult HSC stemness by safeguarding the delicate interplay between H3K27me3 and H3K9me3 marks, enforcing chromatin adaptability.


Chromatin/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Histones/metabolism , Myelopoiesis/physiology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Cycle Proteins , Cell Line , Granulocytes/cytology , Hematopoiesis/physiology , Histone Chaperones , Human Umbilical Vein Endothelial Cells , Humans , Macrophages/cytology , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational/physiology , Transcription Factors
19.
Brief Bioinform ; 23(1)2022 01 17.
Article En | MEDLINE | ID: mdl-34864888

Post-translational modification (PTM) refers to the covalent and enzymatic modification of proteins after protein biosynthesis, which orchestrates a variety of biological processes. Detecting PTM sites in proteome scale is one of the key steps to in-depth understanding their regulation mechanisms. In this study, we presented an integrated method based on eXtreme Gradient Boosting (XGBoost), called iRice-MS, to identify 2-hydroxyisobutyrylation, crotonylation, malonylation, ubiquitination, succinylation and acetylation in rice. For each PTM-specific model, we adopted eight feature encoding schemes, including sequence-based features, physicochemical property-based features and spatial mapping information-based features. The optimal feature set was identified from each encoding, and their respective models were established. Extensive experimental results show that iRice-MS always display excellent performance on 5-fold cross-validation and independent dataset test. In addition, our novel approach provides the superiority to other existing tools in terms of AUC value. Based on the proposed model, a web server named iRice-MS was established and is freely accessible at http://lin-group.cn/server/iRice-MS.


Oryza , Protein Processing, Post-Translational , Acetylation , Computational Biology , Models, Biological , Oryza/metabolism , Protein Processing, Post-Translational/physiology , Proteome/metabolism , Ubiquitination
20.
Exp Eye Res ; 214: 108889, 2022 01.
Article En | MEDLINE | ID: mdl-34906599

Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.


Cataract/metabolism , Cell Cycle/physiology , Cytoskeleton/metabolism , Lens, Crystalline/metabolism , Protein Processing, Post-Translational/physiology , RNA-Binding Proteins/physiology , Transcription Factors/genetics , Aging/physiology , CELF1 Protein/metabolism , Cataract/pathology , Humans , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism
...