Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.568
1.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720270

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


AMP-Activated Protein Kinases , Pulmonary Fibrosis , Silicon Dioxide , Simvastatin , Animals , Male , Rats , Acetophenones/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lung/pathology , Lung/drug effects , Lung/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Pneumonia/chemically induced , Pneumonia/prevention & control , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Silicosis/drug therapy , Silicosis/pathology , Silicosis/metabolism , Simvastatin/pharmacology , Transforming Growth Factor beta1/metabolism
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 644-651, 2024 Apr 20.
Article Zh | MEDLINE | ID: mdl-38708496

OBJECTIVE: To observe the effect of Shenqi Chongcao (SQCC) Formula on the ASS1/src/STAT3 signaling pathway in a rat model of lung fibrosis and explore its therapeutic mechanism. METHODS: A total of 120 male SD rats were divided equally into 5 groups, including a blank control group with saline treatment and 4 groups of rat models of idiopathic pulmonary fibrosis induced by intratracheal instillation of bleomycin. One day after modeling, the rat models were treated with daily gavage of 10 mL/kg saline, SQCC decoction (0.423 g/kg), pirfenidone (10 mL/kg), or intraperitoneal injection of arginine deiminase (ADI; 2.25 mg/kg, every 3 days) for 28 days. After the treatments, the lung tissues of the rats were collected for calculating the lung/body weight ratio, observing histopathology using HE and Masson staining, and analyzing the inflammatory cells in BALF using Giemsa staining. Serum chemokine ligand 2 (CCL2) and transforming growth factor-ß1 (TGF-ß1) levels were measured with ELISA. The protein expressions of src, p-srcTry529, STAT3, and p-STAT3Try705 and the mRNA expressions of ASS1, src and STAT3 in the lung tissues were detected using Western blotting and RT-qPCR. RESULTS: The neutrophil, macrophage and lymphocyte counts and serum levels of CCL2 and TGF-ß1 were significantly lower in SQCC, pirfenidone and ADI treatment groups than in the model group at each time point of measurement (P < 0.05). P-srcTry529 and p-STAT3Try705 protein expression levels and ASS1, src, and STAT3 mRNA in the lung tissues were also significantly lower in the 3 treatment groups than in the model group (P < 0.05). CONCLUSION: SQCC Formula can alleviate lung fibrosis in rats possibly by activating the ASS1/src/STAT3 signaling pathway in the lung tissues.


Drugs, Chinese Herbal , Pulmonary Fibrosis , Rats, Sprague-Dawley , STAT3 Transcription Factor , Signal Transduction , Animals , STAT3 Transcription Factor/metabolism , Rats , Male , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Signal Transduction/drug effects , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Lung/drug effects , Transforming Growth Factor beta1/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Disease Models, Animal , Bleomycin , Chemokine CCL2/metabolism , src-Family Kinases/metabolism
3.
Respir Res ; 25(1): 213, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762465

BACKGROUND: Obesity is associated with airway hyperresponsiveness and lung fibrosis, which may reduce the effectiveness of standard asthma treatment in individuals suffering from both conditions. Statins and proprotein convertase subtilisin/kexin-9 inhibitors not only reduce serum cholesterol, free fatty acids but also diminish renin-angiotensin system activity and exhibit anti-inflammatory effects. These mechanisms may play a role in mitigating lung pathologies associated with obesity. METHODS: Male C57BL/6 mice were induced to develop obesity through high-fat diet for 16 weeks. Conditional TGF-ß1 transgenic mice were fed a normal diet. These mice were given either atorvastatin or proprotein convertase subtilisin/kexin-9 inhibitor (alirocumab), and the impact on airway hyperresponsiveness and lung pathologies was assessed. RESULTS: High-fat diet-induced obesity enhanced airway hyperresponsiveness, lung fibrosis, macrophages in bronchoalveolar lavage fluid, and pro-inflammatory mediators in the lung. These lipid-lowering agents attenuated airway hyperresponsiveness, macrophages in BALF, lung fibrosis, serum leptin, free fatty acids, TGF-ß1, IL-1ß, IL-6, and IL-17a in the lung. Furthermore, the increased RAS, NLRP3 inflammasome, and cholecystokinin in lung tissue of obese mice were reduced with statin or alirocumab. These agents also suppressed the pro-inflammatory immune responses and lung fibrosis in TGF-ß1 over-expressed transgenic mice with normal diet. CONCLUSIONS: Lipid-lowering treatment has the potential to alleviate obesity-induced airway hyperresponsiveness and lung fibrosis by inhibiting the NLRP3 inflammasome, RAS and cholecystokinin activity.


Diet, High-Fat , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mice, Inbred C57BL , Mice, Transgenic , Obesity , Pulmonary Fibrosis , Animals , Male , Diet, High-Fat/adverse effects , Obesity/drug therapy , Obesity/metabolism , Mice , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Pulmonary Fibrosis/prevention & control , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , PCSK9 Inhibitors , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Mice, Obese , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Bronchial Hyperreactivity/prevention & control , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Antibodies, Monoclonal, Humanized
4.
J Cell Mol Med ; 28(10): e18448, 2024 May.
Article En | MEDLINE | ID: mdl-38774993

Pulmonary fibrosis represents the final alteration seen in a wide variety of lung disorders characterized by increased fibroblast activity and the accumulation of substantial amounts of extracellular matrix, along with inflammatory damage and the breakdown of tissue architecture. This condition is marked by a significant mortality rate and a lack of effective treatments. The depositing of an excessive quantity of extracellular matrix protein follows the damage to lung capillaries and alveolar epithelial cells, leading to pulmonary fibrosis and irreversible damage to lung function. It has been proposed that the connective tissue growth factor (CTGF) plays a critical role in the advancement of pulmonary fibrosis by enhancing the accumulation of the extracellular matrix and exacerbating fibrosis. In this context, the significance of CTGF in pulmonary fibrosis is examined, and a summary of the development of drugs targeting CTGF for the treatment of pulmonary fibrosis is provided.


Connective Tissue Growth Factor , Pulmonary Fibrosis , Connective Tissue Growth Factor/metabolism , Humans , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Animals , Molecular Targeted Therapy , Extracellular Matrix/metabolism
5.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730387

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Bleomycin , Down-Regulation , Morphinans , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pulmonary Fibrosis , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta1 , Animals , Morphinans/pharmacology , Morphinans/therapeutic use , Mice , Signal Transduction/drug effects , Humans , Transforming Growth Factor beta1/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Smad3 Protein/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Epithelial-Mesenchymal Transition/drug effects , A549 Cells , Cell Proliferation/drug effects , Disease Models, Animal , Male , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Cell Movement/drug effects
6.
Arthritis Res Ther ; 26(1): 94, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702742

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular injury and inflammation, followed by excessive fibrosis of the skin and other internal organs, including the lungs. CX3CL1 (fractalkine), a chemokine expressed on endothelial cells, supports the migration of macrophages and T cells that express its specific receptor CX3CR1 into targeted tissues. We previously reported that anti-CX3CL1 monoclonal antibody (mAb) treatment significantly inhibited transforming growth factor (TGF)-ß1-induced expression of type I collagen and fibronectin 1 in human dermal fibroblasts. Additionally, anti-mouse CX3CL1 mAb efficiently suppressed skin inflammation and fibrosis in bleomycin- and growth factor-induced SSc mouse models. However, further studies using different mouse models of the complex immunopathology of SSc are required before the initiation of a clinical trial of CX3CL1 inhibitors for human SSc. METHODS: To assess the preclinical utility and functional mechanism of anti-CX3CL1 mAb therapy in skin and lung fibrosis, a sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) mouse model was analyzed with immunohistochemical staining for characteristic infiltrating cells and RNA sequencing assays. RESULTS: On day 42 after bone marrow transplantation, Scl-cGVHD mice showed increased serum CX3CL1 level. Intraperitoneal administration of anti-CX3CL1 mAb inhibited the development of fibrosis in the skin and lungs of Scl-cGVHD model, and did not result in any apparent adverse events. The therapeutic effects were correlated with the number of tissue-infiltrating inflammatory cells and α-smooth muscle actin (α-SMA)-positive myofibroblasts. RNA sequencing analysis of the fibrotic skin demonstrated that cGVHD-dependent induction of gene sets associated with macrophage-related inflammation and fibrosis was significantly downregulated by mAb treatment. In the process of fibrosis, mAb treatment reduced cGVHD-induced infiltration of macrophages and T cells in the skin and lungs, especially those expressing CX3CR1. CONCLUSIONS: Together with our previous findings in other SSc mouse models, the current results indicated that anti-CX3CL1 mAb therapy could be a rational therapeutic approach for fibrotic disorders, such as human SSc and Scl-cGVHD.


Antibodies, Monoclonal , Chemokine CX3CL1 , Disease Models, Animal , Graft vs Host Disease , Pulmonary Fibrosis , Scleroderma, Systemic , Skin , Animals , Graft vs Host Disease/drug therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , Skin/pathology , Skin/drug effects , Skin/metabolism , Skin/immunology , Fibrosis , Female , Mice, Inbred C57BL , Humans , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology
7.
Sci Rep ; 14(1): 11131, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750140

This study aimed to investigate the potential anti-fibrotic activity of vinpocetine in an experimental model of pulmonary fibrosis by bleomycin and in the MRC-5 cell line. Pulmonary fibrosis was induced in BALB/c mice by oropharyngeal aspiration of a single dose of bleomycin (5 mg/kg). The remaining induced animals received a daily dose of pirfenidone (as a standard anti-fibrotic drug) (300 mg/kg/PO) and vinpocetine (20 mg/kg/PO) on day 7 of the induction till the end of the experiment (day 21). The results of the experiment revealed that vinpocetine managed to alleviate the fibrotic endpoints by statistically improving (P ≤ 0.05) the weight index, histopathological score, reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. It also alleviated tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators significantly elevated in bleomycin-only induced animals (P ≤ 0.05). Vinpocetine managed to express a remarkable attenuating effect in pulmonary fibrosis both in vivo and in vitro either directly by interfering with the classical TGF-ß1/Smad2/3 signaling pathway or indirectly by upregulating the expression of Nrf2 enhancing the antioxidant system, activating PPAR-γ and downregulating the NLRP3/NF-κB pathway making it a candidate for further clinical investigation in cases of pulmonary fibrosis.


Mice, Inbred BALB C , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Pulmonary Fibrosis , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta1 , Vinca Alkaloids , Animals , Vinca Alkaloids/pharmacology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Transforming Growth Factor beta1/metabolism , PPAR gamma/metabolism , Mice , NF-kappa B/metabolism , Smad3 Protein/metabolism , Smad2 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Humans , Bleomycin/adverse effects , Disease Models, Animal , Male , Cell Line , Oxidative Stress/drug effects
8.
Int J Rheum Dis ; 27(5): e15164, 2024 May.
Article En | MEDLINE | ID: mdl-38706209

BACKGROUND: JAK inhibitors are well known for the treatment of rheumatoid arthritis (RA), but whether they can be used to treat pulmonary fibrosis, a common extra-articular disease of RA, remains to be clarified. METHODS: A jak2 inhibitor, CEP33779 (CEP), was administered to a rat model of RA-associated interstitial lung disease to observe the degree of improvement in both joint swelling and pulmonary fibrosis. HFL1 cells were stimulated with TGF-ß1 to observe the expression of p-JAK2. Then, different concentrations of related gene inhibitors (JAK2, TGFß-R1/2, and p-STAT3) or silencers (STAT3, JAK2) were administered to HFL1 cells, and the expression levels of related proteins were detected to explore the underlying mechanisms of action. RESULTS: CEP not only reduced the degree of joint swelling and inflammation in rats but also improved lung function, inhibited the pro-inflammatory factors IL-1ß and IL-6, reduced lung inflammation and collagen deposition, and alleviated lung fibrosis. CEP decreased the expression levels of TGFß-R2, p-SMAD, p-STAT3, and ECM proteins in rat lung tissues. TGF-ß1 induced HFL1 cells to highly express p-JAK2, with the most pronounced expression at 48 h. The levels of p-STAT3, p-SMAD3, and ECM-related proteins were significantly reduced after inhibition of either JAK2 or STAT3. CONCLUSION: JAK2 inhibitors may be an important and novel immunotherapeutic drug that can improve RA symptoms while also delaying or blocking the development of associated pulmonary fibrotic disease. The mechanism may be related to the downregulation of p-STAT3 protein via inhibition of the JAK2/STAT signaling pathway, which affects the phosphorylation of SMAD3.


Disease Models, Animal , Down-Regulation , Isoquinolines , Janus Kinase 2 , Lung , Pulmonary Fibrosis , Pyridines , Pyrroles , Signal Transduction , Smad3 Protein , Animals , Smad3 Protein/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Phosphorylation , Signal Transduction/drug effects , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/enzymology , Male , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Humans , Rats, Sprague-Dawley , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Cell Line , Protein Kinase Inhibitors/pharmacology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/enzymology , Anti-Inflammatory Agents/pharmacology , Rats
9.
J Ethnopharmacol ; 330: 118226, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38670401

ETHNOPHARMACOLOGICAL RELEVANCE: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing pulmonary disorder that has a poor prognosis and high mortality. Although there has been extensive effort to introduce several new anti-fibrotic agents in the past decade, IPF remains an incurable disease. Mimosa pudica L., an indigenous Vietnamese plant, has been empirically used to treat respiratory disorders. Nevertheless, the therapeutic effects of M. pudica (MP) on lung fibrosis and the mechanisms underlying those effects remain unclear. AIM OF THE STUDY: This study investigated the protective effect of a crude ethanol extract of the above-ground parts of MP against pulmonary fibrogenesis. MATERIALS AND METHODS: Inflammatory responses triggered by TNFα in structural lung cells were examined in normal human lung fibroblasts and A549 alveolar epithelial cells using Western blot analysis, reverse transcription-quantitative polymerase chain reaction assays, and immunocytochemistry. The epithelial-to-mesenchymal transition (EMT) was examined via cell morphology observations, F-actin fluorescent staining, gene and protein expression measurements, and a wound-healing assay. Anti-fibrotic assays including collagen release, differentiation, and measurements of fibrosis-related gene and protein expression levels were performed on TGFß-stimulated human lung fibroblasts and lung fibroblasts derived from mice with fibrotic lungs. Finally, in vitro anti-fibrotic activities were validated using a mouse model of bleomycin-induced pulmonary fibrosis. RESULTS: MP alleviated the inflammatory responses of A549 alveolar epithelial cells and lung fibroblasts, as revealed by inhibition of TNFα-induced chemotactic cytokine and chemokine expression, along with inactivation of the MAPK and NFκB signalling pathways. MP also partially reversed the TGFß-promoted EMT via downregulation of mesenchymal markers in A549 cells. Importantly, MP decreased the expression levels of fibrosis-related genes/proteins including collagen I, fibronectin, and αSMA; moreover, it suppressed collagen secretion and prevented myofibroblast differentiation in lung fibroblasts. These effects were mediated by FOXO3 stabilization through suppression of TGFß-induced ERK1/2 phosphorylation. MP consistently protected mice from the onset and progression of bleomycin-induced pulmonary fibrosis. CONCLUSION: This study explored the multifaceted roles of MP in counteracting the pathobiological processes of lung fibrosis. The results suggest that further evaluation of MP could yield candidate therapies for IPF.


Epithelial-Mesenchymal Transition , Forkhead Box Protein O3 , MAP Kinase Signaling System , Mice, Inbred C57BL , Plant Extracts , Pulmonary Fibrosis , Animals , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , A549 Cells , Mice , MAP Kinase Signaling System/drug effects , Epithelial-Mesenchymal Transition/drug effects , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Forkhead Box Protein O3/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Male , Bleomycin , Antifibrotic Agents/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology
10.
Eur J Pharm Sci ; 197: 106779, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38670294

Orally marketed products nintedanib (NDNB) and pirfenidone (PFD) for pulmonary fibrosis (PF) are administered in high doses and have been shown to have serious toxic and side effects. NDNB can cause the elevation of galectin-3, which activates the NF-κB signaling pathway and causes the inflammatory response. S-allylmercapto-N-acetylcysteine (ASSNAC) can alleviate the inflammation response by inhibiting the TLR-4/NF-κB signaling pathway. Therefore, we designed and prepared inhalable ASSNAC and NDNB co-loaded liposomes for the treatment of pulmonary fibrosis. The yellow, spheroidal co-loaded liposomes with a particle size of 98.32±1.98 nm and zeta potential of -22.5 ± 1.58 mV were produced. The aerodynamic fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of NDNB were >50 % (81.14 %±0.22 %) and <5 µm (1.79 µm±0.06 µm) in the nebulized liposome solution, respectively. The results showed that inhalation improved the lung deposition and retention times of both drugs. DSPE-PEG 2000 in the liposome formulation enhanced the mucus permeability and reduced phagocytic efflux mediated by macrophages. ASSNAC reduced the mRNA over-expressions of TLR-4, MyD88 and NF-κB caused by NDNB, which could reduce the NDNB's side effects. The Masson's trichrome staining of lung tissues and the levels of CAT, TGF-ß1, HYP, collagen III and mRNA expressions of Collagen I, Collagen III and α-SMA in lung tissues revealed that NDNB/Lip inhalation was more beneficial to alleviate fibrosis than oral NDNB. Although the dose of NDNB/Lip was 30 times lower than that in the oral group, the inhaled NDNB/Lip group had better or comparable anti-fibrotic effects to those in the oral group. According to the expressions of Collagen I, Collagen III and α-SMA in vivo and in vitro, the combination of ASSNAC and NDNB was more effective than the single drugs for pulmonary fibrosis. Therefore, this study provided a new scheme for the treatment of pulmonary fibrosis.


Acetylcysteine , Indoles , Liposomes , Lung , Pulmonary Fibrosis , Animals , Indoles/administration & dosage , Indoles/chemistry , Indoles/pharmacokinetics , Acetylcysteine/administration & dosage , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Administration, Inhalation , Lung/metabolism , Lung/drug effects , Lung/pathology , Mice , Male , Particle Size
11.
Int J Pharm ; 656: 124096, 2024 May 10.
Article En | MEDLINE | ID: mdl-38583821

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.


Chitosan , Exosomes , Fibronectins , Liposomes , Pulmonary Fibrosis , Animals , Humans , Male , Administration, Inhalation , Antifibrotic Agents/administration & dosage , Antifibrotic Agents/chemistry , Chitosan/chemistry , Chitosan/administration & dosage , Delayed-Action Preparations , Drug Delivery Systems/methods , Drug Liberation , Exosomes/chemistry , Fibronectins/administration & dosage , Liposomes/chemistry , Lung/metabolism , Lung/drug effects , Microspheres , Phenanthrenes/administration & dosage , Phenanthrenes/chemistry , Phenanthrenes/pharmacokinetics , Pulmonary Fibrosis/drug therapy , Pyridones , Rats, Sprague-Dawley , Rats
12.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L736-L753, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38651940

Systemic sclerosis (SSc) with interstitial lung disease (SSc-ILD) lacks curative pharmacological treatments, thus necessitating effective animal models for candidate drug discovery. Existing bleomycin (BLM)-induced SSc-ILD mouse models feature spatially limited pulmonary fibrosis, spontaneously resolving after 28 days. Here, we present an alternative BLM administration approach in female C57BL/6 mice, combining oropharyngeal aspiration (OA) and subcutaneous mini-pump delivery (pump) of BLM to induce a sustained and more persistent fibrosis, while retaining stable skin fibrosis. A dose-finding study was performed with BLM administered as 10 µg (OA) +80 mg/kg (pump) (10 + 80), 10 + 100, and 15 + 100. Forty-two days after OA, micro-computed tomography (micro-CT) imaging and histomorphometric analyses showed that the 10 + 100 and 15 + 100 treatments induced significant alterations in lung micro-CT-derived readouts, Ashcroft score, and more severe fibrosis grades compared with saline controls. In addition, a marked reduction in hypodermal thickness was observed in the 15 + 100 group. A time-course characterization of the BLM 15 + 100 treatment at days 28, 35, and 42, including longitudinal micro-CT imaging, revealed progressing alterations in lung parameters. Lung histology highlighted a sustained fibrosis accompanied by a reduction in hypodermis thickness throughout the explored time-window, with a time-dependent increase in fibrotic biomarkers detected by immunofluorescence analysis. BLM-induced alterations were partly mitigated by Nintedanib treatment. Our optimized BLM delivery approach leads to extensive and persistent lung fibrotic lesions coupled with cutaneous fibrotic alterations: it thus represents a significant advance compared with current preclinical models of BLM-induced SSc-ILD.NEW & NOTEWORTHY This study introduces an innovative approach to enhance the overall performance of the mouse bleomycin (BLM)-induced model for systemic sclerosis with interstitial lung disease (SSc-ILD). By combining oropharyngeal aspiration and subcutaneous mini-pump delivery of BLM, our improved model leads to sustained lung fibrosis and stable skin fibrosis in female C57BL/6 mice. The optimized 15 + 100 treatment results in extensive and persistent lung fibrotic lesions and thus represents a significant improvement over existing preclinical models of BLM-induced SSc-ILD.


Bleomycin , Disease Models, Animal , Mice, Inbred C57BL , Pulmonary Fibrosis , Animals , Bleomycin/administration & dosage , Bleomycin/toxicity , Female , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Mice , Scleroderma, Systemic/pathology , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/complications , X-Ray Microtomography , Skin/pathology , Skin/drug effects , Lung/pathology , Lung/drug effects , Lung/diagnostic imaging , Oropharynx/pathology , Oropharynx/drug effects , Oropharynx/diagnostic imaging , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/diagnostic imaging
13.
Eur J Pharmacol ; 974: 176603, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38679121

BACKGROUND: Pulmonary fibrosis (PF) is a group of respiratory diseases that are extremely complex and challenging to treat. Due to its high mortality rate and short survival, it's often referred to as a "tumor-like disease" that poses a serious threat to human health. OBJECTIVE: We aimed validate the potential of Deapioplatycodin D (DPD) to against PF and clarify the underlying mechanism of action of DPD for the treatment of PF based on bioinformatics and experimental verification. This finding provides a basis for the development of safe and effective therapeutic PF drugs based on DPD. METHODS: We used LPS-induced early PF rats as a PF model to test the overall efficacy of DPD in vivo. Then, A variety of bioinformatics methods, such as WGCNA, LASSO algorithm and immune cell infiltration (ICI), were applied to analyze the gene microarray related to PF obtained from Gene Expression Omnibus (GEO) to obtained key targets of PF. Finally, an in vitro PF model was constructed based on BEAS-2B cells while incorporating rat lung tissues to validate the regulatory effects of DPD on critical genes. RESULTS: DPD can effectively alleviate inflammatory and fibrotic markers in rat lungs. WGCNA analysis resulted in a total of six expression modules, with the brown module having the highest correlation with PF. Subsequently, seven genes were acquired by intersecting the genes in the brown module with DEGs. Five key genes were identified as potential biomarkers of PF by LASSO algorithm and validation dataset verification analysis. In the ICI analysis, infiltration of activated B cell, immature B cell and natural killer cells were found to be more crucial in PF. Ultimately, it was observed that DPD could modulate key genes to achieve anti-PF effects. CONCLUSION: In short, these comprehensive analysis methods were employed to identify critical biomarkers closely related to PF, which helps to elucidate the pathogenesis and potential immunotherapy targets of PF. It also provides essential support for the potential of DPD against PF.


Computational Biology , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Rats , Humans , Male , Rats, Sprague-Dawley , Gene Regulatory Networks/drug effects , Cell Line , Lung/drug effects , Lung/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Gene Expression Profiling
14.
Life Sci ; 346: 122626, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614295

AIM: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive condition with unknown aetiology that causes the lung parenchyma to scar incessantly, lowering the quality of life and hastening death. In this investigation, we studied the anti-fibrotic activity of Geneticin (a derivative of gentamycin) using in vitro and in vivo models. MAIN METHODS: The TGF-ß-mediated differentiation model was adopted to investigate (fibrotic marker's levels/expression) the anti-fibrotic activity of geneticin (GNC) in in-vitro scenarios (LL29 and DHLF cells). In vivo, the bleomycin (BLM)-induced pulmonary fibrosis model was employed by administering BLM intratracheally. Post 14 days of BLM administration, animals were treated with geneticin (6.25, 12.5, and 25 mg·kg-1) for another 14 days, and their therapeutic effect was investigated using a spectrum of techniques. KEY FINDINGS: RTqPCR and western-blot results revealed that geneticin treatment significantly attenuated the TGF-ß/BLM mediated fibrotic cascade of markers in both in-vitro and in-vivo models respectively. Further, the BLM-induced pulmonary fibrosis model revealed, that geneticin dose-dependently reduced the BLM-induced inflammatory cell infiltrations, and thickness of the alveoli walls, improved the structural distortion of the lung, and aided in improving the survival rate of the rats. Picrosirus and Masson's trichrome staining indicated that geneticin therapy reduced collagen deposition and, as a result, lung functional characteristics were improved as assessed by flexivent. Mechanistic studies have shown that geneticin reduced fibrosis by attenuating the TGF-ß/Smad through modulating the AMPK/SIRT1 signaling. SIGNIFICANCE: These findings suggest that geneticin may be a promising therapeutic agent for the treatment of pulmonary fibrosis in clinical settings.


AMP-Activated Protein Kinases , Bleomycin , Pulmonary Fibrosis , Signal Transduction , Sirtuin 1 , Transforming Growth Factor beta , Animals , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Rats , Sirtuin 1/metabolism , Sirtuin 1/genetics , Male , Bleomycin/toxicity , AMP-Activated Protein Kinases/metabolism , Smad Proteins/metabolism , Rats, Sprague-Dawley , Disease Models, Animal
15.
Redox Biol ; 72: 103148, 2024 Jun.
Article En | MEDLINE | ID: mdl-38603946

BACKGROUND: Interstitial lung disease (ILD) treatment is a critical unmet need. Selenium is an essential trace element for human life and an antioxidant that activates glutathione, but the gap between its necessity and its toxicity is small and requires special attention. Whether selenium can be used in the treatment of ILD remains unclear. METHODS: We investigated the prophylactic and therapeutic effects of selenite, a selenium derivative, in ILD using a murine model of bleomycin-induced idiopathic pulmonary fibrosis (IPF). We further elucidated the underlying mechanism using in vitro cell models and examined their relevance in human tissue specimens. The therapeutic effect of selenite in bleomycin-administered mice was assessed by respiratory function and histochemical changes. Selenite-induced apoptosis and reactive oxygen species (ROS) production in murine lung fibroblasts were measured. RESULTS: Selenite, administered 1 day (inflammation phase) or 8 days (fibrotic phase) after bleomycin, prevented and treated deterioration of lung function and pulmonary fibrosis in mice. Mechanistically, selenite inhibited the proliferation and induced apoptosis of murine lung fibroblasts after bleomycin treatment both in vitro and in vivo. In addition, selenite upregulated glutathione reductase (GR) and thioredoxin reductase (TrxR) in murine lung fibroblasts, but not in lung epithelial cells, upon bleomycin treatment. GR and TrxR inhibition eliminates the therapeutic effects of selenite. Furthermore, we found that GR and TrxR were upregulated in the human lung fibroblasts of IPF patient samples. CONCLUSIONS: Selenite induces ROS production and apoptosis in murine lung fibroblasts through GR and TrxR upregulation, thereby providing a therapeutic effect in bleomycin-induced IPF.


Apoptosis , Bleomycin , Fibroblasts , Reactive Oxygen Species , Selenious Acid , Bleomycin/adverse effects , Animals , Mice , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Selenious Acid/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Male , Cell Proliferation/drug effects
16.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673771

Using a lipopolysaccharide model of acute lung injury, we previously showed that endothelin-1 (ET-1), a potent mediator of vasoconstriction, may act as a "gatekeeper" for the influx of inflammatory cells into the lung. These studies provided a rationale for testing the effect of HJP272, an endothelin receptor antagonist (ERA), in hamster models of pulmonary fibrosis induced by intratracheal instillation of either bleomycin (BLM) or amiodarone (AM). To determine the temporal effects of blocking ET-1 activity, animals were given HJP272 either 1 h before initiation of lung injury or 24 h afterward. The results indicated that pretreatment with this agent caused significant reductions in various inflammatory parameters, whereas post-treatment was ineffective. This finding suggests that ERAs are only effective at a very early stage of pulmonary fibrosis and explains their lack of success in clinical trials involving patients with this disease. Nevertheless, ERAs could serve as prophylactic agents when combined with drugs that may induce pulmonary fibrosis. Furthermore, developing a biomarker for the initial changes in the lung extracellular matrix could increase the efficacy of ERAs and other therapeutic agents in preventing the progression of the disease. While no such biomarker currently exists, we propose the ratio of free to peptide-bound desmosine, a unique crosslink of elastin, as a potential candidate for detecting the earliest modifications in lung microarchitecture associated with pulmonary fibrosis.


Endothelin Receptor Antagonists , Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Endothelin Receptor Antagonists/pharmacology , Endothelin Receptor Antagonists/therapeutic use , Bleomycin/adverse effects , Cricetinae , Disease Models, Animal , Male , Lung/pathology , Lung/drug effects , Lung/metabolism , Humans , Endothelin-1/metabolism
17.
Can Respir J ; 2024: 5554886, 2024.
Article En | MEDLINE | ID: mdl-38584671

Objective: To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods: First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor ß, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results: APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.


Ferroptosis , Panax notoginseng , Pulmonary Fibrosis , Animals , Mice , Pulmonary Fibrosis/drug therapy , Cyclooxygenase 2 , Collagen , ErbB Receptors
18.
Biomed Pharmacother ; 174: 116572, 2024 May.
Article En | MEDLINE | ID: mdl-38626519

Epigenetic regulation and mitochondrial dysfunction are essential to the progression of idiopathic pulmonary fibrosis (IPF). Curcumin (CCM) in inhibits the progression of pulmonary fibrosis by regulating the expression of specific miRNAs and pulmonary fibroblast mitochondrial function; however, the underlying mechanism is unclear. C57BL/6 mice were intratracheally injected with bleomycin (5 mg/kg) and treated with CCM (25 mg/kg body weight/3 times per week, intraperitoneal injection) for 28 days. Verhoeff-Van Gieson, Picro sirius red, and Masson's trichrome staining were used to examine the expression and distribution of collagen and elastic fibers in the lung tissue. Pulmonary fibrosis was determined using micro-computed tomography and transmission electron microscopy. Human pulmonary fibroblasts were transfected with miR-29a-3p, and RT-qPCR, immunostaining, and western blotting were performed to determine the expression of DNMT3A and extracellular matrix collagen-1 (COL1A1) and fibronectin-1 (FN1) levels. The expression of mitochondrial electron transport chain complex (MRC) and mitochondrial function were detected using western blotting and Seahorse XFp Technology. CCM in increased the expression of miR-29a-3p in the lung tissue and inhibited the DNMT3A to reduce the COL1A1 and FN1 levels leading to pulmonary extracellular matrix remodeling. In addition, CCM inhibited pulmonary fibroblasts MRC and mitochondrial function via the miR-29a-3p/DNMT3A pathway. CCM attenuates pulmonary fibrosis via the miR-29a-3p/DNMT3A axis to regulate extracellular matrix remodeling and mitochondrial function and may provide a new therapeutic intervention for preventing pulmonary fibrosis.


Curcumin , DNA Methyltransferase 3A , Extracellular Matrix , Fibroblasts , Mice, Inbred C57BL , MicroRNAs , Mitochondria , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Curcumin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , DNA Methyltransferase 3A/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Humans , Mice , Male , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Bleomycin , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Lung/drug effects , Lung/pathology , Lung/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Disease Models, Animal
19.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38588467

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Drug Design , Elastin , Pulmonary Fibrosis , Receptors, Cell Surface , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Animals , Mice , Elastin/chemistry , Elastin/metabolism , Humans , Matrix Metalloproteinase 12/metabolism , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Male
20.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Article En | MEDLINE | ID: mdl-38613355

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Pulmonary Fibrosis , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , PQQ Cofactor/pharmacology , Epithelial-Mesenchymal Transition , Alveolar Epithelial Cells , Particulate Matter/toxicity
...