Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 25(14): 6828-6840, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34053181

RESUMEN

To efficiently prevent diabetic cardiomyopathy (DCM), we have explored and confirmed that metallothionein (MT) prevents DCM by attenuating oxidative stress, and increasing expression of proteins associated with glucose metabolism. To determine whether Akt2 expression is critical to MT prevention of DCM, mice with either global Akt2 gene deletion (Akt2-KO), or cardiomyocyte-specific overexpressing MT gene (MT-TG) or both combined (MT-TG/Akt2-KO) were used. Akt2-KO mice exhibited symptoms of DCM (cardiac remodelling and dysfunction), and reduced expression of glycogen and glucose metabolism-related proteins, despite an increase in total Akt (t-Akt) phosphorylation. Cardiac MT overexpression in MT-TG/Akt2-KO mice prevented DCM and restored glucose metabolism-related proteins expression and baseline t-Akt phosphorylation. Furthermore, phosphorylation of ERK1/2 increased in the heart of MT-TG/Akt2-KO mice, compared with Akt2-KO mice. As ERK1/2 has been implicated in the regulation of glucose transport and metabolism this increase could potentially underlie MT protective effect in MT-TG/Akt2-KO mice. Therefore, these results show that although our previous work has shown that MT preserving Akt2 activity is sufficient to prevent DCM, in the absence of Akt2 MT may stimulate alternative or downstream pathways protecting from DCM in a type 2 model of diabetes, and that this protection may be associated with the ERK activation pathway.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Metalotioneína/genética , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Cardiomiopatías Diabéticas/genética , Femenino , Glucosa/metabolismo , Humanos , Masculino , Metalotioneína/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-akt/deficiencia , Transgenes , Regulación hacia Arriba
2.
Cells ; 10(2)2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670586

RESUMEN

Bone metastases frequently occur in breast cancer patients and lack appropriate treatment options. Hence, understanding the molecular mechanisms involved in the multistep process of breast cancer bone metastasis and tumor-induced osteolysis is of paramount interest. The serine/threonine kinase AKT plays a crucial role in breast cancer bone metastasis but the effect of individual AKT isoforms remains unclear. Therefore, AKT isoform-specific knockdowns were generated on the bone-seeking MDA-MB-231 BO subline and the effect on proliferation, migration, invasion, and chemotaxis was analyzed by live-cell imaging. Kinome profiling and Western blot analysis of the TGFß/CTGF axis were conducted and metastasis was evaluated by intracardiac inoculation of tumor cells into NOD scid gamma (NSG) mice. MDA-MB-231 BO cells exhibited an elevated AKT3 kinase activity in vitro and responded to combined treatment with AKT- and mTOR-inhibitors. Knockdown of AKT3 significantly increased migration, invasion, and chemotaxis in vitro and metastasis to bone but did not significantly enhance osteolysis. Furthermore, knockdown of AKT3 increased the activity and phosphorylation of pro-metastatic HER2 and DDR1/2 but lowered protein levels of CTGF after TGFß-stimulation, an axis involved in tumor-induced osteolysis. We demonstrated that AKT3 plays a crucial role in bone-seeking breast cancer cells by promoting metastatic potential without facilitating tumor-induced osteolysis.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Receptores con Dominio Discoidina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Anticuerpos Heterófilos , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal
3.
J Cell Mol Med ; 25(3): 1546-1553, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33377281

RESUMEN

Although primary androgen deprivation therapy resulted in tumour regression, unfortunately, majority of prostate cancer progress to a lethal castration-resistant prostate cancer, finally die to metastasis. The mutual feedback between AKT and AR pathways plays a vital role in the progression and metastasis of prostate cancer. Therefore, the treatment of a single factor will eventually inevitably lead to failure. Therefore, better understanding of the molecular mechanisms underlying metastasis is critical to the development of new and more effective therapeutic agents. In this study, we created prostate cancer CWR22rv1 cells with the double knockout of Akt1 and Akt2 genes through CRISPR/Cas9 method to investigate the effect of Akt in metastasis of prostate cancer. It was found that knockout of Akt1/2 resulted in markedly reduced metastasis in vitro and in vivo, and appeared to interfere AR nuclear translocation through regulating downstream regulatory factor, FOXO proteins. It suggests that some downstream regulatory factors in the AKT and AR interaction network play a vital role in prostate cancer metastasis and are potential targeting molecules for prostate cancer metastasis treatment.


Asunto(s)
Metástasis de la Neoplasia/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/deficiencia , Animales , Línea Celular Tumoral , Células Cultivadas , Modelos Animales de Enfermedad , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Marcación de Gen , Xenoinjertos , Humanos , Inmunohistoquímica , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Unión Proteica , Transporte de Proteínas , Receptores Androgénicos/metabolismo
4.
Mol Biol Rep ; 47(12): 9511-9520, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33247386

RESUMEN

Renal ischemia-reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI). Although Akt is involved in renal IRI, it is unclear as to which Akt isoform plays an important role in renal IRI. In this study, we investigated the role of Akt1 in renal IRI. We subjected the C57BL/6 male mice to unilateral IRI with contralateral nephrectomy. Two days after IRI, IRI-kidneys were harvested. The mice were divided into four groups: wild type (WT) IRI, Akt1-/- IRI, WT sham, and Akt1-/- sham. We found that Akt1, not Akt2 or Akt3, was markedly activated in WT IRI than in WT sham mice. The histologic damage score and serum creatinine level significantly increased in WT IRI mice, the increase being the highest in Akt1-/- IRI mice. The number of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells and expression of cleaved caspase-3/Bax were higher in Akt1-/- IRI mice than in WT IRI mice. The expression of Bcl-2 was lower in Akt1-/- IRI mice than in WT IRI mice. The expression of tumor necrosis factor-α/interleukin-6/interleukin-1ß and number of F4/80-positive macrophages were markedly higher in Akt1-/- IRI than in WT IRI mice. The expression of phosphorylated nuclear factor-κB p65 was also higher in Akt1-/- IRI mice than in WT IRI mice. Our results show that Akt1 deletion exacerbates kidney damage as it increases tubular apoptosis and inflammatory response during renal IRI. Akt1 could be a potential therapeutic target for developing treatments against IRI-induced AKI.


Asunto(s)
Apoptosis/genética , Regulación de la Expresión Génica , Túbulos Renales/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Daño por Reperfusión/genética , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Inflamación , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Túbulos Renales/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nefrectomía/métodos , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
5.
Clin Sci (Lond) ; 134(17): 2381-2398, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32880392

RESUMEN

Skeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85-90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial. The present study aims to investigate whether AKT2 deficiency causes deficits in skeletal muscle development and metabolism, we analyzed the expression of molecules related to skeletal muscle development, glucose uptake and metabolism in mice of 3- and 8-months old. We found that AMP-activated protein kinase (AMPK) phosphorylation and myocyte enhancer factor 2 (MEF2) A (MEF2A) expression were down-regulated in AKT2 knockout (KO) mice, which can be inverted by AMPK activation. We also observed reduced mitochondrial DNA (mtDNA) abundance and reduced expression of genes involved in mitochondrial biogenesis in the skeletal muscle of AKT2 KO mice, which was prevented by AMPK activation. Moreover, AKT2 KO mice exhibited impaired AMPK signaling in response to insulin stimulation compared with WT mice. Our study establishes a new and important function of AKT2 in regulating skeletal muscle development and glucose metabolism via AMPK-dependent signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Homeostasis , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Envejecimiento/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular , Redes Reguladoras de Genes/efectos de los fármacos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Mutación con Pérdida de Función , Factores de Transcripción MEF2/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura , Tamaño de los Órganos/efectos de los fármacos , Biogénesis de Organelos , Proteínas Proto-Oncogénicas c-akt/deficiencia , Ribonucleótidos/farmacología , Sarcopenia/patología , Transducción de Señal/efectos de los fármacos
6.
Cell Death Dis ; 11(2): 96, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029708

RESUMEN

Cathelicidin-related antimicrobial peptide (CRAMP), an antimicrobial peptide, was reported to protect against myocardial ischemia/reperfusion injury. However, the effect of CRAMP on pressure overload-induced cardiac hypertrophy was unknown. This study explored the role of CRAMP on cardiac hypertrophy. A cardiac hypertrophy mouse model was induced by aortic banding surgery. Seven days after surgery, mice were given mCRAMP by intraperitoneal injection (8 mg/kg/d) for 7 weeks. Cardiac hypertrophy was evaluated by the hypertrophic response and fibrosis level as well as cardiac function. Mice were also injected with AAV9-shCRAMP to knockdown CRAMP in the mouse heart. CRAMP levels first increased and then reduced in the remodeling heart, as well as in angiotensin II-stimulated endothelial cells but not in cardiomyocytes and fibroblasts. mCRAMP protected against the pressure overload-induced cardiac remodeling process, while CRAMP knockdown accelerated this process. mCRAMP reduced the inflammatory response and oxidative stress in the hypertrophic heart, while mCRAMP deficiency deteriorated the pressure overload-induced inflammatory response and oxidative stress. mCRAMP inhibited the angiotensin II-stimulated hypertrophic response and oxidative stress in neonatal rat cardiomyocytes, but mCRAMP did not help the angiotensin II-induced inflammatory response and oxidative stress in endothelial cells. Mechanistically, we found that mCRAMP suppressed the cardiac hypertrophic response by activating the IGFR1/PI3K/AKT pathway via directly binding to IGFR1. AKT knockout mice completely reversed the anti-hypertrophic effect of mCRAMP but not its anti-oxidative effect. We also found that mCRAMP ameliorated cardiac oxidative stress by activating the TLR9/AMPKa pathway. This was confirmed by a TLR9 knockout mouse experiment, in which a TLR9 knockout partly reversed the anti-hypertrophic effect of mCRAMP and completely counteracted the anti-oxidative effect of mCRAMP. In summary, mCRAMP protected against pressure overload-induced cardiac hypertrophy by activating both the IGFR1/PI3K/AKT and TLR9/AMPKa pathways in cardiomyocytes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Hipertrofia Ventricular Izquierda/prevención & control , Miocardio/enzimología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Antiinflamatorios/farmacología , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , Transducción de Señal , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Catelicidinas
7.
Biochem J ; 477(5): 1021-1031, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32096546

RESUMEN

Hepatic glucose metabolism signaling downstream of insulin can diverge to multiple pathways including AKT. Genetic studies suggest that AKT is necessary for insulin to suppress gluconeogenesis. To specifically address the role of AKT2, the dominant liver isoform of AKT in the regulation of gluconeogenesis genes, we generated hepatocytes lacking AKT2 (Akt2-/-). We found that, in the absence of insulin signal, AKT2 is required for maintaining the basal level expression of phosphoenolpyruvate carboxyl kinase (PEPCK) and to a lesser extent G6Pase, two key rate-limiting enzymes for gluconeogenesis that support glucose excursion due to pyruvate loading. We further showed that this function of AKT2 is mediated by the phosphorylation of cyclic AMP response element binding (CREB). Phosphorylation of CREB by AKT2 is needed for CREB to induce the expression of PEPCK and likely represents a priming event for unstimulated cells to poise to receive glucagon and other signals. The inhibition of gluconeogenesis by insulin is also dependent on the reduced FOXO1 transcriptional activity at the promoter of PEPCK. When insulin signal is absent, this activity appears to be inhibited by AKT2 in manner that is independent of its phosphorylation by AKT. Together, this action of AKT2 on FOXO1 and CREB to maintain basal gluconeogenesis activity may provide fine-tuning for insulin and glucocorticoid/glucagon to regulate gluconeogenesis in a timely manner to meet metabolic needs.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Glucosa-6-Fosfatasa/biosíntesis , Fosfoenolpiruvato Carboxiquinasa (ATP)/biosíntesis , Proteínas Proto-Oncogénicas c-akt/deficiencia , Animales , Células Cultivadas , Glucosa-6-Fosfatasa/genética , Hepatocitos/enzimología , Ratones , Ratones Noqueados , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Proteínas Proto-Oncogénicas c-akt/genética
8.
J Pathol ; 250(1): 42-54, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31531867

RESUMEN

Molecular signalling mediated by the phosphatidylinositol-3-kinase (PI3K)-Akt axis is a key regulator of cellular functions. Importantly, alteration of the PI3K-Akt signalling underlies the development of different human diseases, thus prompting the investigation of the pathway as a molecular target for pharmacologic intervention. In this regard, recent studies showed that small molecule inhibitors of PI3K, the upstream regulator of the pathway, reduced the development of inflammation during acute pancreatitis, a highly debilitating and potentially lethal disease. Here we investigated whether a specific reduction of Akt activity, by using either pharmacologic Akt inhibition, or genetic inactivation of the Akt1 isoform selectively in pancreatic acinar cells, is effective in ameliorating the onset and progression of the disease. We discovered that systemic reduction of Akt activity did not protect the pancreas from initial damage and only transiently delayed leukocyte recruitment. However, reduction of Akt activity decreased acinar proliferation and exacerbated acinar-to-ductal metaplasia (ADM) formation, two critical events in the progression of pancreatitis. These phenotypes were recapitulated upon conditional inactivation of Akt1 in acinar cells, which resulted in reduced expression of 4E-BP1, a multifunctional protein of key importance in cell proliferation and metaplasia formation. Collectively, our results highlight the critical role played by Akt1 during the development of acute pancreatitis in the control of acinar cell proliferation and ADM formation. In addition, these results harbour important translational implications as they raise the concern that inhibitors of PI3K-Akt signalling pathways may negatively affect the regeneration of the pancreas. Finally, this work provides the basis for further investigating the potential of Akt1 activators to boost pancreatic regeneration following inflammatory insults. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Células Acinares/enzimología , Proliferación Celular , Páncreas Exocrino/enzimología , Conductos Pancreáticos/enzimología , Pancreatitis/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ceruletida , Modelos Animales de Enfermedad , Masculino , Metaplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas Exocrino/efectos de los fármacos , Páncreas Exocrino/patología , Conductos Pancreáticos/efectos de los fármacos , Conductos Pancreáticos/patología , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/análisis , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Transducción de Señal
9.
J Immunol ; 202(5): 1441-1452, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692211

RESUMEN

Akt isoforms play key roles in multiple cellular processes; however, the roles of Akt-1 and Akt-2 isoforms in the development of T cell-mediated autoimmunity are poorly defined. In this study, we showed that Akt1-/- mice develop ameliorated experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, whereas Akt2-/- mice develop exacerbated EAE, compared with wild-type mice. At the cellular level, Akt-1 appears to inhibit proliferation of thymus-derived regulatory T cells (tTregs), which facilitates Ag-specific Th1/Th17 responses. In a sharp contrast to Akt-1, Akt-2 potentiates tTreg proliferation in vitro and in vivo and suppresses Ag-specific Th1/Th17 responses. Furthermore, treating mice with established EAE with a specific Akt-1 inhibitor suppressed disease progression. Our data demonstrate that Akt-1 and Akt-2 differentially regulate the susceptibility of mice to EAE by controlling tTreg proliferation. Our data also indicate that targeting Akt-1 is a potential therapeutic approach for multiple sclerosis in humans.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Proteínas Proto-Oncogénicas c-akt/inmunología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/deficiencia , Células TH1/inmunología , Células Th17/inmunología
10.
Cell Commun Signal ; 16(1): 82, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30445978

RESUMEN

BACKGROUND: Knockdown of Akt1 promotes Epithelial-to-Mesenchymal Transition in breast cancer cells. However, the mechanisms are not completely understood. METHODS: Western blotting, immunofluorescence, luciferase assay, real time PCR, ELISA and Matrigel invasion assay were used to investigate how Akt1 inhibition promotes breast cancer cell invasion in vitro. Mouse model of lung metastasis was used to measure in vivo efficacy of Akt inhibitor MK2206 and its combination with Gefitinib. RESULTS: Knockdown of Akt1 stimulated ß-catenin nuclear accumulation, resulting in breast cancer cell invasion. ß-catenin nuclear accumulation induced by Akt1 inhibition depended on the prolonged activation of EGFR signaling pathway in breast cancer cells. Mechanistic experiments documented that knockdown of Akt1 inactivates PIKfyve via dephosphorylating of PIKfyve at Ser318 site, resulting in a decreased degradation of EGFR signaling pathway. Inhibition of Akt1 using MK2206 could induce an increase in the expression of EGFR and ß-catenin in breast cancer cells. In addition, MK2206 at a low dosage enhance breast cancer metastasis in a mouse model of lung metastasis, while an inhibitor of EGFR tyrosine kinase Gefitinib could potentially suppress breast cancer metastasis induced by Akt1 inhibition. CONCLUSION: EGFR-mediated ß-catenin nuclear accumulation is critical for Akt1 inhibition-induced breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama/patología , Núcleo Celular/metabolismo , Receptores ErbB/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , beta Catenina/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Gefitinib/farmacología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Células MCF-7 , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas/metabolismo
11.
Cell Rep ; 25(1): 57-67.e5, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282038

RESUMEN

Tuberculosis claims >1 million lives annually, and its causative agent Mycobacterium tuberculosis is a highly successful pathogen. Protein kinase B (PknB) is reported to be critical for mycobacterial growth. Here, we demonstrate that PknB-depleted M. tuberculosis can replicate normally and can synthesize peptidoglycan in an osmoprotective medium. Comparative phosphoproteomics of PknB-producing and PknB-depleted mycobacteria identify CwlM, an essential regulator of peptidoglycan synthesis, as a major PknB substrate. Our complementation studies of a cwlM mutant of M. tuberculosis support CwlM phosphorylation as a likely molecular basis for PknB being essential for mycobacterial growth. We demonstrate that growing mycobacteria produce two forms of CwlM: a non-phosphorylated membrane-associated form and a PknB-phosphorylated cytoplasmic form. Furthermore, we show that the partner proteins for the phosphorylated and non-phosphorylated forms of CwlM are FhaA, a fork head-associated domain protein, and MurJ, a proposed lipid II flippase, respectively. From our results, we propose a model in which CwlM potentially regulates both the biosynthesis of peptidoglycan precursors and their transport across the cytoplasmic membrane.


Asunto(s)
Mycobacterium tuberculosis/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Secuencia de Aminoácidos , Pared Celular/enzimología , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/crecimiento & desarrollo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/deficiencia
12.
Adv Exp Med Biol ; 1074: 585-591, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721991

RESUMEN

Serine/threonine kinase Akt is a downstream effector of the phosphoinositide 3-kinase pathway that is involved in many processes, including providing neuroprotection to stressed photoreceptor cells. Akt exists in three isoforms designated as Akt1, Akt2, and Akt3. All of these isoforms are expressed in the retina. We previously reported that Akt2 knockout mice were susceptible to light stress-induced photoreceptor degeneration, whereas Akt1 deletion had no effect on the retina. We hypothesized that the phenotype of Akt2 knockout mice may be due to the inactivation of specific substrate(s) in the retina. Yeast two-hybrid screening of a bovine retinal cDNA library with Akt2 identified a multidomain protein, POSH (plenty of SH3s), that acts as a scaffold for the JNK pathway of neuronal death. Our results suggest a stable interaction between Akt2 and POSH. Previous studies show that overexpression of POSH leads to cell death. The cell death that we observed in Akt2 knockout mice could be due to the absence of inactivation of POSH-mediated JNK signaling in the retina.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas del Citoesqueleto/fisiología , Proteínas del Ojo/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-akt/fisiología , Retina/enzimología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Bovinos , ADN Complementario/genética , Proteínas del Ojo/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Fenotipo , Mapeo de Interacción de Proteínas , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Técnicas del Sistema de Dos Híbridos
13.
Arterioscler Thromb Vasc Biol ; 38(4): 870-879, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29449333

RESUMEN

OBJECTIVE: The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. APPROACH AND RESULTS: Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. CONCLUSIONS: Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair.


Asunto(s)
Aorta Torácica/enzimología , Células Endoteliales/enzimología , Isquemia/enzimología , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vasoconstricción , Animales , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Modelos Animales de Enfermedad , Miembro Posterior , Isquemia/genética , Isquemia/patología , Isquemia/fisiopatología , Masculino , Ratones Noqueados , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Flujo Sanguíneo Regional , Transducción de Señal
14.
Am J Physiol Regul Integr Comp Physiol ; 314(5): R741-R751, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29443546

RESUMEN

Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.


Asunto(s)
Proliferación Celular , Músculo Esquelético/enzimología , Proteínas Proto-Oncogénicas c-akt/deficiencia , Células Satélite del Músculo Esquelético/enzimología , Animales , Femenino , Hipertrofia , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Músculo Esquelético/patología , Biosíntesis de Proteínas , Proteolisis , Proteínas Proto-Oncogénicas c-akt/genética , Células Satélite del Músculo Esquelético/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 38(3): 529-541, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29301787

RESUMEN

OBJECTIVE: Copper transporter ATP7A (copper-transporting/ATPase) is required for full activation of SOD3 (extracellular superoxide dismutase), which is secreted from vascular smooth muscle cells (VSMCs) and anchors to endothelial cell surface to preserve endothelial function by scavenging extracellular superoxide. We reported that ATP7A protein expression and SOD3 activity are decreased in insulin-deficient type 1 diabetes mellitus vessels, thereby, inducing superoxide-mediated endothelial dysfunction, which are rescued by insulin treatment. However, it is unknown regarding the mechanism by which insulin increases ATP7A expression in VSMCs and whether ATP7A downregulation is observed in T2DM (type2 diabetes mellitus) mice and human in which insulin-Akt (protein kinase B) pathway is selectively impaired. APPROACH AND RESULTS: Here we show that ATP7A protein is markedly downregulated in vessels isolated from T2DM patients, as well as those from high-fat diet-induced or db/db T2DM mice. Akt2 (protein kinase B beta) activated by insulin promotes ATP7A stabilization via preventing ubiquitination/degradation as well as translocation to plasma membrane in VSMCs, which contributes to activation of SOD3 that protects against T2DM-induced endothelial dysfunction. Downregulation of ATP7A in T2DM vessels is restored by constitutive active Akt or PTP1B-/- (protein-tyrosine phosphatase 1B-deficient) T2DM mice, which enhance insulin-Akt signaling. Immunoprecipitation, in vitro kinase assay, and mass spectrometry analysis reveal that insulin stimulates Akt2 binding to ATP7A to induce phosphorylation at Ser1424/1463/1466. Furthermore, SOD3 activity is reduced in Akt2-/- vessels or VSMCs, which is rescued by ATP7A overexpression. CONCLUSION: Akt2 plays a critical role in ATP7A protein stabilization and translocation to plasma membrane in VSMCs, which contributes to full activation of vascular SOD3 that protects against endothelial dysfunction in T2DM.


Asunto(s)
ATPasas Transportadoras de Cobre/metabolismo , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Tipo 2/enzimología , Angiopatías Diabéticas/enzimología , Endotelio Vascular/enzimología , Músculo Liso Vascular/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Aorta Torácica/enzimología , Aorta Torácica/fisiopatología , Células Cultivadas , ATPasas Transportadoras de Cobre/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/prevención & control , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Estabilidad de Enzimas , Femenino , Humanos , Hipoglucemiantes/farmacología , Insulina/farmacología , Masculino , Arterias Mesentéricas/enzimología , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Fosforilación , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Ratas Sprague-Dawley , Transducción de Señal , Superóxido Dismutasa/deficiencia , Superóxido Dismutasa/genética , Vasodilatación
16.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1183-1191, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29378301

RESUMEN

While deletion of Akt1 results in a smaller heart size and Akt2-/- mice are mildly insulin resistant, Akt1-/-/Akt2-/- mice exhibit perinatal lethality, indicating a large degree of functional overlap between the isoforms of the serine/threonine kinase Akt. The present study aimed to determine the cooperative contribution of Akt1 and Akt2 on the structure and contractile function of adult hearts. To generate an inducible, cardiomyocyte-restricted Akt2 knockout (KO) model, Akt2flox/flox mice were crossed with tamoxifen-inducible MerCreMer transgenic (MCM) mice and germline Akt1-/- mice to generate the following genotypes:Akt1+/+; Akt2flox/flox (WT), Akt2flox/flox; α-MHC-MCM (iAkt2 KO), Akt1-/-, and Akt1-/-; Akt2flox/flox; α-MHC-MCM mice (Akt1-/-/iAkt2 KO). At 28 days after the first tamoxifen injection, Akt1-/-/iAkt2 KO mice developed contractile dysfunction paralleling increased atrial and brain natriuretic peptide (ANP and BNP) levels, and repressed mitochondrial gene expression. Neither cardiac fibrosis nor apoptosis were detected in Akt1-/-/iAkt2 KO hearts. To explore potential molecular mechanisms for contractile dysfunction, we investigated myocardial microstructure before the onset of heart failure. At 3 days after the first tamoxifen injection, Akt1-/-/iAkt2 KO hearts showed decreased expression of connexin43 (Cx43) and connexin-interacting protein zonula occludens-1 (ZO-1). Furthermore, Akt1/2 silencing significantly decreased both Cx43 and ZO-1 expression in cultured neonatal rat cardiomyocytes in concert with reduced beating frequency. Akt1 and Akt2 are required to maintain cardiac contraction. Loss of Akt signaling disrupts gap junction protein, which might precipitate early contractile dysfunction prior to heart failure in the absence of myocardial remodeling, such as hypertrophy, fibrosis, or cell death.


Asunto(s)
Cardiomiopatías/metabolismo , Conexina 43/metabolismo , Contracción Miocárdica , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteína de la Zonula Occludens-1/metabolismo , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Conexina 43/genética , Fibrosis , Ratones , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Ratas , Proteína de la Zonula Occludens-1/genética
17.
Arterioscler Thromb Vasc Biol ; 37(12): 2311-2321, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29025710

RESUMEN

OBJECTIVE: Drug-eluting stent delivery of mTORC1 (mechanistic target of rapamycin complex 1) inhibitors is highly effective in preventing intimal hyperplasia after coronary revascularization, but adverse effects limit their use for systemic vascular disease. Understanding the mechanism of action may lead to new treatment strategies. We have shown that rapamycin promotes vascular smooth muscle cell differentiation in an AKT2-dependent manner in vitro. Here, we investigate the roles of AKT (protein kinase B) isoforms in intimal hyperplasia. APPROACH AND RESULTS: We found that germ-line-specific or smooth muscle-specific deletion of Akt2 resulted in more severe intimal hyperplasia compared with control mice after arterial denudation injury. Conversely, smooth muscle-specific Akt1 knockout prevented intimal hyperplasia, whereas germ-line Akt1 deletion caused severe thrombosis. Notably, rapamycin prevented intimal hyperplasia in wild-type mice but had no therapeutic benefit in Akt2 knockouts. We identified opposing roles for AKT1 and AKT2 isoforms in smooth muscle cell proliferation, migration, differentiation, and rapamycin response in vitro. Mechanistically, rapamycin induced MYOCD (myocardin) mRNA expression. This was mediated by AKT2 phosphorylation and nuclear exclusion of FOXO4 (forkhead box O4), inhibiting its binding to the MYOCD promoter. CONCLUSIONS: Our data reveal opposing roles for AKT isoforms in smooth muscle cell remodeling. AKT2 is required for rapamycin's therapeutic inhibition of intimal hyperplasia, likely mediated in part through AKT2-specific regulation of MYOCD via FOXO4. Because AKT2 signaling is impaired in diabetes mellitus, this work has important implications for rapamycin therapy, particularly in diabetic patients.


Asunto(s)
Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Neointima , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/farmacología , Lesiones del Sistema Vascular/prevención & control , Animales , Sitios de Unión , Proteínas de Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Ratones Noqueados , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Lesiones del Sistema Vascular/enzimología , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
18.
Biochem Biophys Res Commun ; 493(4): 1410-1417, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-28965945

RESUMEN

Protein kinase B2 (AKT2) is implicated in diverse process of cardiomyocyte signaling including survival and metabolism. However, the role of AKT2 in myocardium development and the signaling pathway is rarely understood. Therefore, we sought to determine the effect of AKT2 deletion on heart development and its downstream targets. By using experimental animal models and neonatal rat cardiomyocytes (NRCMs), we observed that AKT2 deficiency induces retardation of heart development and increased systemic blood pressure (BP) without affecting cardiac function. Further investigation suggested that deficiency of AKT2 in myocardium results in diminished MEF2A abundance, which induced decreased size of cardiomyocytes. We additionally confirmed that EndoG, which is also regulated by AKT2, is a suppressor of MEF2A in myocardium. Finally, our results proved that AKT2 deficiency impairs the response to ß-adrenergic stimuli that normally causes hypertrophy in cardiomyocytes by downregulating MEF2A expression. Our data are the first to show the important role of AKT2 in determining the size of myocardium, its deficiency causes retardation of cardiomyocyte development. We also proved a novel pathway of heart development involving EndoG and MEF2A regulated by AKT2.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/deficiencia , Animales , Diferenciación Celular , Tamaño de la Célula , Células Cultivadas , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/genética , Técnicas de Silenciamiento del Gen , Corazón/crecimiento & desarrollo , Factores de Transcripción MEF2/antagonistas & inhibidores , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Noqueados , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , ARN Interferente Pequeño/genética , Ratas , Transducción de Señal
19.
Aging Cell ; 16(5): 976-987, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28681509

RESUMEN

Aging is accompanied with unfavorable geometric and functional changes in the heart involving dysregulation of Akt and autophagy. This study examined the impact of Akt2 ablation on life span and cardiac aging as well as the mechanisms involved with a focus on autophagy and mitochondrial integrity. Cardiac geometry, contractile, and intracellular Ca2+ properties were evaluated using echocardiography, IonOptix® edge-detection and fura-2 techniques. Levels of Sirt1, mitochondrial integrity, autophagy, and mitophagy markers were evaluated using Western blot. Our results revealed that Akt2 ablation prolonged life span (by 9.1%) and alleviated aging (24 months)-induced unfavorable changes in myocardial function and intracellular Ca2+ handling (SERCA2a oxidation) albeit with more pronounced cardiac hypertrophy (58.1%, 47.8%, and 14.5% rises in heart weight, wall thickness, and cardiomyocyte cross-sectional area). Aging downregulated levels of Sirt1, increased phosphorylation of Akt, and the nuclear transcriptional factor Foxo1, as well as facilitated acetylation of Foxo1, the effects of which (except Sirt1 and Foxo1 acetylation) were significantly attenuated or negated by Akt2 ablation. Advanced aging disturbed autophagy, mitophagy, and mitochondrial integrity as evidenced by increased p62, decreased levels of beclin-1, Atg7, LC3B, BNIP3, PTEN-induced putative kinase 1 (PINK1), Parkin, UCP-2, PGC-1α, and aconitase activity, the effects of which were reversed by Akt2 ablation. Aging-induced cardiomyocyte contractile dysfunction and loss of mitophagy were improved by rapamycin and the Sirt1 activator SRT1720. Activation of Akt using insulin or Parkin deficiency prevented SRT1720-induced beneficial effects against aging. In conclusion, our data indicate that Akt2 ablation protects against cardiac aging through restored Foxo1-related autophagy and mitochondrial integrity.


Asunto(s)
Autofagia/genética , Calcio/metabolismo , Cardiomegalia/genética , Longevidad/genética , Proteínas Proto-Oncogénicas c-akt/genética , Sirtuina 1/genética , Adaptación Fisiológica , Animales , Remodelación Atrial/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/prevención & control , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/deficiencia , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Sirolimus/farmacología , Sirtuina 1/metabolismo
20.
J Immunol ; 198(11): 4470-4480, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455433

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a highly lethal pathological process that is characterized by inflammation, fibroblast accumulation, and excessive collagen deposition. Although AKT2-mediated signaling pathways modulate inflammatory responses, their role in IPF has not been defined. We report that AKT2 deficiency (Akt2-/-) protected against bleomycin-induced pulmonary fibrosis and inflammation. Adoptive transfer of wild-type macrophages or administration of IL-13 to Akt2-/- mice could restore pulmonary fibrosis. In response to IL-33 treatment, Akt2-/- macrophages displayed decreased production of IL-13 and TGF-ß1 and attenuated phosphorylation of FoxO3a compared with Akt2+/+ macrophages. Furthermore, the expression of IL-13 was increased by small interfering RNA knockdown of FoxO3a or in FoxO3a-deficient macrophages. By evaluating lung sections from pulmonary fibrosis patients, we found that the phosphorylation of AKT2 and FoxO3a was remarkably upregulated. Collectively, these results indicate that AKT2 modulates pulmonary fibrosis through inducing TGF-ß1 and IL-13 production by macrophages, and inhibition of AKT2 may be a potential strategy for treating IPF.


Asunto(s)
Activación de Macrófagos , Neumonía/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis Pulmonar/inmunología , Traslado Adoptivo , Animales , Bleomicina/administración & dosificación , Bleomicina/efectos adversos , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulación de la Expresión Génica , Humanos , Interleucina-13/administración & dosificación , Interleucina-13/genética , Interleucina-13/inmunología , Interleucina-33/inmunología , Interleucina-33/farmacología , Macrófagos/inmunología , Ratones , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA