Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.729
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125727

RESUMEN

Branchio-oto-renal (BOR) and branchio-otic (BO) syndromes are characterized by anomalies affecting the ears, often accompanied by hearing loss, as well as abnormalities in the branchial arches and renal system. These syndromes exhibit a broad spectrum of phenotypes and a complex genomic landscape, with significant contributions from the EYA1 gene and the SIX gene family, including SIX1 and SIX5. Due to their diverse phenotypic presentations, which can overlap with other genetic syndromes, molecular genetic confirmation is essential. As sequencing technologies advance, whole-genome sequencing (WGS) is increasingly used in rare disease diagnostics. We explored the genomic landscape of 23 unrelated Korean families with typical or atypical BOR/BO syndrome using a stepwise approach: targeted panel sequencing and exome sequencing (Step 1), multiplex ligation-dependent probe amplification (MLPA) with copy number variation screening (Step 2), and WGS (Step 3). Integrating WGS into our diagnostic pipeline detected structure variations, including cryptic inversion and complex genomic rearrangement, eventually enhancing the diagnostic yield to 91%. Our findings expand the genomic architecture of BOR/BO syndrome and highlight the need for WGS to address the genetic diagnosis of clinically heterogeneous rare diseases.


Asunto(s)
Síndrome Branquio Oto Renal , Variaciones en el Número de Copia de ADN , Secuenciación Completa del Genoma , Humanos , Síndrome Branquio Oto Renal/genética , República de Corea , Secuenciación Completa del Genoma/métodos , Femenino , Masculino , Variaciones en el Número de Copia de ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Raras/genética , Proteínas Nucleares/genética , Proteínas de Homeodominio/genética , Niño , Proteínas Tirosina Fosfatasas/genética , Preescolar , Adulto , Genómica/métodos , Fenotipo , Linaje , Adolescente , Lactante
2.
Theranostics ; 14(9): 3423-3438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948056

RESUMEN

PRL1 and PRL3, members of the protein tyrosine phosphatase family, have been associated with cancer metastasis and poor prognosis. Despite extensive research on their protein phosphatase activity, their potential role as lipid phosphatases remains elusive. Methods: We conducted comprehensive investigations to elucidate the lipid phosphatase activity of PRL1 and PRL3 using a combination of cellular assays, biochemical analyses, and protein interactome profiling. Functional studies were performed to delineate the impact of PRL1/3 on macropinocytosis and its implications in cancer biology. Results: Our study has identified PRL1 and PRL3 as lipid phosphatases that interact with phosphoinositide (PIP) lipids, converting PI(3,4)P2 and PI(3,5)P2 into PI(3)P on the cellular membranes. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis, facilitating nutrient extraction, cell migration, and invasion, thereby contributing to tumor development. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis. Additionally, we found a correlation between PRL1/3 expression and glioma development, suggesting their involvement in glioma progression. Conclusions: Combining with the knowledge that PRLs have been identified to be involved in mTOR, EGFR and autophagy, here we concluded the physiological role of PRL1/3 in orchestrating the nutrient sensing, absorbing and recycling via regulating macropinocytosis through its lipid phosphatase activity. This mechanism could be exploited by tumor cells facing a nutrient-depleted microenvironment, highlighting the potential therapeutic significance of targeting PRL1/3-mediated macropinocytosis in cancer treatment.


Asunto(s)
Pinocitosis , Proteínas Tirosina Fosfatasas , Proteínas Tirosina Fosfatasas/metabolismo , Humanos , Línea Celular Tumoral , Animales , Proteínas de Neoplasias/metabolismo , Movimiento Celular , Ratones , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de la Membrana , Proteínas de Ciclo Celular
3.
Artículo en Chino | MEDLINE | ID: mdl-38973045

