Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 369
1.
Talanta ; 275: 126082, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38677167

An ultrasensitive immunosensor of Cys/Au@TiO2 based on disposable screen-printed electrodes (SPE) for PIVKA-II detection for hepatocellular carcinoma (HCC) diagnosis was developed by utilizing Cystine (Cys) and nanocomposite Au@TiO2. Firstly, HAuCl4 underwent a reduction reaction with NaBH4, then Au nanoparticles were coated onto TiO2 nanoparticles. Followed, Cys/Au@TiO2 was formed through self-assembly of cysteine to allow the monoclonal antibody of abnormal thrombospondin to bound to the amino group on the surface of the composite by covalent bonding. The mechanism is to determine the changes in the current of the sensor caused by the specific binding of the abnormal prothrombin monoclonal antibody adsorbed by the complex with its antigen. The Cys/Au@TiO2 immunosensor was fully characterized by various analytical approaches and it showed a wide linear testing range of 1-10000 pg mL-1 (R2 = 0.991) and the limit of detection down to 0.77 pg ml-1, with highly sensitivity and specificity. The results showed that the developed immunosensor platform can effectively detect trace amounts of PIVKA-II protein and has potent clinical application for HCC diagnosis.


Biomarkers, Tumor , Biosensing Techniques , Cysteine , Gold , Liver Neoplasms , Prothrombin , Titanium , Titanium/chemistry , Gold/chemistry , Humans , Liver Neoplasms/diagnosis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/immunology , Prothrombin/chemistry , Immunoassay/methods , Biosensing Techniques/methods , Cysteine/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Electrodes , Carcinoma, Hepatocellular/diagnosis , Protein Precursors , Biomarkers
2.
Blood ; 143(19): 2005-2011, 2024 May 09.
Article En | MEDLINE | ID: mdl-38437497

ABSTRACT: Antiprothrombin antibodies are found in antiphospholipid patients, but how they interact with prothrombin remains elusive. Prothrombin adopts closed and open forms. We recently discovered type I and type II antibodies and proposed that type I recognizes the open form. In this study, we report the discovery and structural and functional characterization in human plasma of a type I antibody, POmAb (prothrombin open monoclonal antibody). Using surface plasmon resonance and single-molecule spectroscopy, we show that POmAb interacts with kringle-1 of prothrombin, shifting the equilibrium toward the open form. Using single-particle cryogenic electron microscopy (cryo-EM), we establish that the epitope targeted by POmAb is in kringle-1, comprising an extended binding interface centered at residues R90-Y93. The 3.2-Å cryo-EM structure of the complex reveals that the epitope overlaps with the position occupied by the protease domain of prothrombin in the closed state, explaining the exclusive binding of POmAb to the open form. In human plasma, POmAb prolongs phospholipid-initiated and diluted Russell's viper venom clotting time, which could be partly rescued by excess phospholipids, indicating POmAb is an anticoagulant but exerts a weak lupus anticoagulant effect. These studies reveal the structural basis of prothrombin recognition by a type I antiphospholipid antibody and uncover an exciting new strategy to achieve anticoagulation in human plasma.


Antibodies, Antiphospholipid , Cryoelectron Microscopy , Prothrombin , Humans , Prothrombin/chemistry , Prothrombin/immunology , Prothrombin/metabolism , Antibodies, Antiphospholipid/immunology , Epitopes/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Blood Coagulation , Kringles , Protein Binding
3.
J Biol Chem ; 300(4): 107131, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432634

Many interactions involving a ligand and its molecular target are studied by rapid kinetics using a stopped-flow apparatus. Information obtained from these studies is often limited to a single, saturable relaxation that is insufficient to resolve all independent rate constants even for a two-step mechanism of binding obeying induced fit (IF) or conformational selection (CS). We introduce a simple method of general applicability where this limitation is overcome. The method accurately reproduces the rate constants for ligand binding to the serine protease thrombin determined independently from the analysis of multiple relaxations. Application to the inactive zymogen precursor of thrombin, prethrombin-2, resolves all rate constants for a binding mechanism of IF or CS from a single, saturable relaxation. Comparison with thrombin shows that the prethrombin-2 to thrombin conversion enhances ligand binding to the active site not by improving accessibility through the value of kon but by reducing the rate of dissociation koff. The conclusion holds regardless of whether binding is interpreted in terms of IF or CS and has general relevance for the mechanism of zymogen activation of serine proteases. The method also provides a simple test of the validity of IF and CS and indicates when more complex mechanisms of binding should be considered.


