Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.465
1.
Arch Biochem Biophys ; 756: 110020, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692471

Iron deposits in the brain are a natural consequence of aging. Iron accumulation, especially in the form of labile iron, can trigger a cascade of adverse effects, eventually leading to neurodegeneration and cognitive decline. Aging also increases the dysfunction of cellular proteostasis. The question of whether iron alters proteostasis is now being pondered. Herein, we investigated the effect of ferric citrate, considered as labile iron, on various aspects of proteostasis of neuronal cell lines, and also established an animal model having a labile iron diet in order to evaluate proteostasis alteration in the brain along with behavioral effects. According to an in vitro study, labile iron was found to activate lysosome formation but inhibits lysosomal clearance function. Furthermore, the presence of labile iron can alter autophagic flux and can also induce the accumulation of protein aggregates. RNA-sequencing analysis further reveals the upregulation of various terms related to proteostasis along with neurodegenerative disease-related terms. According to an in vivo study, a labile iron-rich diet does not induce iron overload conditions and was not detrimental to the behavior of male Wistar rats. However, an iron-rich diet can promote iron accumulation in a region-dependent manner. By staining for autophagic markers and misfolding proteins in the cerebral cortex and hippocampus, an iron-rich diet was actually found to alter autophagy and induce an accumulation of misfolding proteins. These findings emphasize the importance of labile iron on brain cell proteostasis, which could be implicated in developing of neurological diseases.


Brain , Iron , Neurodegenerative Diseases , Proteostasis , Rats, Wistar , Animals , Proteostasis/drug effects , Neurodegenerative Diseases/metabolism , Male , Iron/metabolism , Rats , Brain/metabolism , Brain/drug effects , Autophagy/drug effects , Humans , Lysosomes/metabolism
2.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38717338

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


DNA Helicases , Multifunctional Enzymes , RNA Helicases , RNA, Untranslated , Humans , Cell Nucleolus/metabolism , Cell Nucleolus/genetics , DNA Damage , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Protein Aggregates , Proteostasis , R-Loop Structures/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
3.
Cell Death Dis ; 15(5): 334, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744890

The prevalence of diabetes steadily increases worldwide mirroring the prevalence of obesity. Endoplasmic reticulum (ER) stress is activated in diabetes and contributes to ß-cell dysfunction and apoptosis through the activation of a terminal unfolded protein response (UPR). Our results uncover a new role for Bax Inhibitor-One (BI-1), a negative regulator of inositol-requiring enzyme 1 (IRE1α) in preserving ß-cell health against terminal UPR-induced apoptosis and pyroptosis in the context of supraphysiological loads of insulin production. BI-1-deficient mice experience a decline in endocrine pancreatic function in physiological and pathophysiological conditions, namely obesity induced by high-fat diet (HFD). We observed early-onset diabetes characterized by hyperglycemia, reduced serum insulin levels, ß-cell loss, increased pancreatic lipases and pro-inflammatory cytokines, and the progression of metabolic dysfunction. Pancreatic section analysis revealed that BI-1 deletion overburdens unfolded proinsulin in the ER of ß-cells, confirmed by ultrastructural signs of ER stress with overwhelmed IRE1α endoribonuclease (RNase) activity in freshly isolated islets. ER stress led to ß-cell dysfunction and islet loss, due to an increase in immature proinsulin granules and defects in insulin crystallization with the presence of Rod-like granules. These results correlated with the induction of autophagy, ER phagy, and crinophagy quality control mechanisms, likely to alleviate the atypical accumulation of misfolded proinsulin in the ER. In fine, BI-1 in ß-cells limited IRE1α RNase activity from triggering programmed ß-cell death through apoptosis and pyroptosis (caspase-1, IL-1ß) via NLRP3 inflammasome activation and metabolic dysfunction. Pharmaceutical IRE1α inhibition with STF-083010 reversed ß-cell failure and normalized the metabolic phenotype. These results uncover a new protective role for BI-1 in pancreatic ß-cell physiology as a stress integrator to modulate the UPR triggered by accumulating unfolded proinsulin in the ER, as well as autophagy and programmed cell death, with consequences on ß-cell function and insulin secretion. In pancreatic ß-cells, BI-1-/- deficiency perturbs proteostasis with proinsulin misfolding, ER stress, terminal UPR with overwhelmed IRE1α/XBP1s/CHOP activation, inflammation, ß-cell programmed cell death, and diabetes.


Apoptosis , Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Membrane Proteins , Proinsulin , Proteostasis , Unfolded Protein Response , Animals , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Proinsulin/metabolism , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Folding , Endoribonucleases/metabolism , Mice, Inbred C57BL , Diet, High-Fat , Mice, Knockout , Male
4.
J Am Heart Assoc ; 13(10): e030467, 2024 May 21.
Article En | MEDLINE | ID: mdl-38761081

BACKGROUND: Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS: We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS: FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.


Filamins , Proteostasis , Filamins/genetics , Filamins/metabolism , Humans , Female , Induced Pluripotent Stem Cells/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Male , Adult , Mutation , Bortezomib/pharmacology
5.
Neurobiol Dis ; 196: 106524, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38705490

αSynuclein (αSyn) misfolding and aggregation frequently precedes neuronal loss associated with Parkinson's Disease (PD) and other Synucleinopathies. The progressive buildup of pathological αSyn species results from alterations on αSyn gene and protein sequence, increased local concentrations, variations in αSyn interactome and protein network. Therefore, under physiological conditions, it is mandatory to regulate αSyn proteostasis as an equilibrium among synthesis, trafficking, degradation and extracellular release. In this frame, a crucial parameter is protein half-life. It provides indications of the turnover of a specific protein and depends on mRNA synthesis and translation regulation, subcellular localization, function and clearance by the designated degradative pathways. For αSyn, the molecular mechanisms regulating its proteostasis in neurons have been extensively investigated in various cellular models, either using biochemical or imaging approaches. Nevertheless, a converging estimate of αSyn half-life has not emerged yet. Here, we discuss the challenges in studying αSyn proteostasis under physiological and pathological conditions, the advantages and disadvantages of the experimental strategies proposed so far, and the relevance of determining αSyn half-life from a translational perspective.


alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Half-Life , Animals , Synucleinopathies/metabolism , Synucleinopathies/pathology , Parkinson Disease/metabolism , Parkinson Disease/genetics , Proteostasis/physiology , Neurons/metabolism
6.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38703850

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Cadmium , Mitochondria , Pyroptosis , Testis , Animals , Cadmium/toxicity , Male , Mice , Testis/drug effects , Testis/metabolism , Pyroptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Environmental Pollutants/toxicity , Proteostasis , Mitochondrial Proteins/metabolism , Environmental Exposure/adverse effects , DNA, Mitochondrial , ATP-Dependent Proteases/metabolism , Proteotoxic Stress
7.
Life Sci Alliance ; 7(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38570188

Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.


Prion Proteins , Prions , Prion Proteins/metabolism , Valosin Containing Protein/metabolism , Adenosine Triphosphatases/metabolism , Proteostasis , Ubiquitin/metabolism , Prions/metabolism
8.
Nat Commun ; 15(1): 2861, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570505

Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.


Caenorhabditis elegans , Neuroglia , Animals , Caenorhabditis elegans/genetics , Astrocytes , Biomechanical Phenomena , Proteostasis , Extracellular Matrix/metabolism , Intercellular Junctions
9.
Chem Biol Drug Des ; 103(4): e14515, 2024 Apr.
Article En | MEDLINE | ID: mdl-38570333

Neurodegenerative disorders are devastating disorders characterized by gradual loss of neurons and cognition or mobility impairment. The common pathological features of these diseases are associated with the accumulation of misfolded or aggregation of proteins. The pivotal roles of autophagy and proteostasis in maintaining cellular health and preventing the accumulation of misfolded proteins, which are associated with neurodegenerative diseases like Huntington's disease (HD), Alzheimer's disease (AD), and Parkinson's disease (PD). This article presents an in-depth examination of the interplay between autophagy and proteostasis, highlighting how these processes cooperatively contribute to cellular homeostasis and prevent pathogenic protein aggregate accumulation. Furthermore, the review emphasises the potential therapeutic implications of targeting autophagy and proteostasis to mitigate neurodegenerative diseases. While advancements in research hold promise for developing novel treatments, the article also addresses the challenges and complexities associated with modulating these intricate cellular pathways. Ultimately, advancing understanding of the underlying mechanism of autophagy and proteostasis in neurodegenerative disorders provides valuable insights into potential therapeutic avenues and future research directions.


Huntington Disease , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Proteostasis , Proteins/metabolism , Huntington Disease/drug therapy , Huntington Disease/metabolism , Autophagy
10.
JACC Heart Fail ; 12(5): 795-809, 2024 May.
Article En | MEDLINE | ID: mdl-38597865

Age is among the most potent risk factors for developing heart failure and is strongly associated with adverse outcomes. As the global population continues to age and the prevalence of heart failure rises, understanding the role of aging in the development and progression of this chronic disease is essential. Although chronologic age is on a fixed course, biological aging is more variable and potentially modifiable in patients with heart failure. This review describes the current knowledge on mechanisms of biological aging that contribute to the pathogenesis of heart failure. The discussion focuses on 3 hallmarks of aging-impaired proteostasis, mitochondrial dysfunction, and deregulated nutrient sensing-that are currently being targeted in therapeutic development for older adults with heart failure. In assessing existing and emerging therapeutic strategies, the review also enumerates the importance of incorporating geriatric conditions into the management of older adults with heart failure and in ongoing clinical trials.


Aging , Heart Failure , Humans , Heart Failure/physiopathology , Aging/physiology , Proteostasis/physiology , Aged
11.
Cell Mol Life Sci ; 81(1): 192, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652179

BACKGROUND:  Alzheimer's disease (AD) is pathologically characterized by the abnormal accumulation of Aß and tau proteins. There has long been a keen interest among researchers in understanding how Aß and tau are ultimately cleared in the brain. The discovery of this glymphatic system introduced a novel perspective on protein clearance and it gained recognition as one of the major brain clearance pathways for clearing these pathogenic proteins in AD. This finding has sparked interest in exploring the potential contribution of the glymphatic/meningeal lymphatic system in AD. Furthermore, there is a growing emphasis and discussion regarding the possibility that activating the glymphatic/meningeal lymphatic system could serve as a novel therapeutic strategy against AD. OBJECTIVES:  Given this current research trend, the primary focus of this comprehensive review is to highlight the role of the glymphatic/meningeal lymphatic system in the pathogenesis of AD. The discussion will encompass future research directions and prospects for treatment in relation to the glymphatic/meningeal lymphatic system.


Alzheimer Disease , Glymphatic System , Lymphatic System , Meninges , Proteostasis , Animals , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Glymphatic System/metabolism , Glymphatic System/pathology , Lymphatic System/metabolism , Lymphatic System/pathology , Meninges/metabolism , Meninges/pathology , tau Proteins/metabolism
12.
Biomolecules ; 14(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672516

Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.


Adenosine Triphosphate , Proteome , Humans , Adenosine Triphosphate/metabolism , Proteome/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Proteostasis , Nucleic Acids/metabolism , Nucleic Acids/chemistry , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Homeostasis , Protein Folding , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics
13.
Proc Natl Acad Sci U S A ; 121(18): e2313107121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38652742

Full understanding of proteostasis and energy utilization in cells will require knowledge of the fraction of cell proteins being degraded with different half-lives and their rates of synthesis. We therefore developed a method to determine such information that combines mathematical analysis of protein degradation kinetics obtained in pulse-chase experiments with Bayesian data fitting using the maximum entropy principle. This approach will enable rapid analyses of whole-cell protein dynamics in different cell types, physiological states, and neurodegenerative disease. Using it, we obtained surprising insights about protein stabilities in cultured cells normally and upon activation of proteolysis by mTOR inhibition and increasing cAMP or cGMP. It revealed that >90% of protein content in dividing mammalian cell lines is long-lived, with half-lives of 24 to 200 h, and therefore comprises much of the proteins in daughter cells. The well-studied short-lived proteins (half-lives < 10 h) together comprise <2% of cell protein mass, but surprisingly account for 10 to 20% of measurable newly synthesized protein mass. Evolution thus appears to have minimized intracellular proteolysis except to rapidly eliminate misfolded and regulatory proteins.


Entropy , Proteolysis , Proteome , Proteome/metabolism , Humans , Animals , Bayes Theorem , Proteostasis , Kinetics , Cyclic AMP/metabolism , TOR Serine-Threonine Kinases/metabolism , Cyclic GMP/metabolism
14.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38656405

Cells exposed to proteotoxic stress invoke adaptive responses aimed at restoring proteostasis. Our previous studies have established a firm role for the transcription factor Nuclear factor-erythroid derived-2-related factor-1 (Nrf1) in responding to proteotoxic stress elicited by inhibition of cellular proteasome. Following proteasome inhibition, Nrf1 mediates new proteasome synthesis, thus enabling the cells to mitigate the proteotoxic stress. Here, we report that under similar circumstances, multiple components of the autophagy-lysosomal pathway (ALP) were transcriptionally upregulated in an Nrf1-dependent fashion, thus providing the cells with an additional route to cope with proteasome insufficiency. In response to proteasome inhibitors, Nrf1-deficient cells displayed profound defects in invoking autophagy and clearance of aggresomes. This phenomenon was also recapitulated in NGLY1 knockout cells, where Nrf1 is known to be non-functional. Conversely, overexpression of Nrf1 induced ALP genes and endowed the cells with an increased capacity to clear aggresomes. Overall, our results significantly expand the role of Nrf1 in shaping the cellular response to proteotoxic stress.


Autophagy , NF-E2-Related Factor 1 , Proteotoxic Stress , Animals , Humans , Mice , Autophagy/genetics , Lysosomes/metabolism , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 1/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/pharmacology , Proteostasis , Stress, Physiological
15.
Nat Commun ; 15(1): 3333, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637533

Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.


Protein Folding , alpha 1-Antitrypsin Deficiency , Humans , Molecular Chaperones/metabolism , Proteostasis , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , alpha 1-Antitrypsin Deficiency/genetics , Genetic Variation
16.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38612616

Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and ß-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.


Lysosomal Storage Diseases , Niemann-Pick Disease, Type C , Humans , Proteostasis , Niemann-Pick Disease, Type C/drug therapy , Protein Folding , Proteolysis
17.
ACS Chem Neurosci ; 15(10): 1967-1989, 2024 May 15.
Article En | MEDLINE | ID: mdl-38657106

Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.


Cyclophilins , Molecular Chaperones , Nuclear Pore Complex Proteins , Peptidylprolyl Isomerase , Proteostasis , Animals , Molecular Chaperones/metabolism , Mice , Cyclophilins/metabolism , Proteostasis/physiology , Peptidylprolyl Isomerase/metabolism , Nuclear Pore Complex Proteins/metabolism , Crystallins/metabolism
18.
Mol Biol Cell ; 35(5): ar74, 2024 May 01.
Article En | MEDLINE | ID: mdl-38536439

Imbalances in mitochondrial proteostasis are associated with pathologic mitochondrial dysfunction implicated in etiologically diverse diseases. This has led to considerable interest in defining the mechanisms responsible for regulating mitochondria in response to mitochondrial stress. Numerous stress-responsive signaling pathways have been suggested to regulate mitochondria in response to proteotoxic stress. These include the integrated stress response (ISR), the heat shock response (HSR), and the oxidative stress response (OSR). Here, we define the stress signaling pathways activated in response to chronic mitochondrial proteostasis perturbations by monitoring the expression of sets of genes regulated downstream of each of these signaling pathways in published Perturb-seq datasets from K562 cells CRISPRi-depleted of mitochondrial proteostasis factors. Interestingly, we find that the ISR is preferentially activated in response to chronic, genetically-induced mitochondrial proteostasis stress, with no other pathway showing significant activation. Further, we demonstrate that CRISPRi depletion of other mitochondria-localized proteins similarly shows preferential activation of the ISR relative to other stress-responsive signaling pathways. These results both establish our gene set profiling approach as a viable strategy to probe stress responsive signaling pathways induced by perturbations to specific organelles and identify the ISR as the predominant stress-responsive signaling pathway activated in response to chronic disruption of mitochondrial proteostasis.


Mitochondria , Proteostasis , Proteostasis/physiology , Mitochondria/metabolism , Oxidative Stress , Signal Transduction/physiology , Heat-Shock Response , Mitochondrial Proteins/metabolism
19.
Biochem Soc Trans ; 52(2): 581-592, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38488108

Even though neurons are post-mitotic cells, they still engage in protein synthesis to uphold their cellular content balance, including for organelles, such as the endoplasmic reticulum or mitochondria. Additionally, they expend significant energy on tasks like neurotransmitter production and maintaining redox homeostasis. This cellular homeostasis is upheld through a delicate interplay between mRNA transcription-translation and protein degradative pathways, such as autophagy and proteasome degradation. When faced with cues such as nutrient stress, neurons must adapt by altering their proteome to survive. However, in many neurodegenerative disorders, such as Parkinson's disease, the pathway and processes for coping with cellular stress are impaired. This review explores neuronal proteome adaptation in response to cellular stress, such as nutrient stress, with a focus on proteins associated with autophagy, stress response pathways, and neurotransmitters.


Neurons , Proteostasis , Animals , Humans , Autophagy/physiology , Neurons/metabolism , Proteome/metabolism , Stress, Physiological
20.
Cell Rep ; 43(4): 114018, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38551959

Mitochondria consist of hundreds of proteins, most of which are inaccessible to the proteasomal quality control system of the cytosol. How cells stabilize the mitochondrial proteome during challenging conditions remains poorly understood. Here, we show that mitochondria form spatially defined protein aggregates as a stress-protecting mechanism. Two different types of intramitochondrial protein aggregates can be distinguished. The mitoribosomal protein Var1 (uS3m) undergoes a stress-induced transition from a soluble, chaperone-stabilized protein that is prevalent under benign conditions to an insoluble, aggregated form upon acute stress. The formation of Var1 bodies stabilizes mitochondrial proteostasis, presumably by sequestration of aggregation-prone proteins. The AAA chaperone Hsp78 is part of a second type of intramitochondrial aggregate that transiently sequesters proteins and promotes their folding or Pim1-mediated degradation. Thus, mitochondrial proteins actively control the formation of distinct types of intramitochondrial protein aggregates, which cooperate to stabilize the mitochondrial proteome during proteotoxic stress conditions.


Mitochondria , Mitochondrial Proteins , Protein Aggregates , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Stress, Physiological , Humans , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Molecular Chaperones/metabolism , Proteostasis , Proteome/metabolism , Proteotoxic Stress
...