RESUMEN

Objective:To investigate the clinical phenotype of a family with branchio-oto syndrome (BOS) and to explore the genetic etiology of the syndrome in this family. Methods:Clinical data were collected from a child diagnosed with BOS and his family members. Genomic DNA was extracted from peripheral blood of the proband and his family members. Whole-exome sequencing was performed, and the mutation sites were verified and analyzed by Sanger sequencing. Results:The family consists of two generations with four members, three of whom exhibit the phenotype. Two members have hearing loss and bilateral preauricular fistulas and bilateral branchial cleft fistulas. One member has bilateral preauricular fistulas and bilateral branchial cleft fistulas. All of which were in line with the clinical diagnosis of gill ear syndrome, the inheritance mode of the family was autosomal dominant inheritance, genetic testing showed that all members of the family had c. 1744delC(p. L592Cfs*47) mutation in the EYA1 gene, while unaffected members have the wild-type allele at this locus. This mutation is a frameshift mutation, which results in the early appearance of the stop codon, and has not been reported so far. According to ACMG guidelines, the variant was preliminarily determined to be suspected pathogenic. Conclusion:The newly discovered EYA1c. 1744delC(p. L592Cfs*47) mutation in this family is the pathogenic mutant gene of the patients in this family, which further expands the mutation spectrum of EYA1 gene, gives us a new understanding of the disease, and provides an important reference for clinical diagnosis and genetic counseling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Linaje , Fenotipo , Proteínas Tirosina Fosfatasas , Humanos , Masculino , Proteínas Tirosina Fosfatasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Femenino , Secuenciación del Exoma , Síndrome Branquio Oto Renal/genética , Mutación del Sistema de Lectura , Mutación , Pruebas Genéticas , Niño , Adulto
4.
Adv Cancer Res ; 162: 45-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39069369

RESUMEN

Protein Tyrosine Phosphatases (PTPs) help to maintain the balance of protein phosphorylation signals that drive cell division, proliferation, and differentiation. These enzymes are also well-suited to redox-dependent signaling and oxidative stress response due to their cysteine-based catalytic mechanism, which requires a deprotonated thiol group at the active site. This review focuses on PTP structural characteristics, active site chemical properties, and vulnerability to change by reactive oxygen species (ROS). PTPs can be oxidized and inactivated by H2O2 through three non-exclusive mechanisms. These pathways are dependent on the coordinated actions of other H2O2-sensitive proteins, such as peroxidases like Peroxiredoxins (Prx) and Thioredoxins (Trx). PTPs undergo reversible oxidation by converting their active site cysteine from thiol to sulfenic acid. This sulfenic acid can then react with adjacent cysteines to form disulfide bonds or with nearby amides to form sulfenyl-amide linkages. Further oxidation of the sulfenic acid form to the sulfonic or sulfinic acid forms causes irreversible deactivation. Understanding the structural changes involved in both reversible and irreversible PTP oxidation can help with their chemical manipulation for therapeutic intervention. Nonetheless, more information remains unidentified than is presently known about the precise dynamics of proteins participating in oxidation events, as well as the specific oxidation states that can be targeted for PTPs. This review summarizes current information on PTP-specific oxidation patterns and explains how ROS-mediated signal transmission interacts with phosphorylation-based signaling machinery controlled by growth factor receptors and PTPs.


Asunto(s)
Oxidación-Reducción , Proteínas Tirosina Fosfatasas , Especies Reactivas de Oxígeno , Humanos , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Transducción de Señal , Estrés Oxidativo , Dominio Catalítico , Peróxido de Hidrógeno/metabolismo
5.
Cell Rep ; 43(7): 114492, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39002125

RESUMEN

In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown. Here, we show that Tof2 exhibits cell-cycle-regulated nucleolar delocalization and turnover. Depletion of the nuclear small ubiquitin-like modifier (SUMO) protease Ulp2 not only causes Tof2 polySUMOylation, nucleolar delocalization, and degradation but also leads to Cdc14 nucleolar release and activation. This outcome depends on polySUMOylation and the activity of downstream enzymes, including SUMO-targeted ubiquitin ligase and Cdc48/p97 segregase. We further developed a system to tether SUMO machinery to Tof2 and generated a SUMO-deficient tof2 mutant, and the results indicate that Tof2 polySUMOylation is necessary and sufficient for its nucleolar delocalization and degradation. Together, our work reveals a polySUMO-dependent mechanism that delocalizes Tof2 from the nucleolus to facilitate mitotic exit.