Biochemistry , Kinetics , Ligands , Enzyme Precursors/metabolism , Enzyme Precursors/chemistry , Protein Binding , Protein Conformation , Prothrombin/metabolism , Prothrombin/chemistry , Thrombin/metabolism , Thrombin/chemistry , Biochemistry/methods , Serine Proteases/metabolism , Catalytic Domain
4.
Anal Chim Acta ; 1284: 341972, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37996163

Gamma (γ) carboxylation is an essential post-translational modification in vitamin K-dependent proteins (VKDPs), involved in maintaining critical biological homeostasis. Alterations in the abundance or activity of these proteins have pharmacological and pathological consequences. Importantly, low levels of fully γ-carboxylated clotting factors increase plasma des-γ-carboxy precursors resulting in little or no biological activity. Therefore, it is important to characterize the levels of γ-carboxylation that reflect the active state of these proteins. The conventional enzyme-linked immunosorbent assay for protein induced by vitamin K absence or antagonist II (PIVKA-II) quantification uses an antibody that is not applicable to distinguish different γ-carboxylation states. Liquid chromatography-mass spectrometry (LC-MS) approaches have been utilized to distinguish different γ-carboxylated proteoforms, however, these attempts were impeded by poor sensitivity due to spontaneous neutral loss of CO2 and simultaneous cleavage of the backbone bond in the collision cell. In this study, we utilized an alkaline mobile phase in combination with polarity switching (positive and negative ionization modes) to simultaneously identify and quantify γ-carboxylated VKDPs. The method was applied to compare Gla proteomics of prothrombin (FII) in 10 µL plasma samples of healthy control and warfarin-treated adults. We also identified surrogate non-Gla peptides for seven other VKDPs to quantify total (active plus inactive) protein levels. The total protein approach (TPA) was used to quantify absolute levels of the VKDPs in human plasma.


Prothrombin , Vitamin K , Adult , Humans , Prothrombin/chemistry , Prothrombin/genetics , Prothrombin/metabolism , Vitamin K/metabolism , Vitamin K/pharmacology , Protein Processing, Post-Translational , Warfarin , Peptides/metabolism
5.
J Thromb Haemost ; 21(7): 1769-1778, 2023 07.
Article En | MEDLINE | ID: mdl-36931601

BACKGROUND: Current assays that monitor thrombin generation in plasma rely on fluorogenic substrates to follow the kinetics of zymogen activation, which may be complicated by substrate cleavage from other proteases. In addition, these assays depend on activation following cleavage at the prothrombin R320 site and fail to report the cleavage at the alternative R271 site, leading to the shedding of the auxiliary Gla and kringle domains of prothrombin. OBJECTIVES: To develop a plasma assay that directly monitors prothrombin activation independent of fluorogenic substrate hydrolysis. METHODS: Cleavage at the R271 site of prothrombin is monitored through loss of Förster resonance energy transfer in plasma coagulated along the extrinsic or intrinsic pathway. RESULTS: The availability of factor (F)V in plasma strongly influences the rate of prothrombin activation. The rate of thrombin formation is equally perturbed in FV or prothrombin-depleted plasma, implicating that the thrombin-catalyzed feedback reactions that amplify the coagulation response play an important role in generating sufficient amounts of FVa required for the assembly of prothrombinase. Congenital deficiencies in FVIII and FIX significantly slow down cleavage at R271 in plasma coagulated along the extrinsic and intrinsic pathways. Prothrombin activation in FXI-deficient plasma is only perturbed when coagulation is triggered along the intrinsic pathway. CONCLUSION: The Förster resonance energy transfer assay enables direct monitoring of prothrombin activation through cleavage at R271 without the need for fluorogenic substrates. The assay is sensitive enough to assess how deficiencies in coagulation factors affect thrombin formation.


