Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 181
2.
IUCrJ ; 11(Pt 3): 395-404, 2024 May 01.
Article En | MEDLINE | ID: mdl-38656308

Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Šresolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein-substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.


Catalytic Domain , Protein-Arginine Deiminase Type 6 , Humans , Crystallography, X-Ray , Protein-Arginine Deiminase Type 6/metabolism , Protein-Arginine Deiminases/metabolism , Protein-Arginine Deiminases/chemistry , Protein-Arginine Deiminases/genetics , Protein Conformation , Hydrolases/chemistry , Hydrolases/metabolism , Models, Molecular , Calcium/metabolism
3.
Biomolecules ; 14(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38672418

The post-translational modifications (PTMs) of proteins play a crucial role in increasing the functional diversity of proteins and are associated with the pathogenesis of various diseases. This review focuses on a less explored PTM called citrullination, which involves the conversion of arginine to citrulline. This process is catalyzed by peptidyl arginine deiminases (PADs). Different members of the PAD family have distinct tissue distribution patterns and functions. Citrullination is a post-translational modification of native proteins that can alter their structure and convert them into autoantigens; thus, it mediates the occurrence of autoimmune diseases. CD4+ T cells, including Th1, Th2, and Th17 cells, are important immune cells involved in mediating autoimmune diseases, allergic reactions, and tumor immunity. PADs can induce citrullination in CD4+ T cells, suggesting a role for citrullination in CD4+ T cell subset differentiation and function. Understanding the role of citrullination in CD4+ T cells may provide insights into immune-related diseases and inflammatory processes.


CD4-Positive T-Lymphocytes , Citrullination , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Animals , Autoimmune Diseases/metabolism , Autoimmune Diseases/immunology , Protein-Arginine Deiminases/metabolism , Protein Processing, Post-Translational , Citrulline/metabolism , Arginine/metabolism
4.
Front Immunol ; 15: 1355357, 2024.
Article En | MEDLINE | ID: mdl-38576615

Chronic periodontitis (CP), an inflammatory disease of periodontal tissues driven by a dysbiotic subgingival bacterial biofilm, is also associated with several systemic diseases, including rheumatoid arthritis (RA). Porphyromonas gingivalis, one of the bacterial species implicated in CP as a keystone pathogen produces peptidyl arginine deiminase (PPAD) that citrullinates C-terminal arginine residues in proteins and peptides. Autoimmunity to citrullinated epitopes is crucial in RA, hence PPAD activity is considered a possible mechanistic link between CP and RA. Here we determined the PPAD enzymatic activity produced by clinical isolates of P. gingivalis, sequenced the ppad gene, and correlated the results with clinical determinants of CP in patients from whom the bacteria were isolated. The analysis revealed variations in PPAD activity and genetic diversity of the ppad gene in clinical P. gingivalis isolates. Interestingly, the severity of CP was correlated with a higher level of PPAD activity that was associated with the presence of a triple mutation (G231N, E232T, N235D) in PPAD in comparison to W83 and ATCC 33277 type strains. The relation between mutations and enhanced activity was verified by directed mutagenesis which showed that all three amino acid residue substitutions must be introduced into PPAD expressed by the type strains to obtain the super-active enzyme. Cumulatively, these results may lead to the development of novel prognostic tools to assess the progress of CP in the context of associated RA by analyzing the ppad genotype in CP patients infected with P. gingivalis.


Chronic Periodontitis , Porphyromonas gingivalis , Humans , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Peptides , Periodontium/metabolism , Chronic Periodontitis/genetics
5.
Front Immunol ; 15: 1167362, 2024.
Article En | MEDLINE | ID: mdl-38476240

Introduction: Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis, but the sources of citrullinated antigens as well as which peptidylarginine deiminases (PADs) are required for their production remain incompletely defined. Here, we investigated if macrophage extracellular traps (METs) could be a source of citrullinated proteins bound by APCAs, and if their formation requires PAD2 or PAD4. Methods: Thioglycolate-induced peritoneal macrophages from wild-type, PAD2-/-, and PAD4-/- mice or human peripheral blood-derived M1 macrophages were activated with a variety of stimulants, then fixed and stained with DAPI and either anti-citrullinated histone H4 (citH4) antibody or sera from ACPA+ or ACPA- rheumatoid arthritis subjects. METs were visualized by immunofluorescence, confirmed to be extracellular using DNase, and quantified. Results: We found that ionomycin and monosodium urate crystals reliably induced murine citH4+ METs, which were reduced in the absence of PAD2 and lost in the absence of PAD4. Also, IgG from ACPA+, but not ACPA-, rheumatoid arthritis sera bound to murine METs, and in the absence of PAD2 or PAD4, ACPA-bound METs were lost. Finally, ionomycin induced human METs that are citH4+ and ACPA-bound. Discussion: Thus, METs may contribute to the pool of citrullinated antigens bound by ACPAs in a PAD2- and PAD4-dependent manner, providing new insights into the targets of immune tolerance loss in rheumatoid arthritis.


Aminosalicylic Acids , Arthritis, Rheumatoid , Extracellular Traps , Humans , Mice , Animals , Protein-Arginine Deiminases/metabolism , Autoantibodies , Protein-Arginine Deiminase Type 4 , Ionomycin/metabolism , Histones/metabolism , Macrophages/metabolism
6.
Cell Rep ; 43(3): 113942, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38489266

Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.


Hydrolases , Protein Processing, Post-Translational , Mice , Animals , Protein-Arginine Deiminases/metabolism , Protein-Arginine Deiminase Type 4/genetics , Protein-Arginine Deiminase Type 4/metabolism , Hydrolases/metabolism , Histocompatibility Antigens Class II/metabolism , Macrophages/metabolism
7.
Biochem Biophys Res Commun ; 704: 149668, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38401303

Rheumatoid arthritis is an autoimmune disease whose early onset correlates with dysregulated citrullination, a process catalyzed by peptidylarginine deiminase isoform 4 (PADI-4). Here, we report that PADI-4 is a novel target of vitamin B12, a water-soluble vitamin that serves as a cofactor in DNA synthesis and the metabolism of fatty and amino acids. Vitamin B12 preferentially inhibited PADI-4 over PADI-2 with comparable inhibitory activity to the reference compound Cl-amidine in enzymatic inhibition assays, and reduced total cellular citrullination levels including that of histone H3 citrullination mediated by PADI-4. We also demonstrated that hydroxocobalamin, a manufactured form of vitamin B12, significantly ameliorated the severity of collagen type II antibody induced arthritis (CAIA) in mice and diminished gene expression of the rheumatoid inflammatory factors and cytokines IL17A, TNFα, IL-6, COX-II and ANXA2, as well PADI-4. Therefore, the use of vitamin B12 to treat rheumatoid arthritis merits further study.


Arthritis, Rheumatoid , Vitamin B 12 , Mice , Animals , Protein-Arginine Deiminases/metabolism , Hydrolases/metabolism , Protein-Arginine Deiminase Type 4 , Citrulline/metabolism , Antibodies , Collagen
8.
Medicine (Baltimore) ; 103(8): e37015, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38394536

BACKGROUND: Peptidyl (protein) arginine deiminases (PADs) provide the transformation of peptidyl arginine to peptidyl citrulline in the presence of calcium with posttranslational modification. The dysregulated PAD activity plays an important role on too many diseases including also the cancer. In this study, it has been aimed to determine the potential cytotoxic and apoptotic activity of chlorine-amidine (Cl-amidine) which is a PAD inhibitor and whose effectiveness has been shown in vitro and in vivo studies recently on human glioblastoma cell line Uppsala 87 malignant glioma (U-87 MG) forming an in vitro model for the glioblastoma multiforme (GBM) which is the most aggressive and has the highest mortality among the brain tumors. METHODS: In the study, the antiproliferative and apoptotic effects of Cl-amidine on GBM cancer model were investigated. The antiproliferative effects of Cl-amidine on U-87 MG cells were determined by 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate method at the 24th and 48th hours. The apoptotic effects were analyzed by Annexin V and Propidium iodide staining, caspase-3 activation, and mitochondrial membrane polarization (5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide) methods in the flow cytometry. RESULTS: It has been determined that Cl-amidine exhibits notable antiproliferative properties on U-87 MG cell line in a time and concentration-dependent manner, as determined through the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate assay. Assessment of apoptotic effects via Annexin V and Propidium iodide staining and 5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide methods has revealed significant efficacy, particularly following a 24-hour exposure period. It has been observed that Cl-amidine induces apoptosis in cells by enhancing mitochondrial depolarization, independently of caspase-3 activation. Furthermore, regarding its impact on healthy cells, it has been demonstrated that Cl-amidine shows lower cytotoxic effects when compared to carmustine, an important therapeutic agent for glioblastoma. CONCLUSION: The findings of this study have shown that Cl-amidine exhibits significant potential as an anticancer agent in the treatment of GBM. This conclusion is based on its noteworthy antiproliferative and apoptotic effects observed in U-87 MG cells, as well as its reduced cytotoxicity toward healthy cells in comparison to existing treatments. We propose that the antineoplastic properties of Cl-amidine should be further investigated through a broader spectrum of cancer cell types. Moreover, we believe that investigating the synergistic interactions of Cl-amidine with single or combination therapies holds promise for the discovery of novel anticancer agents.


Antineoplastic Agents , Glioblastoma , Nitrophenols , Ornithine/analogs & derivatives , Humans , Chlorine , Glioblastoma/metabolism , Annexin A5 , Benzene , Carbocyanines/pharmacology , Caspase 3/metabolism , Iodides/metabolism , Iodides/pharmacology , Propidium , Protein-Arginine Deiminases/metabolism , Protein-Arginine Deiminases/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Amidines/pharmacology , Arginine/metabolism , Apoptosis
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167092, 2024 Apr.
Article En | MEDLINE | ID: mdl-38382623

The production of type I interferon (IFN) is precisely modulated by host to protect against viral infection efficiently without obvious immune disorders. Elucidating the tight control towards type I IFN production would be helpful to get insight into natural immunity and inflammatory diseases. As yet, however, the mechanisms that regulate IFN-ß production, especially the epigenetic regulatory mechanisms, remain poorly explored. This study elucidated the potential function of Peptidylarginine deiminases (PADIs)-mediated citrullination in innate immunity. We identified PADI4, a PADIs family member that can act as an epigenetic coactivator, could repress IFN-ß production upon RNA virus infection. Detailed experiments showed that PADI4 deficiency increased IFN-ß production and promoted antiviral immune activities against RNA viruses. Mechanistically, the increased PADI4 following viral infection translocated to nucleus and recruited HDAC1 upon binding to Ifnb1 promoter, which then led to the deacetylation of histone H3 and histone H4 for repressing Ifnb1 transcription. Taken together, we identify a novel non-classical role for PADI4 in the regulation of IFN-ß production, suggesting its potential as treatment target in inflammatory or autoimmune diseases.


Histones , Virus Diseases , DEAD Box Protein 58/genetics , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histones/metabolism , Immunity, Innate , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Receptors, Immunologic/metabolism
10.
Int J Mol Sci ; 25(3)2024 Jan 31.
Article En | MEDLINE | ID: mdl-38339001

UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.


Deoxyribonuclease I , Drugs, Chinese Herbal , Extracellular Traps , Ultraviolet Rays , Animals , Male , Mice , Calcimycin/pharmacology , Deoxyribonuclease I/pharmacology , Deoxyribonuclease I/metabolism , Extracellular Traps/drug effects , Extracellular Traps/radiation effects , Histones/metabolism , Hydrogen Peroxide/metabolism , Inflammation/metabolism , Mice, Inbred ICR , Neutrophils/metabolism , Protein-Arginine Deiminases/metabolism , Reactive Oxygen Species/metabolism , Ultraviolet Rays/adverse effects
11.
Neurobiol Dis ; 192: 106414, 2024 Mar.
Article En | MEDLINE | ID: mdl-38253209

Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.


Amyotrophic Lateral Sclerosis , Citrullination , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , Gliosis/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Myelin Proteins/metabolism , Myelin Sheath/pathology , Protein Aggregates , Protein-Arginine Deiminase Type 2/metabolism , Protein-Arginine Deiminases/metabolism , Proteins/metabolism , Spinal Cord/pathology
12.
Cells ; 12(24)2023 12 13.
Article En | MEDLINE | ID: mdl-38132149

Protein citrullination is accomplished by a broad enzyme family named Peptidyl Arginine Deiminases (PADs), which makes this post-translational modification in many proteins that perform physiological and pathologic mechanisms in the body. Due to these modifications, citrullination has become a significant topic in the study of pathological processes. It has been related to some chronic and autoimmune diseases, including rheumatoid arthritis (RA), interstitial lung diseases (ILD), multiple sclerosis (MS), and certain types of cancer, among others. Antibody production against different targets, including filaggrin, vimentin, and collagen, results in an immune response if they are citrullinated, which triggers a continuous inflammatory process characteristic of autoimmune and certain chronic diseases. PAD coding genes (PADI1 to PADI4 and PADI6) harbor variations that can be important in these enzymes' folding, activity, function, and half-life. However, few studies have considered these genetic factors in the context of chronic diseases. Exploring PAD pathways and their role in autoimmune and chronic diseases is a major topic in developing new pharmacological targets and valuable biomarkers to improve diagnosis and prevention. The present review addresses and highlights genetic, molecular, biochemical, and physiopathological factors where PAD enzymes perform a major role in autoimmune and chronic diseases.


Arthritis, Rheumatoid , Lung Diseases, Interstitial , Humans , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Lung Diseases, Interstitial/genetics , Proteins , Chronic Disease
13.
Sci Adv ; 9(51): eadj1397, 2023 Dec 22.
Article En | MEDLINE | ID: mdl-38117877

Neutrophil extracellular traps (NETs) not only counteract bacterial and fungal pathogens but can also promote thrombosis, autoimmunity, and sterile inflammation. The presence of citrullinated histones, generated by the peptidylarginine deiminase 4 (PAD4), is synonymous with NETosis and is considered independent of apoptosis. Mitochondrial- and death receptor-mediated apoptosis promote gasdermin E (GSDME)-dependent calcium mobilization and membrane permeabilization leading to histone H3 citrullination (H3Cit), nuclear DNA extrusion, and cytoplast formation. H3Cit is concentrated at the promoter in bone marrow neutrophils and redistributes in a coordinated process from promoter to intergenic and intronic regions during apoptosis. Loss of GSDME prevents nuclear and plasma membrane disruption of apoptotic neutrophils but prolongs early apoptosis-induced cellular changes to the chromatin and cytoplasmic granules. Apoptotic signaling engages PAD4 in neutrophils, establishing a cellular state that is primed for NETosis, but that occurs only upon membrane disruption by GSDME, thereby redefining the end of life for neutrophils.


Extracellular Traps , Neutrophils , Neutrophils/metabolism , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Protein-Arginine Deiminase Type 4/genetics , Protein-Arginine Deiminase Type 4/metabolism , Extracellular Traps/genetics , Extracellular Traps/metabolism , Histones/metabolism , Epigenesis, Genetic
14.
Comput Biol Chem ; 107: 107962, 2023 Dec.
Article En | MEDLINE | ID: mdl-37847978

Protein arginine deiminase IV (PAD4) is a potential target for diseases including rheumatoid arthritis and cancers. Currently, GSK199 is a potent, selective yet reversible PAD4 inhibitor. Its derivative, GSK106, on the other hand, was reported as an inactive compound when tested against PAD4 assay. Although they had similar skeleton, their impact towards PAD4 structural and flexibility is unknown. In order to fill the research gap, the impact of GSK199 and GSK106 binding towards PAD4 stability and flexibility is investigated via a combination of computational methods. Molecular docking indicates that GSK199 and GSK106 are capable to bind at PAD4 pocket by using its back door with -10.6 kcal/mol and -9.6 kcal/mol, respectively. The simulations of both complexes were stable throughout 100 ns. The structure of PAD4 exhibited a tighter packing in the presence of GSK106 compared to GSK199. The RMSF analysis demonstrates significant changes between the PAD4-GSK199 and PAD4-GSK106 simulations in the regions containing residues 136, 160, 220, 438, and 606. The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis shows a marked difference in binding free energies, with -11.339 kcal/mol for the PAD4-GSK199 complex and 1.063 kcal/mol for the PAD4-GSK106 complex. The hydrogen bond analysis revealed that the GSK199 and GSK106 binding to PAD4 are assisted by six hydrogen bonds and three hydrogen bonds, respectively. The visualisation of the MD simulations revealed that GSK199 remained in the PAD4 pocket, whereas GSK106 shifted away from the catalytic site. Meanwhile, molecular dockings of benzoyl arginine amide (BAEE) substrate have shown that BAEE is able to bind to PAD4 catalytic site when GSK106 was present but not when GSK199 occupied the site. Overall, combination of computational approaches successfully described the behaviour of binding pocket of PAD4 structure in the presence of the active and inactive compounds.


Hydrolases , Protein-Arginine Deiminases/metabolism , Hydrolases/chemistry , Molecular Docking Simulation , Protein-Arginine Deiminase Type 4
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220451, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778375

Protein isoforms, generated through alternative splicing or promoter usage, contribute to tissue function. Here, we characterize the expression of predicted Padi3α and Padi3ß isoforms in hair follicles and describe expression of Padi2ß, a hitherto unknown PADI2 isoform, in the oligodendrocyte lineage. Padi2ß transcription is initiated from a downstream intronic promoter, generating an N-terminally truncated, unstable, PADI2ß. By contrast to the established role of the canonical PADI2 (PADI2α) (Falcao et al. 2019 Cell Rep. 27, 1090-1102.e10. (doi:10.1016/j.celrep.2019.03.108)), PADI2ß inhibits oligodendrocyte differentiation, suggesting that PADI2 isoforms exert opposing effects on oligodendrocyte lineage progression. We localize Padi3α and Padi3ß to developing hair follicles and find that both transcripts are expressed at low levels in progenitor cells, only to increase in expression concomitant with differentiation. When expressed in vitro, PADI3α and PADI3ß are enriched in the cytoplasm and precipitate together. Whereas PADI3ß protein stability is low and PADI3ß fails to induce protein citrullination, we find that the enzymatic activity and protein stability of PADI3α is reduced in the presence of PADI3ß. We propose that PADI3ß modulates PADI3α activity by direct binding and heterodimer formation. Here, we establish expression and function of Padi2 and Padi3 isoforms, expanding on the mechanisms in place to regulate citrullination in complex tissues. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Protein-Arginine Deiminases , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Cell Differentiation/physiology , Protein Isoforms/genetics
16.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220240, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778377

Protein citrullination is a post-translational modification (PTM) that is catalysed by the protein arginine deiminase (PAD) family of enzymes. This PTM involves the transformation of an arginine residue into citrulline. Protein citrullination is associated with several physiological processes, including the epigenetic regulation of gene expression, neutrophil extracellular trap formation and DNA damage-induced apoptosis. Aberrant protein citrullination is relevant to several autoimmune and neurodegenerative diseases and certain forms of cancer. PAD inhibitors have shown remarkable efficacy in a range of diseases including rheumatoid arthritis (RA), lupus, atherosclerosis and ulcerative colitis. In RA, anti-citrullinated protein antibodies can be detected prior to disease onset and are thus a valuable diagnostic tool for RA. Notably, citrullinated proteins may serve more generally as biomarkers of specific disease states; however, the identification of citrullinated protein residues remains challenging owing to the small 1 Da mass change that occurs upon citrullination. Herein, we highlight the progress made so far in the development of pan-PAD and isozyme selective inhibitors as well as the identification of citrullinated proteins and the site-specific incorporation of citrulline into proteins. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Arthritis, Rheumatoid , Citrullination , Humans , Citrulline/genetics , Citrulline/metabolism , Epigenesis, Genetic , Proteins/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Protein Processing, Post-Translational
17.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220245, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778378

Peptidylarginine deiminases (PADs) transform a protein arginine residue into the non-standard amino acid citrulline. This calcium-dependent post-translational modification of proteins is called citrullination or deimination. As described in this special issue, PADs play a role in various physiological processes, and PAD deregulations are involved in many human diseases. Three PADs are expressed in the epidermis, where their roles begin to be deciphered. PAD1 and PAD3 are involved in keratinocyte differentiation, particularly in the epidermal barrier function, keratins, filaggrin and filaggrin-related proteins being the most abundant deiminated epidermal proteins. Reduced amounts of deiminated proteins and PAD1 expression may be involved in the pathogenesis of psoriasis and atopic dermatitis, two very frequent and chronic skin inflammatory diseases. The trichohyalin/PAD3/transglutaminase three pathway is important for hair shaft formation. Mutations of the PADI3 gene, leading to a decreased activity or abnormal localization of the corresponding isotype, are the cause of a rare hair disorder called uncombable hair syndrome, and are associated with the central centrifugal cicatricial alopecia, a frequent alopecia mainly affecting women of African ancestry. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Filaggrin Proteins , Hair , Hydrolases , Female , Humans , Alopecia/metabolism , Epidermis , Hydrolases/genetics , Hydrolases/metabolism , Protein Processing, Post-Translational , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism
18.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220244, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778384

Proteins once translated are subjected to post-translational modifications (PTMs) that can critically modify their characteristics. Citrullination is a unique type of PTM that is catalysed by peptidylarginine deiminase (PAD) enzymes, which regulate a multitude of physiological functions such as apoptosis, gene expression and immune response by altering the structure and function of cellular proteins. However, emerging data have unravelled compelling evidence to support that PAD-mediated citrullination is not exclusive to cellular proteins; rather citrullination of extracellular matrix (ECM) proteins also plays a major contributing role in various physiological/pathological conditions. Here, we discuss putative mechanisms for citrullination-induced alterations in the function of ECM proteins. Further, we put emphasis on influential roles of ECM citrullination in various pathological scenarios to underscore the clinical potential of its manipulation in human diseases. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Citrullination , Proteins , Humans , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Proteins/genetics , Protein Processing, Post-Translational
19.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220243, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778382

Post-translational modifications (PTMs) of proteins are central to epigenetic regulation and cellular signalling, playing an important role in the pathogenesis and progression of numerous diseases. Growing evidence indicates that protein arginine citrullination, catalysed by peptidylarginine deiminases (PADs), is involved in many aspects of molecular and cell biology and is emerging as a potential druggable target in multiple diseases including cancer. However, we are only just beginning to understand the molecular activities of PADs, and their underlying mechanistic details in vivo under both physiological and pathological conditions. Many questions still remain regarding the dynamic cellular functions of citrullination and its interplay with other types of PTMs. This review, therefore, discusses the known functions of PADs with a focus on cancer biology, highlighting the cross-talk between citrullination and other types of PTMs, and how this interplay regulates downstream biological events. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Citrullination , Neoplasms , Humans , Hydrolases/metabolism , Epigenesis, Genetic , Proteins/metabolism , Protein-Arginine Deiminases/metabolism , Protein Processing, Post-Translational
20.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220248, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778388

Citrullination is a post-translational modification catalysed by peptidyl arginine deiminase (PAD) enzymes, and dysregulation of protein citrullination is involved in various pathological disorders. During the past decade, a panel of citrullination inhibitors has been developed, while small molecules activating citrullination have rarely been reported so far. In this study, we screened citrullination activator using an antibody against citrullinated histone H3 (cit-H3), and a natural compound demethoxycurcumin (DMC) significantly activated citrullination. The requirement of PAD2 for DMC-activated citrullination was confirmed by a loss of function assay. Notably, DMC directly engaged with PAD2, and showed binding selectivity among PAD family enzymes. Point mutation assay indicated that residue E352 is essential for DMC targeting PAD2. Consistently, DMC induced typical phenotypes of cells with dysregulation of PAD2 activity, including citrullination-associated cell apoptosis and DNA damage. Overall, our study not only presents a strategy for rationally screening citrullination activators, but also provides a chemical approach for activating protein citrullination. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Citrullination , Histones , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Histones/metabolism , Protein Processing, Post-Translational , Extracellular Space , Hydrolases/genetics , Hydrolases/metabolism
...