Asunto(s)
Nucléolo Celular , Mitosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sumoilación , Nucléolo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/metabolismo , Endopeptidasas/metabolismo , Proteína que Contiene Valosina/metabolismo
6.
Expert Opin Ther Pat ; 34(4): 187-209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38920057

RESUMEN

INTRODUCTION: Protein tyrosine phosphatases (PTPs), essential and evolutionarily highly conserved enzymes, govern cellular functions by modulating tyrosine phosphorylation, a pivotal post-translational modification for signal transduction. The recent strides in phosphatase drug discovery, leading to the identification of selective modulators for enzymes, restoring interest in the therapeutic targeting of protein phosphatases. AREAS COVERED: The compilation of patents up to the year 2023 focuses on the efficacy of various classes of Tyrosine phosphatases and their inhibitors, detailing their chemical structure and biochemical characteristics. These findings have broad implications, as they can be applied to treating diverse conditions like cancer, diabetes, autoimmune disorders, and neurological diseases. The search for scientific articles and patent literature was conducted using well known different platforms to gather information up to 2023. EXPERT OPINION: The latest improvements in protein tyrosine phosphatase (PTP) research include the discovery of new inhibitors targeting specific PTP enzymes, with a focus on developing allosteric site covalent inhibitors for enhanced efficacy and specificity. These advancements have not only opened up new possibilities for therapeutic interventions in various disease conditions but also hold the potential for innovative treatments. PTPs offer promising avenues for drug discovery efforts and innovative treatments across a spectrum of health conditions.


Asunto(s)
Diseño de Fármacos , Desarrollo de Medicamentos , Descubrimiento de Drogas , Inhibidores Enzimáticos , Patentes como Asunto , Proteínas Tirosina Fosfatasas , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Animales , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/efectos de los fármacos , Fosforilación , Sitio Alostérico , Procesamiento Proteico-Postraduccional
7.
J Med Chem ; 67(11): 8817-8835, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38768084

RESUMEN

Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.


Asunto(s)
Inhibidores Enzimáticos , Fosfotirosina , Humanos , Fosfotirosina/metabolismo , Fosfotirosina/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Estructura Molecular , Disponibilidad Biológica
8.
J Biol Chem ; 300(7): 107408, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796066

RESUMEN

The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here, we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α-mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.


Asunto(s)
Proteína Fosfatasa 2 , Proteínas Proto-Oncogénicas c-myc , Humanos , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Unión Proteica , Células HEK293 , Dominios Proteicos , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/química , Proteínas de Unión al ADN
9.
Ageing Res Rev ; 98: 102320, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719161

RESUMEN

Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.


Asunto(s)
Envejecimiento , Retículo Endoplásmico , Mitocondrias , Proteínas de Transporte Vesicular , Humanos , Envejecimiento/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Proteínas de Transporte Vesicular/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo
10.
J Sex Med ; 21(7): 596-604, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38808370

RESUMEN

BACKGROUND: There are varying reports of immunohistochemically detected prostatic marker protein distribution in glands associated with the female urethra that may be related to tissue integrity at the time of fixation. AIM: In this study we used tissue derived from rapid autopsies of female patients to determine the distribution of glandular structures expressing prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) along the female urethra and in surrounding tissues, including the anterior vaginal wall (AVW). METHODS: Tissue blocks from 7 donors that contained the entire urethra and adjacent AVW were analyzed. These tissue samples were fixed within 4-12 hours of death and divided into 5-mm transverse slices that were paraffin embedded. Sections cut from each slice were immunolabeled for PSA or PSAP and a neighboring section was stained with hematoxylin and eosin. The sections were reviewed by light microscopy and analyzed using QuPath software. OBSERVATIONS: In tissue from all donors, glandular structures expressing PSA and/or PSAP were located within the wall of the urethra and were present along its whole length. RESULTS: In the proximal half of the urethra from all donors, small glands expressing PSAP, but not PSA, were observed adjacent to the and emptying into the lumen. In the distal half of the urethra from 5 of the 7 donors, tubuloacinar structures lined by a glandular epithelium expressed both PSA and PSAP. In addition, columnar cells at the surface of structures with a multilayered transitional epithelium in the distal half of the urethra from all donors expressed PSAP. No glands expressing PSA or PSAP were found in tissues surrounding the urethra, including the AVW. CLINICAL IMPLICATIONS: Greater understanding of the distribution of urethral glands expressing prostatic proteins in female patients is important because these glands are reported to contribute to the female sexual response and to urethral pathology, including urethral cysts, diverticula, and adenocarcinoma. STRENGTHS AND LIMITATIONS: Strengths of the present study include the use of rapid autopsy to minimize protein degradation and autolysis, and the preparation of large tissue sections to demonstrate precise anatomical relations within all the tissues surrounding the urethral lumen. Limitations include the sample size and that all donors had advanced malignancy and had undergone previous therapy which may have had unknown tissue effects. CONCLUSION: Proximal and distal glands expressing prostate-specific proteins were observed in tissue from all donors, and these glands were located only within the wall of the urethra.


