Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 287(21): 4544-4556, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32459870

RESUMEN

Developing new technologies to study metabolism is increasingly important as metabolic disease prevalence increases. Mitochondria control cellular metabolism and dynamic changes in mitochondrial function are associated with metabolic abnormalities in cardiovascular disease, cancer, and obesity. However, a lack of precise and reversible methods to control mitochondrial function has prevented moving from association to causation. Recent advances in optogenetics have addressed this challenge, and mitochondrial function can now be precisely controlled in vivo using light. A class of genetically encoded, light-activated membrane channels and pumps has addressed mechanistic questions that promise to provide new insights into how cellular metabolism downstream of mitochondrial function contributes to disease. Here, we highlight emerging reagents-mitochondria-targeted light-activated cation channels or proton pumps-to decrease or increase mitochondrial activity upon light exposure, a technique we refer to as mitochondrial light switches, or mtSWITCH . The mtSWITCH technique is broadly applicable, as energy availability and metabolic signaling are conserved aspects of cellular function and health. Here, we outline the use of these tools in diverse cellular models of disease. We review the molecular details of each optogenetic tool, summarize the results obtained with each, and outline best practices for using optogenetic approaches to control mitochondrial function and downstream metabolism.


Asunto(s)
Luz , Mitocondrias/efectos de la radiación , Optogenética/métodos , Transducción de Señal/efectos de la radiación , Animales , Humanos , Concentración de Iones de Hidrógeno/efectos de la radiación , Potencial de la Membrana Mitocondrial/efectos de la radiación , Mitocondrias/metabolismo , Fuerza Protón-Motriz/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo
2.
Commun Biol ; 2: 314, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31453378

RESUMEN

C4 photosynthesis is characterised by a CO2 concentrating mechanism that operates between mesophyll and bundle sheath cells increasing CO2 partial pressure at the site of Rubisco and photosynthetic efficiency. Electron transport chains in both cell types supply ATP and NADPH for C4 photosynthesis. Cytochrome b6f is a key control point of electron transport in C3 plants. To study whether C4 photosynthesis is limited by electron transport we constitutively overexpressed the Rieske FeS subunit in Setaria viridis. This resulted in a higher Cytochrome b6f content in mesophyll and bundle sheath cells without marked changes in the abundances of other photosynthetic proteins. Rieske overexpression plants showed better light conversion efficiency in both Photosystems and could generate higher proton-motive force across the thylakoid membrane underpinning an increase in CO2 assimilation rate at ambient and saturating CO2 and high light. Our results demonstrate that removing electron transport limitations can increase C4 photosynthesis.


Asunto(s)
Complejo de Citocromo b6f/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Fotosíntesis , Setaria (Planta)/fisiología , Dióxido de Carbono/metabolismo , Complejo de Citocromo b6f/genética , Complejo III de Transporte de Electrones/genética , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Fuerza Protón-Motriz/efectos de la radiación , Setaria (Planta)/genética , Setaria (Planta)/efectos de la radiación
3.
J Bacteriol ; 201(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30858302

RESUMEN

Blue light has been shown to elicit a tumbling response in Escherichia coli, a nonphototrophic bacterium. The exact mechanism of this phototactic response is still unknown. Here, we quantify phototaxis in E. coli by analyzing single-cell trajectories in populations of free-swimming bacteria before and after light exposure. Bacterial strains expressing only one type of chemoreceptor reveal that all five E. coli receptors (Aer, Tar, Tsr, Tap, and Trg) are capable of mediating responses to light. In particular, light exposure elicits a running response in the Tap-only strain, the opposite of the tumbling responses observed for all other strains. Therefore, light emerges as a universal stimulus for all E. coli chemoreceptors. We also show that blue light exposure causes a reversible decrease in swimming velocity, a proxy for proton motive force. This result is consistent with a previously proposed hypothesis that, rather than sensing light directly, chemoreceptors sense light-induced perturbations in proton motive force, although other factors are also likely to contribute.IMPORTANCE Our findings provide new insights into the mechanism of E. coli phototaxis, showing that all five chemoreceptor types respond to light and their interactions play an important role in cell behavior. Our results also open up new avenues for examining and manipulating E. coli taxis. Since light is a universal stimulus, it may provide a way to quantify interactions among different types of receptors. Because light is easier to control spatially and temporally than chemicals, it may be used to study swimming behavior in complex environments. Since phototaxis can cause migration of E. coli bacteria in light gradients, light may be used to control bacterial density for studying density-dependent processes in bacteria.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/efectos de la radiación , Regulación Bacteriana de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Fototaxis/fisiología , Receptores de Superficie Celular/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Luz , Fototransducción/genética , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Fuerza Protón-Motriz/genética , Fuerza Protón-Motriz/efectos de la radiación , Receptores de Superficie Celular/metabolismo
4.
Plant Cell Rep ; 37(2): 279-291, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29080907

RESUMEN

KEY MESSAGE: M-type thioredoxins are required to regulate zeaxanthin epoxidase activity and to maintain the steady-state level of the proton motive force, thereby influencing NPQ properties under low-light conditions in Arabidopsis. Non-photochemical quenching (NPQ) helps protect photosynthetic organisms from photooxidative damage via the non-radiative dissipation of energy as heat. Energy-dependent quenching (qE) is a major constituent of NPQ. However, the mechanism underlying the regulation of qE is not well understood. In this study, we demonstrate that the m-type thioredoxins TRX-m1, TRX-m2, and TRX-m4 (TRX-ms) interact with the xanthophyll cycle enzyme zeaxanthin epoxidase (ZE) and are required for maintaining the redox-dependent stabilization of ZE by regulating its intermolecular disulfide bridges. Reduced ZE activity and accumulated zeaxanthin levels were observed under TRX-ms deficiency. Furthermore, concurrent deficiency of TRX-ms resulted in a significant increase in proton motive force (pmf) and acidification of the thylakoid lumen under low irradiance, perhaps due to the significantly reduced ATP synthase activity under TRX-ms deficiency. The increased pmf, combined with acidification of the thylakoid lumen and the accumulation of zeaxanthin, ultimately contribute to the elevated stable qE in VIGS-TRX-m2m4/m1 plants under low-light conditions. Taken together, these results indicate that TRX-ms are involved in regulating NPQ-dependent photoprotection in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Clorofila/metabolismo , Tiorredoxinas en Cloroplasto/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Xantófilas/metabolismo , Proteínas de Arabidopsis/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Unión Proteica , Fuerza Protón-Motriz/efectos de la radiación , Tilacoides/metabolismo , Zeaxantinas/metabolismo
5.
Plant Physiol ; 173(3): 1636-1647, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28153920

RESUMEN

The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha A mutant deficient in the FLV1 isozyme (ΔMpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ΔMpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ΔMpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ΔMpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.


Asunto(s)
Flavoproteínas/metabolismo , Marchantia/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Transporte de Electrón/genética , Flavoproteínas/genética , Regulación de la Expresión Génica de las Plantas , Luz , Marchantia/genética , Mutación , Oxígeno/metabolismo , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Fuerza Protón-Motriz/efectos de la radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
6.
Plant J ; 89(3): 540-553, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27783435

RESUMEN

KEA3 is a thylakoid membrane localized K+ /H+ antiporter that regulates photosynthesis by modulating two components of proton motive force (pmf), the proton gradient (∆pH) and the electric potential (∆ψ). We identified a mutant allele of KEA3, disturbed proton gradient regulation (dpgr) based on its reduced non-photochemical quenching (NPQ) in artificial (CO2 -free with low O2 ) air. This phenotype was enhanced in the mutant backgrounds of PSI cyclic electron transport (pgr5 and crr2-1). In ambient air, reduced NPQ was observed during induction of photosynthesis in dpgr, the phenotype that was enhanced after overnight dark adaptation. In contrast, the knockout allele of kea3-1 exhibited a high-NPQ phenotype during steady state in ambient air. Consistent with this kea3-1 phenotype in ambient air, the membrane topology of KEA3 indicated a proton efflux from the thylakoid lumen to the stroma. The dpgr heterozygotes showed a semidominant and dominant phenotype in artificial and ambient air, respectively. In dpgr, the protein level of KEA3 was unaffected but the downregulation of its activity was probably disturbed. Our findings suggest that fine regulation of KEA3 activity is necessary for optimizing photosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mutación , Fotosíntesis/genética , Antiportadores de Potasio-Hidrógeno/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Electrón/genética , Transporte de Electrón/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Immunoblotting , Luz , Oxígeno/metabolismo , Fenotipo , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Fuerza Protón-Motriz/genética , Fuerza Protón-Motriz/efectos de la radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tilacoides/genética , Tilacoides/metabolismo
7.
J Theor Biol ; 413: 11-23, 2017 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-27816676

RESUMEN

A model was constructed which includes electron transport (linear and cyclic and Mehler type reaction) coupled to proton translocation, counter ion movement, ATP synthesis, and Calvin-Benson cycle. The focus is on modeling of the light-induced total electric potential difference (ΔΨ) which in this model originates from the bulk phase electric potential difference (ΔΨb), the localized electric potential difference (ΔΨc), as well as the surface electric potential difference (ΔΨs). The measured dual wavelength transmittance signal (ΔA515-560nm, electrochromic shift) was used as a proxy for experimental ΔΨ. The predictions for theoretical ΔΨ vary with assumed contribution of ΔΨs, which might imply that the measured ΔA515-560nm trace on a long time scale reflects the interplay of the ΔΨ components. Simulations also show that partitioning of proton motive force (pmf) to ΔΨb and ΔpH components is sensitive to the stoichiometric ratio of H+/ATP, energy barrier for ATP synthesis, ionic strength, buffer capacity and light intensity. Our model shows that high buffer capacity promotes the establishment of ΔΨb, while the formation of pHi minimum is not 'dissipated' but 'postponed' until it reaches the same level as that for low buffer capacity. Under physiologically optimal conditions, the output of the model shows that at steady state in light, the ΔpH component is the main contributor to pmf to drive ATP synthesis while a low ΔΨb persists energizing the membrane. Our model predicts 11mV as the resting electric potential difference across the thylakoid membrane in dark. We suggest that the model presented in this work can be integrated as a module into a more comprehensive model of oxygenic photosynthesis.


Asunto(s)
Carbono/metabolismo , Luz , Potenciales de la Membrana/efectos de la radiación , Modelos Biológicos , Hojas de la Planta/metabolismo , Fuerza Protón-Motriz/efectos de la radiación , Tilacoides/metabolismo , Tilacoides/efectos de la radiación , Tampones (Química) , Simulación por Computador , Transporte de Electrón , Concentración de Iones de Hidrógeno/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Protones , Factores de Tiempo
8.
Plant Physiol ; 164(3): 1283-92, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24488966

RESUMEN

Unequal absorption of photons between photosystems I and II, and between bundle-sheath and mesophyll cells, are likely to affect the efficiency of the CO2-concentrating mechanism in C4 plants. Under steady-state conditions, it is expected that the biochemical distribution of energy (ATP and NADPH) and photosynthetic metabolite concentrations will adjust to maintain the efficiency of C4 photosynthesis through the coordination of the C3 (Calvin-Benson-Bassham) and C4 (CO2 pump) cycles. However, under transient conditions, changes in light quality will likely alter the coordination of the C3 and C4 cycles, influencing rates of CO2 assimilation and decreasing the efficiency of the CO2-concentrating mechanism. To test these hypotheses, we measured leaf gas exchange, leaf discrimination, chlorophyll fluorescence, electrochromatic shift, photosynthetic metabolite pools, and chloroplast movement in maize (Zea mays) and Miscanthus × giganteus following transitional changes in light quality. In both species, the rate of net CO2 assimilation responded quickly to changes in light treatments, with lower rates of net CO2 assimilation under blue light compared with red, green, and blue light, red light, and green light. Under steady state, the efficiency of CO2-concentrating mechanisms was similar; however, transient changes affected the coordination of C3 and C4 cycles in M. giganteus but to a lesser extent in maize. The species differences in the ability to coordinate the activities of C3 and C4 cycles appear to be related to differences in the response of cyclic electron flux around photosystem I and potentially chloroplast rearrangement in response to changes in light quality.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Poaceae/fisiología , Zea mays/fisiología , Isótopos de Carbono , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Electrones , Activación Enzimática/efectos de la radiación , Poaceae/efectos de la radiación , Fuerza Protón-Motriz/efectos de la radiación , Ribulosa-Bifosfato Carboxilasa/metabolismo , Zea mays/efectos de la radiación
9.
Photosynth Res ; 117(1-3): 471-87, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23860827

RESUMEN

Technical features and examples of application of a special emitter-detector module for highly sensitive measurements of the electrochromic pigment absorbance shift (ECS) via dual-wavelength (550-520 nm) transmittance changes (P515) are described. This device, which has been introduced as an accessory of the standard, commercially available Dual-PAM-100 measuring system, not only allows steady-state assessment of the proton motive force (pmf) and its partitioning into ΔpH and ΔΨ components, but also continuous recording of the overall charge flux driven by photosynthetic light reactions. The new approach employs a double-modulation technique to derive a continuous signal from the light/dark modulation amplitude of the P515 signal. This new, continuously measured signal primarily reflects the rate of proton efflux via the ATP synthase, which under quasi-stationary conditions corresponds to the overall rate of proton influx driven by coupled electron transport. Simultaneous measurements of charge flux and CO2 uptake as a function of light intensity indicated a close to linear relationship in the light-limited range. A linear relationship between these two signals was also found for different internal CO2 concentrations, except for very low CO2, where the rate of charge flux distinctly exceeded the rate of CO2 uptake. Parallel oscillations in CO2 uptake and charge flux were induced by high CO2 and O2. The new device may contribute to the elucidation of complex regulatory mechanisms in intact leaves.


Asunto(s)
Nicotiana/metabolismo , Pigmentos Biológicos/metabolismo , Hojas de la Planta/metabolismo , Fuerza Protón-Motriz , Taraxacum/metabolismo , Absorción , Dióxido de Carbono/metabolismo , Concentración de Iones de Hidrógeno/efectos de la radiación , Cinética , Luz , Hojas de la Planta/efectos de la radiación , Fuerza Protón-Motriz/efectos de la radiación , Taraxacum/efectos de la radiación , Nicotiana/efectos de la radiación
10.
J Bioenerg Biomembr ; 45(1-2): 37-45, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23054078

RESUMEN

Chlorophyll fluorescence induction curves induced by an actinic pulse of red light follow different kinetics in dark-adapted plant leaves and leaves preilluminated with far-red light. This influence of far-red light was abolished in leaves infiltrated with valinomycin known to eliminate the electrical (Δφ) component of the proton-motive force and was strongly enhanced in leaves infiltrated with nigericin that abolishes the ΔpH component. The supposed influence of ionophores on different components of the proton motive force was supported by differential effects of these ionophores on the induction curves of the millisecond component of chlorophyll delayed fluorescence. Comparison of fluorescence induction curves with the kinetics of P700 oxidation in the absence and presence of ionophores suggests that valinomycin facilitates a build-up of a rate-limiting step for electron transport at the site of plastoquinone oxidation, whereas nigericin effectively removes limitations at this site. Far-red light was found to be a particularly effective modulator of electron flows in chloroplasts in the absence of ΔpH backpressure on operation of the electron-transport chain.


Asunto(s)
Fluorescencia , Rayos Infrarrojos , Potenciales de la Membrana/efectos de la radiación , Pisum sativum/metabolismo , Hojas de la Planta/metabolismo , Fuerza Protón-Motriz/efectos de la radiación , Transporte de Electrón/fisiología , Transporte de Electrón/efectos de la radiación , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Potenciales de la Membrana/fisiología , Proteínas de Plantas/metabolismo , Fuerza Protón-Motriz/fisiología
11.
Plant Cell ; 24(7): 2934-48, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22822205

RESUMEN

In nature, plants are challenged by constantly changing light conditions. To reveal the molecular mechanisms behind acclimation to sometimes drastic and frequent changes in light intensity, we grew Arabidopsis thaliana under fluctuating light conditions, in which the low light periods were repeatedly interrupted with high light peaks. Such conditions had only marginal effect on photosystem II but induced damage to photosystem I (PSI), the damage being most severe during the early developmental stages. We showed that PROTON GRADIENT REGULATION5 (PGR5)-dependent regulation of electron transfer and proton motive force is crucial for protection of PSI against photodamage, which occurred particularly during the high light phases of fluctuating light cycles. Contrary to PGR5, the NAD(P)H dehydrogenase complex, which mediates cyclic electron flow around PSI, did not contribute to acclimation of the photosynthetic apparatus, particularly PSI, to rapidly changing light intensities. Likewise, the Arabidopsis pgr5 mutant exhibited a significantly higher mortality rate compared with the wild type under outdoor field conditions. This shows not only that regulation of PSI under natural growth conditions is crucial but also the importance of PGR5 in PSI protection.


Asunto(s)
Aclimatación/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I/efectos de la radiación , Aclimatación/efectos de la radiación , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Respiración de la Célula/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Modelos Moleculares , Mutación , Oxidación-Reducción/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Fenotipo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Complejo de Proteína del Fotosistema II/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Fuerza Protón-Motriz/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación
12.
Plant J ; 61(2): 283-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19843315

RESUMEN

It is commonly accepted that the photosystem II subunit S protein, PsbS, is required for the dissipation of excess light energy in a process termed 'non-photochemical quenching' (NPQ). This process prevents photo-oxidative damage of photosystem II (PSII) thus avoiding photoinhibition which can decrease plant fitness and productivity. In this study Arabidopsis plants lacking PsbS (the npq4 mutant) were found to possess a competent mechanism of excess energy dissipation that protects against photoinhibitory damage. The process works on a slower timescale, taking about 1 h to reach the same level of NPQ achieved in the wild type in just a few minutes. The NPQ in npq4 was found to display very similar characteristics to the fast NPQ in the wild type. Firstly, it prevented the irreversible light-induced closure of PSII reaction centres. Secondly, it was uncoupler-sensitive, and thus triggered by the DeltapH across the thylakoid membrane. Thirdly, it was accompanied by significant quenching of the fluorescence under conditions when all PSII reaction centres were open (F(o) state)(.) Fourthly, it was accompanied by NPQ-related absorption changes (DeltaA535). Finally, it was modulated by the presence of the xanthophyll cycle carotenoid zeaxanthin. The existence of a mechanism of photoprotective energy dissipation in plants lacking PsbS suggests that this protein plays the role of a kinetic modulator of the energy dissipation process in the PSII light-harvesting antenna, allowing plants to rapidly track fluctuations of light intensity in the environment, and is not the primary cause of NPQ or a direct carrier of the pigment acting as the non-photochemical quencher.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Complejos de Proteína Captadores de Luz/genética , Mutación , Complejo de Proteína del Fotosistema II/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clorofila/química , Clorofila/metabolismo , Metabolismo Energético/efectos de la radiación , Fluorescencia , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Fotoquímica , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fuerza Protón-Motriz/efectos de la radiación , Espectrometría de Fluorescencia , Tilacoides/metabolismo , Factores de Tiempo , Xantófilas/metabolismo , Zeaxantinas
13.
J Biol Chem ; 283(14): 8822-8, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18187420

RESUMEN

Photosynthetic electron transport pumps protons into the thylakoid lumen, creating an electrochemical potential called the protonmotive force (PMF). The energy of the thylakoid PMF is utilized by such machinery as the chloroplast F(0)F(1)-ATPase as well as the chloroplast Tat (cpTat) pathway (a protein transporter) to do work. The bulk phase thylakoid PMF decays rapidly after the termination of actinic illumination, and it has been well established via potentiometric measurements that there is no detectable electrical or chemical potential in the thylakoid after a brief time in the dark. Yet, we report herein that cpTat transport can occur for long periods in the dark. We show that the thylakoid PMF is actually present long after actinic illumination of the thylakoids ceases and that this energy is present in physiologically useful quantities. Consistent with previous studies, the dark-persisting thylakoid potential is not detectable by established indicators. We propose that cpTat transport in the dark is dependent on a pool of protons in the thylakoid held out of equilibrium with those in the bulk aqueous phase.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Fuerza Protón-Motriz/efectos de la radiación , ATPasas de Translocación de Protón/metabolismo , Tilacoides/metabolismo , Rayos Ultravioleta , Oscuridad , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Fuerza Protón-Motriz/fisiología
14.
Photosynth Res ; 85(2): 221-33, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16075322

RESUMEN

Proton motive force (pmf) is physiologically stored as either a DeltapH or a membrane potential (Deltapsi) across bacterial and mitochondrial energetic membranes. In the case of chloroplasts, previous work (Cruz et al. 2001, Biochemistry 40: 1226-1237) indicates that Deltapsi is a significant fraction of pmf, in vivo, and in vitro as long as the activities of counterions are relatively low. Kinetic analysis of light-induced changes in the electrochromic shift (ECS) in intact leaves was consistent with these observations. In this work, we took advantage of the spectroscopic properties of the green alga, Chlamydomonas reinhardtii, to demonstrate that light-driven Deltapsi was stored in vivo over the hours time scale. Analysis of the light-induced ECS kinetics suggested that the steady-state Deltapsi in 400 micromol photons m(-2) s(-1) red light was between 20 and 90 mV and that this represented about 60% of the light-induced increase in pmf. By extrapolation, it was surmised that about half of total (basal and light-induced) pmf is held as Deltapsi. It is hypothesized that Deltapsi is stabilized either by maintaining low chloroplast ionic strength or by active membrane ion transporters. In addition to the strong implications for regulation of photosynthesis by the xanthophyll cycle, these results imply that pmf partitioning is important across a wide range of species.


Asunto(s)
Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/efectos de la radiación , Luz , Fuerza Protón-Motriz/fisiología , Fuerza Protón-Motriz/efectos de la radiación , Tilacoides/metabolismo , Tilacoides/efectos de la radiación , Animales , Chlamydomonas reinhardtii/metabolismo , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación
15.
Artículo en Chino | MEDLINE | ID: mdl-15961908

RESUMEN

The changes in trans-thylakoid membrane proton motive force caused by red light and caused by far-red light in the halotolerant green alga, Dunaliella salina are investigated. Irradiation with red light decreased the intensity of the fast phase of millisecond delayed light emission (ms-DLE) in D. salina, and far-red light led to the opposite effects. Under low temperature conditions (4 degrees C), red light still decreased ms-DLE fast phase intensity, however, far-red light did not enhance the ms-DLE fast phase intensity as it did at room temperature. In the presence of the uncoupler, nigericin, which eliminates the proton gradient across the thylakoid membrane, there was still a decrease in ms-DLE after red light irradiation, while far-red light had no stimulatory effects anymore. The far-red light-induced increase in ms-DLE fast phase is thus suggested to be due to the proton gradient formed by water oxidation in photosystem II. Previous studies with higher plants revealed that far red light increased ms-DLE fast phase intensity slightly, while red light caused a transient increase in ms-DLE fast phase intensity followed by a gradual decrease. Taken together, green algae differ from higher plants with respect to red light- and far red light-induced changes in ms-DLE. The possible reason is discussed.


Asunto(s)
Chlorophyta/efectos de la radiación , Luz , Fuerza Protón-Motriz/efectos de la radiación , Tilacoides/efectos de la radiación , Chlorophyta/química , Chlorophyta/metabolismo , Tilacoides/química , Tilacoides/metabolismo
16.
Proc Natl Acad Sci U S A ; 101(15): 5530-5, 2004 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-15064404

RESUMEN

Energy-dependent exciton quenching, or q(E), protects the higher plant photosynthetic apparatus from photodamage. Initiation of q(E) involves protonation of violaxanthin deepoxidase and PsbS, a component of the photosystem II antenna complex, as a result of lumen acidification driven by photosynthetic electron transfer. It has become clear that the response of q(E) to linear electron flow, termed "q(E) sensitivity," must be modulated in response to fluctuating environmental conditions. Previously, three mechanisms have been proposed to account for q(E) modulation: (i) the sensitivity of q(E) to the lumen pH is altered; (ii) elevated cyclic electron flow around photosystem I increases proton translocation into the lumen; and (iii) lowering the conductivity of the thylakoid ATP synthase to protons (g(H+)) allows formation of a larger steady-state proton motive force (pmf). Kinetic analysis of the electrochromic shift of intrinsic thylakoid pigments, a linear indicator of transthylakoid electric field component, suggests that, when CO(2) alone was lowered from 350 ppm to 50 ppm CO(2), modulation of q(E) sensitivity could be explained solely by changes in conductivity. Lowering both CO(2) (to 50 ppm) and O(2) (to 1%) resulted in an additional increase in q(E) sensitivity that could not be explained by changes in conductivity or cyclic electron flow associated with photosystem I. Evidence is presented for a fourth mechanism, in which changes in q(E) sensitivity result from variable partitioning of proton motive force into the electric field and pH gradient components. The implications of this mechanism for the storage of proton motive force and the regulation of the light reactions are discussed.


Asunto(s)
Nicotiana/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Fenómenos Fisiológicos de las Plantas , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Regulación hacia Abajo , Transporte de Electrón/fisiología , Transporte de Electrón/efectos de la radiación , Concentración de Iones de Hidrógeno , Cinética , Luz , Complejo de Proteína del Fotosistema II/efectos de la radiación , Hojas de la Planta/metabolismo , Fuerza Protón-Motriz/fisiología , Fuerza Protón-Motriz/efectos de la radiación , Espectrofotometría/métodos
17.
Nat Struct Biol ; 10(8): 637-44, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12872158

RESUMEN

Light energy is transformed into chemical energy in photosynthesis by coupling a light-induced electron transfer to proton uptake. The resulting proton gradient drives ATP synthesis. In this study, we monitored the light-induced reactions in a 100-kDa photosynthetic protein from 30 ns to 35 s by FTIR difference spectroscopy. The results provide detailed mechanistic insights into the electron and proton transfer reactions of the QA to QB transition: reduction of QA in picoseconds induces protonation of histidines, probably of His126 and His128 in the H subunit at the entrance of the proton uptake channel, and of Asp210 in the L subunit inside the channel at 12 micros and 150 micros. This seems to be a prerequisite for the reduction of QB, mainly at 150 micros. QA- is reoxidized at 1.1 ms, and a proton is transferred from Asp210 to Glu212 in the L subunit, the proton donor to QB-. Notably, our data indicate that QB is not reduced directly by QA- but presumably through an intermediary electron donor.


Asunto(s)
Fotosíntesis/fisiología , Transporte de Electrón/efectos de la radiación , Cinética , Luz , Sustancias Macromoleculares , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Fuerza Protón-Motriz/efectos de la radiación , Quinonas/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/efectos de la radiación , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...