Prothrombin , Thrombin , Humans , Prothrombin/chemistry , Thrombin/metabolism , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Blood Coagulation Factors , Factor Xa/metabolism
6.
J Thromb Haemost ; 20(3): 589-599, 2022 03.
Article En | MEDLINE | ID: mdl-34927362

BACKGROUND: The regulation of factor X (FX) is critical to maintain the balance between blood coagulation and fluidity. OBJECTIVES: To functionally characterize the role of the FX autolysis loop in the regulation of the zymogen and active form of FX. METHODS: We introduced novel N-linked glycosylations on the surface-exposed loop spanning residues 143-150 (chymotrypsin numbering) of FX. The activity and inhibition of recombinant FX variants was quantified in pure component assays. The in vitro thrombin generation potential of the FX variants was evaluated in FX-depleted plasma. RESULTS: The factor VIIa (FVIIa)-mediated activation and prothrombin activation was reduced, presumably through steric hinderance. Prothrombin activation was, however, recovered in presence of cofactor factor Va (FVa) despite a reduced prothrombinase assembly. The introduced N-glycans exhibited position-specific effects on the interaction with two FXa inhibitors: tissue factor pathway inhibitor (TFPI) and antithrombin (ATIII). Ki for the inhibition by full-length TFPI of these FXa variants was increased by 7- to 1150-fold, whereas ATIII inhibition in the presence of the heparin-analog Fondaparinux was modestly increased by 2- to 15-fold compared with wild-type. When supplemented in zymogen form, the FX variants exhibited reduced thrombin generation activity relative to wild-type FX, whereas enhanced procoagulant activity was measured for activated FXa variants. CONCLUSION: The autolysis loop participates in all aspects of FX regulation. In plasma-based assays, a modest decrease in FX activation rate appeared to knock down the procoagulant response even when down regulation of FXa activity by inhibitors was reduced.


Factor X , Factor Va/chemistry , Factor X/chemistry , Factor Xa/metabolism , Humans , Prothrombin/chemistry , Thromboplastin/genetics , Thromboplastin/metabolism
8.
Int J Mol Sci ; 22(7)2021 Mar 27.
Article En | MEDLINE | ID: mdl-33801783

The present study investigated expression of endogenous interleukin-13 (IL-13) and its possible function in the hippocampus of prothrombin kringle-2 (pKr-2)-lesioned rats. Here we report that intrahippocampal injection of pKr-2 revealed a significant loss of NeuN-immunopositive (NeuN+) and Nissl+ cells in the hippocampus at 7 days after pKr-2. In parallel, pKr-2 increased IL-13 levels, which reached a peak at 3 days post pKr-2 and sustained up to 7 days post pKr-2. IL-13 immunoreactivity was seen exclusively in activated microglia/macrophages and neutrophils, but not in neurons or astrocytes. In experiments designed to explore the involvement of IL-13 in neurodegeneration, IL-13 neutralizing antibody (IL-13Nab) significantly increased survival of NeuN+ and Nissl+ cells. Accompanying neuroprotection, immunohistochemical analysis indicated that IL-13Nab inhibited pKr-2-induced expression of inducible nitric oxide synthase and myeloperoxidase within activated microglia/macrophages and neutrophils, possibly resulting in attenuation of reactive oxygen species (ROS) generation and oxidative damage of DNA and protein. The current findings suggest that the endogenous IL-13 expressed in pKr-2 activated microglia/macrophages and neutrophils might be harmful to hippocampal neurons via oxidative stress.


Hippocampus/metabolism , Interleukin-13/physiology , Oxidative Stress , Prothrombin/chemistry , Animals , Astrocytes/metabolism , DNA Damage , Female , Hippocampus/drug effects , Kringles , Macrophages/metabolism , Microglia/metabolism , Neurons/metabolism , Neutrophils/metabolism , Oxygen/chemistry , Protein Domains , Rats , Rats, Sprague-Dawley
9.
Biosci Rep ; 41(2)2021 02 26.
Article En | MEDLINE | ID: mdl-33479740

Cell membranes have important functions in many steps of the blood coagulation cascade, including the activation of factor X (FX) by the factor VIIa (FVIIa)-tissue factor (TF) complex (extrinsic Xase). FVIIa shares structural similarity with factor IXa (FIXa) and FXa. FIXa and FXa are regulated by binding to phosphatidylserine (PS)-containing membranes via their γ-carboxyglutamic acid-rich domain (Gla) and epidermal growth-factor (EGF) domains. Although FVIIa also has a Gla-rich region, its affinity for PS-containing membranes is much lower compared with that of FIXa and FXa. Research suggests that a more common endothelial cell lipid, phosphatidylethanolamine (PE), might augment the contribution of PS in FVIIa membrane-binding and proteolytic activity. We used soluble forms of PS and PE (1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), 1,2-dicaproyl-sn-glycero-3-phospho-ethanolamine (C6PE)) to test the hypothesis that the two lipids bind to FVIIa jointly to promote FVIIa membrane binding and proteolytic activity. By equilibrium dialysis and tryptophan fluorescence, we found two sites on FVIIa that bound equally to C6PE and C6PS with Kd of ∼ 150-160 µM, however, deletion of Gla domain reduced the binding affinity. Binding of lipids occurred with greater affinity (Kd∼70-80 µM) when monitored by FVIIa proteolytic activity. Global fitting of all datasets indicated independent binding of two molecules of each lipid. The proteolytic activity of FVIIa increased by ∼50-100-fold in the presence of soluble TF (sTF) plus C6PS/C6PE. However, the proteolytic activity of Gla-deleted FVIIa in the presence of sTF was reduced drastically, suggesting the importance of Gla domain to maintain full proteolytic activity.


Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Prothrombin/metabolism , Thromboplastin/metabolism , Fluorescence , Humans , Proteolysis , Prothrombin/chemistry , Structure-Activity Relationship , Tryptophan/chemistry
10.
Anal Biochem ; 608: 113907, 2020 11 01.
Article En | MEDLINE | ID: mdl-32814078

Snake venom prothrombin activators such as Ecarin are readily assayed by continuous spectrophotometric monitoring of p-nitroaniline production in a one step assay containing prothrombin and a p-nitroanilide peptide substrate for thrombin. The coupled reactions result in accelerating p-nitroaniline (pNA) production over the course of the assay giving non-linear progress curves, from which initial velocities are not readily obtained. Most studies therefore resort to approximate estimates of activity, based on the absorbance reached at an arbitrary time. A simple kinetic analysis of the coupled reactions shows that the early points of such curves should be fitted by second order polynomials, representing the accelerating reaction rate in µmol pNA/min/min. The first derivative of the polynomial then gives the increasing velocity of pNA production in µmol pNA/min over the time course of the assay. We demonstrate here that, with the substrate S2238, these rates can be converted to absolute thrombin concentrations using the Michaelis-Menten equation, substituted with values for kcat and Km. These thrombin concentrations increase linearly over the time course of the assay allowing the activity to be expressed in units, defined as µmol product/min, most commonly used to report enzyme activity.


Chromogenic Compounds/chemistry , Dipeptides/chemistry , Endopeptidases/analysis , Enzyme Assays/methods , Aniline Compounds/chemistry , Animals , Humans , Hydrolysis , Kinetics , Limit of Detection , Linear Models , Prothrombin/chemistry , Reference Standards , Reproducibility of Results , Thrombin/chemistry
11.
J Biol Chem ; 295(35): 12498-12511, 2020 08 28.
Article En | MEDLINE | ID: mdl-32665403

The receptor for advanced glycation end products (RAGE) plays a key role in mammal physiology and in the etiology and progression of inflammatory and oxidative stress-based diseases. In adults, RAGE expression is normally high only in the lung where the protein concentrates in the basal membrane of alveolar Type I epithelial cells. In diseases, RAGE levels increase in the affected tissues and sustain chronic inflammation. RAGE exists as a membrane glycoprotein with an ectodomain, a transmembrane helix, and a short carboxyl-terminal tail, or as a soluble ectodomain that acts as a decoy receptor (sRAGE). VC1 domain is responsible for binding to the majority of RAGE ligands including advanced glycation end products (AGEs), S100 proteins, and HMGB1. To ascertain whether other ligands exist, we analyzed by MS the material pulled down by VC1 from human plasma. Twenty of 295 identified proteins were selected and associated to coagulation and complement processes and to extracellular matrix. Four of them contained a γ-carboxyl glutamic acid (Gla) domain, a calcium-binding module, and prothrombin (PT) was the most abundant. Using MicroScale thermophoresis, we quantified the interaction of PT with VC1 and sRAGE in the absence or presence of calcium that acted as a competitor. PT devoid of the Gla domain (PT des-Gla) did not bind to sRAGE, providing further evidence that the Gla domain is critical for the interaction. Finally, the presence of VC1 delayed plasma clotting in a dose-dependent manner. We propose that RAGE is involved in modulating blood coagulation presumably in conditions of lung injury.


Prothrombin/chemistry , Receptor for Advanced Glycation End Products/chemistry , Blood Coagulation , Humans , Lung Injury/blood , Protein Binding , Protein Domains , Prothrombin/metabolism , Receptor for Advanced Glycation End Products/metabolism
12.
J Biol Chem ; 295(17): 5614-5625, 2020 04 24.
Article En | MEDLINE | ID: mdl-32156702

In Staphylococcus aureus-caused endocarditis, the pathogen secretes staphylocoagulase (SC), thereby activating human prothrombin (ProT) and evading immune clearance. A previous structural comparison of the SC(1-325) fragment bound to thrombin and its inactive precursor prethrombin 2 has indicated that SC activates ProT by inserting its N-terminal dipeptide Ile1-Val2 into the ProT Ile16 pocket, forming a salt bridge with ProT's Asp194, thereby stabilizing the active conformation. We hypothesized that these N-terminal SC residues modulate ProT binding and activation. Here, we generated labeled SC(1-246) as a probe for competitively defining the affinities of N-terminal SC(1-246) variants preselected by modeling. Using ProT(R155Q,R271Q,R284Q) (ProTQQQ), a variant refractory to prothrombinase- or thrombin-mediated cleavage, we observed variant affinities between ∼1 and 650 nm and activation potencies ranging from 1.8-fold that of WT SC(1-246) to complete loss of function. Substrate binding to ProTQQQ caused allosteric tightening of the affinity of most SC(1-246) variants, consistent with zymogen activation through occupation of the specificity pocket. Conservative changes at positions 1 and 2 were well-tolerated, with Val1-Val2, Ile1-Ala2, and Leu1-Val2 variants exhibiting ProTQQQ affinity and activation potency comparable with WT SC(1-246). Weaker binding variants typically had reduced activation rates, although at near-saturating ProTQQQ levels, several variants exhibited limiting rates similar to or higher than that of WT SC(1-246). The Ile16 pocket in ProTQQQ appears to favor nonpolar, nonaromatic residues at SC positions 1 and 2. Our results suggest that SC variants other than WT Ile1-Val2-Thr3 might emerge with similar ProT-activating efficiency.


Bacterial Proteins/metabolism , Coagulase/metabolism , Prothrombin/metabolism , Staphylococcus aureus/metabolism , Bacterial Proteins/chemistry , Binding Sites , Coagulase/chemistry , Humans , Models, Molecular , Protein Binding , Prothrombin/chemistry , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/chemistry , Substrate Specificity
13.
Clin Transl Sci ; 13(4): 718-726, 2020 07.
Article En | MEDLINE | ID: mdl-32004415

Warfarin is a narrow therapeutic index anticoagulant drug and its use is associated with infrequent but significant adverse bleeding events. The international normalized ratio (INR) is the most commonly used biomarker to monitor and titrate warfarin therapy. However, INR is derived from a functional assay, which determines clotting efficiency at the time of measurement and is susceptible to technical variability. Protein induced by vitamin K antagonist-II (PIVKA-II) has been suggested as a biomarker of long-term vitamin K status, providing mechanistic insights about variation in the functional assay. However, the currently available antibody-based PIVKA-II assay does not inform on the position and number of des-carboxylation sites in prothrombin. The assay presented in this paper provides simultaneous quantification of carboxy and des-carboxy prothrombin that are essential for monitoring early changes in INR and, thus, serves as the superior tool for managing warfarin therapy. Additionally, this assay permits the quantification of total prothrombin level, which is affected by warfarin treatment. Prothrombin recovery from plasma was 95% and the liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was linear (r2  = 0.98) with a dynamic range of 1-100 µg/mL. The assay interday precision was within 20%. A des-carboxy peptide of prothrombin (GNLER) was negatively correlated with active prothrombin (Pearson r = 0.99, P < 0.0001), whereas its association was positively linked with INR values (Pearson r = 0.75, P < 0.015). This novel LC-MS/MS assay for active and inactive prothrombin quantification can be applied to titrate anticoagulant therapy and to monitor the impact of diseases, such as hepatocellular carcinoma on clotting physiology.


Anticoagulants/adverse effects , Hemorrhage/prevention & control , Prothrombin/analysis , Warfarin/adverse effects , Anticoagulants/administration & dosage , Biomarkers/blood , Biomarkers/chemistry , Blood Coagulation/drug effects , Blood Coagulation/physiology , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/physiopathology , Case-Control Studies , Chromatography, High Pressure Liquid/methods , Drug Monitoring/methods , Healthy Volunteers , Hemorrhage/blood , Hemorrhage/chemically induced , Hemorrhage/diagnosis , Humans , Liver Neoplasms/blood , Liver Neoplasms/physiopathology , Prothrombin/chemistry , Tandem Mass Spectrometry/methods , Warfarin/administration & dosage
14.
Sci Rep ; 10(1): 1086, 2020 01 23.
Article En | MEDLINE | ID: mdl-31974511

The equilibrium between active E and inactive E* forms of thrombin is assumed to be governed by the allosteric binding of a Na+ ion. Here we use molecular dynamics simulations and Markov state models to sample transitions between active and inactive states. With these calculations we are able to compare thermodynamic and kinetic properties depending on the presence of Na+. For the first time, we directly observe sodium-induced conformational changes in long-timescale computer simulations. Thereby, we are able to explain the resulting change in activity. We observe a stabilization of the active form in presence of Na+ and a shift towards the inactive form in Na+-free simulations. We identify key structural features to quantify and monitor this conformational shift. These include the accessibility of the S1 pocket and the reorientation of W215, of R221a and of the Na+ loop. The structural characteristics exhibit dynamics at various timescales: Conformational changes in the Na+ binding loop constitute the slowest observed movement. Depending on its orientation, it induces conformational shifts in the nearby substrate binding site. Only after this shift, residue W215 is able to move freely, allowing thrombin to adopt a binding-competent conformation.


Sodium/metabolism , Thrombin/metabolism , Amino Acid Motifs , Humans , Kinetics , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Prothrombin/chemistry , Prothrombin/metabolism , Sodium/chemistry , Thrombin/chemistry , Thrombin/genetics
15.
Carbohydr Polym ; 227: 115312, 2020 Jan 01.
Article En | MEDLINE | ID: mdl-31590876

Low molecular weight heparin (LMWH) possesses a dual function of anticoagulation and anti-inflammation. While the structures and mechanisms on its anticoagulation have been widely studied, the structural features responsible for the anti-inflammatory activity of LMWH remain to be explored. In the present study, guided by an anti-inflammation assay, a non-anticoagulant species was generated from partial desulfation of LMWH to fully retain the anti-inflammatory activity, from which five fractions were further separated and three of them were characterized by enzymatic degradation, hydrophobic labeling, C18-based HPLC and LC-MS/MS analyses. The structure-activity relationship revealed that the sulfate groups in LMWH are critical to distinguish and separate the activities of anticoagulation and anti-inflammation, leading to the identification of a synthetic heparosan-type heptasaccharide as a potent anti-inflammatory agent. The present strategy enables the simplification of complex polysaccharides to bioactive synthetic oligosaccharides for therapeutic utility.


Anti-Inflammatory Agents/pharmacology , Anticoagulants/chemistry , Disaccharides/pharmacology , Heparin, Low-Molecular-Weight/chemistry , Sulfates/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Disaccharides/chemistry , Factor Xa/chemistry , Heparin Lyase/chemistry , Lipopolysaccharides/pharmacology , Mice , Nitric Oxide/metabolism , Prothrombin/chemistry , RAW 264.7 Cells
16.
Article En | MEDLINE | ID: mdl-31634575

Dispholidus typus and Thelotornis mossambicanus are closely related rear-fanged colubrid snakes that both possess strongly procoagulant venoms. However, despite similarities in overall venom biochemistry and resulting clinical manifestations, the underlying venom composition differs significantly between the two species. As a result, the only available antivenom-which is a monovalent antivenom for D. typus-has minimal cross reactivity with T. mossambicanus and is not a clinically viable option. It was hypothesised that this lack of cross reactivity is due to the additional large metalloprotease protein within T. mossambicanus venom, which may also be responsible for faster coagulation times. In this study, we found that T. mossambicanus venom is a more powerful activator of prothrombin than that of D. typus and that the SVMP transcripts from T. mossambicanus form a clade with those from D. typus. The sequences from D. typus and T. mossambicanus were highly similar in length, with the calculated molecular weights of the T. mossambicanus transcripts being significantly less than the molecular weights of some isoforms on the 1D SDS-PAGE gels. Analyses utilising degylcosylating enzymes revealed that T. mossambicanus SVMPs are glycosylated during post-translational modification, but that this does not lead to the different molecular weight bands observed in 1D SDS-PAGE gels. However, differences in glycosylation patterns may still explain some of the difference between the enzymatic activities and neutralization by antivenom that have been observed in these venoms. The results of this study provide new information regarding the treatment options for patients envenomated by T. mossambicanus as well as the evolution of these dangerous snakes.


Colubridae/physiology , Metalloproteases/metabolism , Prothrombin/metabolism , Snake Venoms/chemistry , Snake Venoms/metabolism , Animals , Colubridae/genetics , Enzyme Activation , Gene Expression Regulation, Enzymologic/drug effects , Glycosylation , Metalloproteases/genetics , Phylogeny , Prothrombin/chemistry , Prothrombin/pharmacology , Transcriptome
17.
J Pharm Biomed Anal ; 174: 639-643, 2019 Sep 10.
Article En | MEDLINE | ID: mdl-31279893

Heparin is a carbohydrate polymer, which is clinically used as an anticoagulant for the treatment of thrombotic disorders. The anticoagulant process is mainly mediated by the interaction of heparin with antithrombin followed by inhibition of clotting factors IIa (FIIa) and Xa (FXa). The influence of polymer disaccharide structure, average molecular weight and impurity profiling (e.g., chloride and water content) was investigated by NMR spectrometry and principal component analysis (PCA) for a representative dataset of porcine heparin samples (n = 509). A significant linear dependence was found between anticoagulant activity and scores on the third principal component (PC3) based on the non-targeted analysis of 1H NMR fingerprints. The correlation between average molecular values and anticoagulant activity for the 24 porcine heparin samples from two manufacturers was linear (R = 0.85) over typical values for porcine heparin preparations. Chloride and water contents were identified as negatively influencing factors for the actual activity values as their presence decrease the "pharmaceutically active" organic part of heparin preparations. Some suggestions regarding manufacturing process are made according to the results.


Anticoagulants/analysis , Heparin/analysis , Magnetic Resonance Spectroscopy , Animals , Anticoagulants/chemistry , Chlorides/chemistry , Disaccharides/chemistry , Factor Xa/chemistry , Factor Xa Inhibitors/analysis , Factor Xa Inhibitors/chemistry , Heparin/chemistry , Heparin, Low-Molecular-Weight/analysis , Linear Models , Molecular Weight , Polymers/chemistry , Principal Component Analysis , Prothrombin/chemistry , Swine , Water/chemistry
18.
J Thromb Haemost ; 17(8): 1229-1239, 2019 08.
Article En | MEDLINE | ID: mdl-31102425

Blood coagulation factor Va serves an indispensable role in hemostasis as cofactor for the serine protease factor Xa. In the presence of an anionic phospholipid membrane and calcium ions, factors Va and Xa assemble into the prothrombinase complex. Following formation of the ternary complex with the macromolecular zymogen substrate prothrombin, the latter is rapidly converted into thrombin, the key regulatory enzyme of coagulation. Over the years, multiple binding sites have been identified in factor Va that play a role in the interaction of the cofactor with factor Xa, prothrombin, or the anionic phospholipid membrane surface. In this review, an overview of the currently available information on these interactive sites in factor Va is provided, and data from biochemical approaches and 3D structural protein complex models are discussed. The structural models have been generated in recent years and provide novel insights into the molecular requirements for assembly of both the prothrombinase and the ternary prothrombinase-prothrombin complexes. Integrated knowledge of functionally important regions in factor Va will allow for a better understanding of factor Va cofactor activity.


Blood Coagulation , Factor Va/metabolism , Prothrombin/metabolism , Thromboplastin/metabolism , Binding Sites , Cell Membrane/metabolism , Factor Va/chemistry , Factor Xa/metabolism , Humans , Models, Molecular , Phospholipids/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Prothrombin/chemistry , Structure-Activity Relationship , Thromboplastin/chemistry
19.
Int J Mol Sci ; 20(8)2019 Apr 19.
Article En | MEDLINE | ID: mdl-31010119

The present study investigated the effects of activated microglia-derived interleukin-4 (IL-4) and IL-13 on neurodegeneration in prothrombin kringle-2 (pKr-2)-treated rat cortex. pKr-2 was unilaterally injected into the Sprague-Dawley rat cerebral cortex and IL-4 and IL-13 neutralizing antibody was used to block the function of IL-4 and IL-13. Immunohistochemical analysis showed a significant loss of NeuN+ and Nissl+ cells and an increase of OX-42+ cells in the cortex at seven days post pKr-2. The levels of IL-4 and IL-13 expression were upregulated in the activated microglia as early as 12 hours post pKr-2 and sustained up to seven days post pKr-2. Neutralization by IL-4 or IL-13 antibodies (NA) significantly increased neuronal survival in pKr-2-treated rat cortex in vivo by suppressing microglial activation and the production of reactive oxygen species, as analyzed by immunohisotochemistry and hydroethidine histochemistry. These results suggest that IL-4 and IL-13 that were endogenously expressed from reactive microglia may play a critical role on neuronal death by regulating oxidative stress during the neurodegenerative diseases, such as Alzheimer's disease and dementia.


Cerebral Cortex/pathology , Interleukin-13/toxicity , Interleukin-4/toxicity , Kringles , Neurotoxins/toxicity , Oxidative Stress/drug effects , Prothrombin/chemistry , Prothrombin/toxicity , Animals , Female , Inflammation Mediators/metabolism , Macrophage Activation/drug effects , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Models, Biological , Nerve Degeneration/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
20.
Sci Rep ; 9(1): 6125, 2019 04 16.
Article En | MEDLINE | ID: mdl-30992526

Prothrombin, or coagulation factor II, is a multidomain zymogen precursor of thrombin that undergoes an allosteric equilibrium between two alternative conformations, open and closed, that react differently with the physiological activator prothrombinase. Specifically, the dominant closed form promotes cleavage at R320 and initiates activation along the meizothrombin pathway, whilst the open form promotes cleavage at R271 and initiates activation along the alternative prethrombin-2 pathway. Here we report how key structural features of prothrombin can be monitored by limited proteolysis with chymotrypsin that attacks W468 in the flexible autolysis loop of the protease domain in the open but not the closed form. Perturbation of prothrombin by selective removal of its constituent Gla domain, kringles and linkers reveals their long-range communication and supports a scenario where stabilization of the open form switches the pathway of activation from meizothrombin to prethrombin-2. We also identify R296 in the A chain of the protease domain as a critical link between the allosteric open-closed equilibrium and exposure of the sites of cleavage at R271 and R320. These findings reveal important new details on the molecular basis of prothrombin function.


Enzyme Precursors/metabolism , Protein Domains , Prothrombin/metabolism , Thrombin/metabolism , Allosteric Regulation , Chymotrypsin/metabolism , Crystallography, X-Ray , Enzyme Precursors/chemistry , Factor Xa/metabolism , Protein Stability , Proteolysis , Prothrombin/chemistry , Structure-Activity Relationship , Thrombin/chemistry
...