Asunto(s)
Fosfatasa Ácida , Autopsia , Antígeno Prostático Específico , Uretra , Vagina , Humanos , Femenino , Uretra/patología , Vagina/patología , Vagina/química , Antígeno Prostático Específico/análisis , Fosfatasa Ácida/análisis , Fosfatasa Ácida/metabolismo , Persona de Mediana Edad , Anciano , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/análisis , Adulto , Biomarcadores/metabolismo , Inmunohistoquímica
11.
Cancer Commun (Lond) ; 44(6): 637-653, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38741380

RESUMEN

BACKGROUND: Tyrosine phosphorylation of intracellular proteins is a post-translational modification that plays a regulatory role in signal transduction during cellular events. Dephosphorylation of signal transduction proteins caused by protein tyrosine phosphatases (PTPs) contributed their role as a convergent node to mediate cross-talk between signaling pathways. In the context of cancer, PTP-mediated pathways have been identified as signaling hubs that enabled cancer cells to mitigate stress induced by clinical therapy. This is achieved by the promotion of constitutive activation of growth-stimulatory signaling pathways or modulation of the immune-suppressive tumor microenvironment. Preclinical evidences suggested that anticancer drugs will release their greatest therapeutic potency when combined with PTP inhibitors, reversing drug resistance that was responsible for clinical failures during cancer therapy. AREAS COVERED: This review aimed to elaborate recent insights that supported the involvement of PTP-mediated pathways in the development of resistance to targeted therapy and immune-checkpoint therapy. EXPERT OPINION: This review proposed the notion of PTP inhibition in anticancer combination therapy as a potential strategy in clinic to achieve long-term tumor regression. Ongoing clinical trials are currently underway to assess the safety and efficacy of combination therapy in advanced-stage tumors.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Proteínas Tirosina Fosfatasas , Humanos , Neoplasias/tratamiento farmacológico , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales
12.
Molecules ; 29(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611852

RESUMEN

Moonlighting enzymes are multifunctional proteins that perform multiple functions beyond their primary role as catalytic enzymes. Extensive research and clinical practice have demonstrated their pivotal roles in the development and progression of cancer, making them promising targets for drug development. This article delves into multiple notable moonlighting enzymes, including GSK-3, GAPDH, and ENO1, and with a particular emphasis on an enigmatic phosphatase, PTP4A3. We scrutinize their distinct roles in cancer and the mechanisms that dictate their ability to switch roles. Lastly, we discuss the potential of an innovative approach to develop drugs targeting these moonlighting enzymes: target protein degradation. This strategy holds promise for effectively tackling moonlighting enzymes in the context of cancer therapy.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Neoplasias , Humanos , Monoéster Fosfórico Hidrolasas , Neoplasias/tratamiento farmacológico , Catálisis , Desarrollo de Medicamentos , Proteínas de Neoplasias , Proteínas Tirosina Fosfatasas
13.
Drug Des Devel Ther ; 18: 1165-1174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623566

RESUMEN

Purpose: Citric acid (CA) is a tricarboxylic acid with antioxidant and antimicrobial properties. Based on previous studies, the small compound with its three carboxylic groups can be considered a protein tyrosine phosphatase inhibitor. YopH, a protein tyrosine phosphatase, is an essential virulence factor in Yersinia bacteria. Materials and Methods: We performed enzymatic activity assays of YopH phosphatase after treatment with citric acid in comparison with the inhibitory compound trimesic acid, which has a similar structure. We also measured the cytotoxicity of these compounds in Jurkat T E6.1 and macrophage J774.2 cell lines. We performed molecular docking analysis of the binding of citric acid molecules to YopH phosphatase. Results: Citric acid and trimesic acid reversibly reduced the activity of YopH enzyme and decreased the viability of Jurkat and macrophage cell lines. Importantly, these two compounds showed greater inhibitory properties against bacterial YopH activity than against human CD45 phosphatase activity. Molecular docking simulations confirmed that citric acid could bind to YopH phosphatase. Conclusion: Citric acid, a known antioxidant, can be considered an inhibitor of bacterial phosphatases.


Asunto(s)
Antioxidantes , Proteínas Tirosina Fosfatasas , Ácidos Tricarboxílicos , Humanos , Simulación del Acoplamiento Molecular , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Tirosina
14.
BMC Med Genomics ; 17(1): 89, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627775

RESUMEN

OBJECTIVE: Branchio-oto-renal syndrome (BOR, OMIM#113,650) is a rare autosomal dominant disorder that presents with a variety of symptoms, including hearing loss (sensorineural, conductive, or mixed), structural abnormalities affecting the outer, middle, and inner ear, branchial fistulas or cysts, as well as renal abnormalities.This study aims to identify the pathogenic variants by performing genetic testing on a family with Branchio-oto-renal /Branchio-otic (BO, OMIM#602,588) syndrome using whole-exome sequencing, and to explore possible pathogenic mechanisms. METHODS: The family spans 4 generations and consists of 9 individuals, including 4 affected by the BOR/BO syndrome. Phenotypic information, including ear malformation and branchial cleft, was collected from family members. Audiological, temporal bone imaging, and renal ultrasound examinations were also performed. Whole-exome sequencing was conducted to identify candidate pathogenic variants and explore the underlying molecular etiology of BOR/BO syndrome by minigene experiments. RESULTS: Intra-familial variability was observed in the clinical phenotypes of BOR/BO syndrome in this family. The severity and nature of hearing loss varied in family members, with mixed or sensorineural hearing loss. The proband, in particular, had profound sensorineural hearing loss on the left and moderate conductive hearing loss on the right. Additionally, the proband exhibited developmental delay, and her mother experienced renal failure during pregnancy and terminated the pregnancy prematurely. Genetic testing revealed a novel heterozygous variant NM_000503.6: c.639 + 3 A > C in the EYA1 gene in affected family members. In vitro minigene experiments demonstrated its effect on splicing. According to the American College of Medical Genetics (ACMG) guidelines, this variant was classified as likely pathogenic. CONCLUSION: This study highlights the phenotypic heterogeneity within the same family, reports the occurrence of renal failure and adverse pregnancy outcomes in a female patient at reproductive age with BOR syndrome, and enriches the mutational spectrum of pathogenic variants in the EYA1 gene.


Asunto(s)
Síndrome Branquio Oto Renal , Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Insuficiencia Renal , Humanos , Embarazo , Femenino , Síndrome Branquio Oto Renal/genética , Síndrome Branquio Oto Renal/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Tirosina Fosfatasas/genética , Pérdida Auditiva/genética , Linaje , Proteínas Nucleares/genética
15.
Expert Opin Ther Targets ; 28(4): 259-271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38653737

RESUMEN

INTRODUCTION: Phosphatase of regenerating liver (PRL) family proteins, also known as protein tyrosine phosphatase 4A (PTP4A), have been implicated in many types of cancers. The PRL family of phosphatases consists of three members, PRL1, PRL2, and PRL3. PRLs have been shown to harbor oncogenic potentials and are highly expressed in a variety of cancers. Given their roles in cancer progression and metastasis, PRLs are potential targets for anticancer therapies. However, additional studies are needed to be performed to fully understand the roles of PRLs in blood cancers. AREAS COVERED: In this review, we will summarize recent studies of PRLs in normal and malignant hematopoiesis, the role of PRLs in regulating various signaling pathways, and the therapeutic potentials of targeting PRLs in hematological malignancies. We will also discuss how to improve current PRL inhibitors for cancer treatment. EXPERT OPINION: Although PRL inhibitors show promising therapeutic effects in preclinical studies of different types of cancers, moving PRL inhibitors from bench to bedside is still challenging. More potent and selective PRL inhibitors are needed to target PRLs in hematological malignancies and improve treatment outcomes.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Terapia Molecular Dirigida , Proteínas Tirosina Fosfatasas , Transducción de Señal , Humanos , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Neoplasias Hematológicas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Transducción de Señal/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Desarrollo de Medicamentos , Proteínas de la Membrana , Proteínas de Ciclo Celular
16.
J Biomed Sci ; 31(1): 33, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532423

RESUMEN

BACKGROUND: T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS: Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS: TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS: TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Células Jurkat , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Transducción de Señal , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Fosforilación , Activación de Linfocitos , Tirosina/metabolismo
17.
BMC Cancer ; 24(1): 326, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461240

RESUMEN

BACKGROUND: FLI1 is an oncogenic transcription factor that promotes diverse malignancies through mechanisms that are not fully understood. Herein, FLI1 is shown to regulate the expression of Ubiquitin Associated and SH3 Domain Containing A/B (UBASH3A/B) genes. UBASH3B and UBASH3A are found to act as an oncogene and tumor suppressor, respectively, and their combined effect determines erythroleukemia progression downstream of FLI1. METHODS: Promoter analysis combined with luciferase assays and chromatin immunoprecipitation (ChIP) analysis were applied on the UBASH3A/B promoters. RNAseq analysis combined with bioinformatic was used to determine the effect of knocking-down UBASH3A and UBASH3B in leukemic cells. Downstream targets of UBASH3A/B were inhibited in leukemic cells either via lentivirus-shRNAs or small molecule inhibitors. Western blotting and RT-qPCR were used to determine transcription levels, MTT assays to assess proliferation rate, and flow cytometry to examine apoptotic index. RESULTS: Knockdown of FLI1 in erythroleukemic cells identified the UBASH3A/B genes as potential downstream targets. Herein, we show that FLI1 directly binds to the UBASH3B promoter, leading to its activation and leukemic cell proliferation. In contrast, FLI1 indirectly inhibits UBASH3A transcription via GATA2, thereby antagonizing leukemic growth. These results suggest oncogenic and tumor suppressor roles for UBASH3B and UBASH3A in erythroleukemia, respectively. Mechanistically, we show that UBASH3B indirectly inhibits AP1 (FOS and JUN) expression, and that its loss leads to inhibition of apoptosis and acceleration of proliferation. UBASH3B also positively regulates the SYK gene expression and its inhibition suppresses leukemia progression. High expression of UBASH3B in diverse tumors was associated with worse prognosis. In contrast, UBASH3A knockdown in erythroleukemic cells increased proliferation; and this was associated with a dramatic induction of the HSP70 gene, HSPA1B. Accordingly, knockdown of HSPA1B in erythroleukemia cells significantly accelerated leukemic cell proliferation. Accordingly, overexpression of UBASH3A in different cancers was predominantly associated with good prognosis. These results suggest for the first time that UBASH3A plays a tumor suppressor role in part through activation of HSPA1B. CONCLUSIONS: FLI1 promotes erythroleukemia progression in part by modulating expression of the oncogenic UBASH3B and tumor suppressor UBASH3A.


Asunto(s)
Leucemia Eritroblástica Aguda , Proteína Proto-Oncogénica c-fli-1 , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular Tumoral , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , ARN Interferente Pequeño/genética , Proteína EWS de Unión a ARN/genética , Proteínas Tirosina Fosfatasas/metabolismo
18.
PLoS One ; 19(3): e0300032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512889

RESUMEN

Biomarkers that could predict the evolution of the graft in transplanted patients and that could allow to adapt the care of the patients would be an invaluable tool. Additionally, certain biomarkers can be target of treatments and help to stratify patients. Potential effective biomarkers have been identified but still need to be confirmed. CD45RC, one of the splicing variants of the CD45 molecule, a tyrosine phosphatase that is critical in negatively or positively regulating the TCR and the BCR signaling, is one marker already described. The frequency of CD8+ T cells expressing high levels of CD45RC before transplantation is increased in patients with an increased risk of acute rejection. However, single biomarkers have limited predictive reliability and the correlation of the expression levels of CD45RC with other cell markers was not reported. In this study, we performed a fluorescent-based high dimensional immunophenotyping of T cells on a cohort of 69 kidney transplant patients either with stable graft function or having experienced acute transplant rejection during the first year after transplantation or at the time of rejection. We identified combinations of markers and cell subsets associated with activation/inflammation or Tregs/tolerance (HLA-DR, PD-1, IFNγ, CD28) as significant biomarkers associated to transplant outcome, and showed the importance of cell segregation based on the CD45RC marker to identify the signature of a stable graft function. Our study highlights potential reliable biomarkers in transplantation to predict and/or monitor easily graft-directed immune responses and adapt immunosuppression treatments to mitigate adverse effects.


Asunto(s)
Linfocitos T CD8-positivos , Antígenos HLA-DR , Humanos , Reproducibilidad de los Resultados , Antígenos Comunes de Leucocito/metabolismo , Rechazo de Injerto , Proteínas Tirosina Fosfatasas , Biomarcadores
19.
Biomolecules ; 14(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38540761

RESUMEN

Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteínas Tirosina Fosfatasas/metabolismo , Procesamiento Proteico-Postraduccional , Fosfoproteínas Fosfatasas , Línea Celular Tumoral
20.
Nutrients ; 16(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474775

RESUMEN

Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 µM) and PTPN9 (IC50 = 1.7 µM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insulina/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA