Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Nat Commun ; 15(1): 6966, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138196

RESUMEN

Pentraxin 3 (PTX3), a long pentraxin and a humoral pattern recognition molecule (PRM), has been demonstrated to be protective against Aspergillus fumigatus, an airborne human fungal pathogen. We explored its mode of interaction with A. fumigatus, and the resulting implications in the host immune response. Here, we demonstrate that PTX3 interacts with A. fumigatus in a morphotype-dependent manner: (a) it recognizes germinating conidia through galactosaminogalactan, a surface exposed cell wall polysaccharide of A. fumigatus, (b) in dormant conidia, surface proteins serve as weak PTX3 ligands, and (c) surfactant protein D (SP-D) and the complement proteins C1q and C3b, the other humoral PRMs, enhance the interaction of PTX3 with dormant conidia. SP-D, C3b or C1q opsonized conidia stimulated human primary immune cells to release pro-inflammatory cytokines and chemokines. However, subsequent binding of PTX3 to SP-D, C1q or C3b opsonized conidia significantly decreased the production of pro-inflammatory cytokines/chemokines. PTX3 opsonized germinating conidia also significantly lowered the production of pro-inflammatory cytokines/chemokines while increasing IL-10 (an anti-inflammatory cytokine) released by immune cells when compared to the unopsonized counterpart. Overall, our study demonstrates that PTX3 recognizes A. fumigatus either directly or by interplaying with other humoral PRMs, thereby restraining detrimental inflammation. Moreover, PTX3 levels were significantly higher in the serum of patients with invasive pulmonary aspergillosis (IPA) and COVID-19-associated pulmonary aspergillosis (CAPA), supporting previous observations in IPA patients, and suggesting that it could be a potential panel-biomarker for these pathological conditions caused by A. fumigatus.


Asunto(s)
Aspergillus fumigatus , Proteína C-Reactiva , Complemento C1q , Componente Amiloide P Sérico , Esporas Fúngicas , Aspergillus fumigatus/inmunología , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/inmunología , Humanos , Esporas Fúngicas/inmunología , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/inmunología , Complemento C1q/metabolismo , Complemento C1q/inmunología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/inmunología , Complemento C3b/inmunología , Complemento C3b/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Interleucina-10/metabolismo , Interleucina-10/inmunología , Aspergilosis/inmunología , Aspergilosis/microbiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral , Femenino , Polisacáridos
2.
BMC Pulm Med ; 24(1): 404, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174992

RESUMEN

BACKGROUND: The serum markers Krebs von den Lungen-6 (KL-6), surfactant protein A (SP-A), and surfactant protein D (SP-D) have been used for the diagnosis, differential diagnosis, and prognosis prediction of interstitial pneumonia. However, the significance of measuring the serum and bronchoalveolar lavage fluid (BALF) KL-6, SP-D, and SP-A levels in predicting the prognosis of chronic fibrosing interstitial pneumonia (CFIP), idiopathic pulmonary fibrosis, and idiopathic nonspecific interstitial pneumonia remains unclear. We aimed to clarify the significance of measuring the serum and BALF KL-6, SP-A, and SP-D levels in predicting the prognosis of patients with CFIP. METHODS: Among 173 patients who were diagnosed with CFIP between September 2008 and February 2021, 39 who underwent bronchoalveolar lavage were included in this study. Among these, patients experiencing an annual decrease in forced vital capacity (FVC) of ≥10% or those facing challenges in undergoing follow-up pulmonary function tests owing to significant deterioration in pulmonary function were categorized as the rapidly progress group. Conversely, individuals with an annual decrease in the FVC of <10% were classified into the slowly progress group. The serum and BALF KL-6, SP-D, and SP-A levels, as well as BALF/serum SP-D and SP-A ratios were compared between the two groups. RESULTS: Among the patients with CFIP, the BALF SP-D level (p=0.0111), BALF SP-A level (p<0.0010), BALF/serum SP-D ratio (p=0.0051), and BALF/serum SP-A ratio (p<0.0010) were significantly lower in the rapidly than in the slowly progress group (p<0.0010). The receiver operating characteristics analysis results demonstrated excellent performance for diagnosing patients with CFIP, with the BALF SP-D level (area under the curve [AUC], 0.7424), BALF SP-A level (AUC, 0.8842), BALF/serum SP-D ratio (AUC, 0.7673), and BALF/serum SP-A ratio (AUC, 0.8556). Moreover, the BALF SP-A level showed a notably superior CFIP diagnostic capability. Survival analysis using the Kaplan-Meier method revealed that patients with a BALF SP-A level of <1500 ng/mL and BALF/serum SP-A ratio of <15.0 had poor prognoses. CONCLUSIONS: Our results suggest that BALF SP-A measurement may be useful for predicting the prognosis in patients with CFIP.


Asunto(s)
Biomarcadores , Líquido del Lavado Bronquioalveolar , Mucina-1 , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Humanos , Proteína D Asociada a Surfactante Pulmonar/sangre , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Líquido del Lavado Bronquioalveolar/química , Mucina-1/sangre , Mucina-1/análisis , Femenino , Masculino , Estudios Retrospectivos , Proteína A Asociada a Surfactante Pulmonar/sangre , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/análisis , Anciano , Persona de Mediana Edad , Pronóstico , Biomarcadores/sangre , Biomarcadores/análisis , Fibrosis Pulmonar Idiopática/sangre , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/metabolismo , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/metabolismo , Curva ROC , Capacidad Vital , Enfermedad Crónica
3.
Protein Expr Purif ; 222: 106523, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38880192

RESUMEN

We previously identified surfactant protein D (SP-D) in the bottlenose dolphin Tursiops truncatus as a unique evolutionary factor of the cetacean pulmonary immune system. In this short report, recombinant SP-D of bottlenose dolphin (dSP-D) was synthesized in mammalian cells, and its properties were analyzed in vitro. The recombinant proteins were purified using Ni-carrier or Co-carrier. Sodium dodecyl sulfate poly-acrylamide gel electrophoresis and western blotting revealed a 50 kDa major band with minor secondary bands. Enzyme-linked immunosorbent assay-like methods revealed that recombinant dSP-D bonded to gram-positive and gram-negative bacterial walls. Our findings suggest the clinical usefulness of dSP-D for cetacean pneumonia.


Asunto(s)
Delfín Mular , Proteína D Asociada a Surfactante Pulmonar , Proteínas Recombinantes , Animales , Delfín Mular/genética , Delfín Mular/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteína D Asociada a Surfactante Pulmonar/genética , Proteína D Asociada a Surfactante Pulmonar/química , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Expresión Génica , Clonación Molecular
4.
Immun Inflamm Dis ; 12(6): e1302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860749

RESUMEN

BACKGROUND: Severe cases of COVID-19 often lead to the development of acute respiratory syndrome, a critical condition believed to be caused by the harmful effects of SARS-CoV-2 on type II alveolar cells. These cells play a crucial role in producing pulmonary surfactants, which are essential for proper lung function. Specifically focusing on surfactant proteins, including Surfactant protein A (SP-A), Surfactant protein B, Surfactant protein C, and Surfactant protein D (SP-D), changes in the levels of pulmonary surfactants may be a significant factor in the pathological changes seen in COVID-19 infection. OBJECTIVE: This study aims to gain insights into surfactants, particularly their impacts and changes during COVID-19 infection, through a comprehensive review of current literature. The study focuses on the function of surfactants as prognostic markers, diagnostic factors, and essential components in the management and treatment of COVID-19. FINDING: In general, pulmonary surfactants serve to reduce the surface tension at the gas-liquid interface, thereby significantly contributing to the regulation of respiratory mechanics. Additionally, these surfactants play a crucial role in the innate immune system within the pulmonary microenvironment. Within the spectrum of COVID-19 infections, a compelling association is observed, characterized by elevated levels of SP-D and SP-A across a range of manifestations from mild to severe pneumonia. The sudden decline in respiratory function observed in COVID-19 patients may be attributed to the decreased synthesis of surfactants by type II alveolar cells. CONCLUSION: Collectin proteins such as SP-A and SP-D show promise as biomarkers, offering potential avenues for predicting and monitoring pulmonary alveolar injury in the context of COVID-19. This clarification enhances our understanding of the molecular complexities contributing to respiratory complications in severe COVID-19 cases, providing a foundation for targeted therapeutic approaches using surfactants and refined clinical management strategies.


Asunto(s)
COVID-19 , Proteínas Asociadas a Surfactante Pulmonar , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/inmunología , Humanos , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Biomarcadores , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Pronóstico , Pulmón/patología , Pulmón/metabolismo
5.
Vet Res Commun ; 48(4): 2671-2676, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38635105

RESUMEN

Surfactant protein A (SP-A) and Surfactant protein D (SP-D) glycoproteins play a crucial role in maintaining lung homeostasis and lung host defense. Interestingly, these proteins are also expressed in extra-pulmonary tissues, including the female genital tract. The ovarian tissue, where SP-A and SP-D expression increases with follicular development, may serve as the primary site of defense for this tissue. However, their functions in these tissues are not well understood and are currently an active area of research. Therefore, the objective of this study is to investigate the expression of SP-A and SP-D in the ovine ovary throughout the ovarian cycle using immunohistochemistry by semiquantitative intensity classification and Western blotting techniques. These findings revealed the presence of SP-A and SP-D in various compartments of the ovary, such as the follicular epithelium, granulosa cells, cumulus cells, theca cells, oocyte I, follicular fluid, and luteal cells of Graafian follicles, excluding the corpus albicans. SP-A and SP-D likely act as a first line of defense against potential pathogens that infiltrate the ovaries. Further investigation of the differential expression of SP-A and SP-D proteins in ovarian follicles will provide a basis for understanding their interactions with key proteins involved in oogenesis.


Asunto(s)
Folículo Ovárico , Ovario , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Animales , Femenino , Ovinos , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/genética , Folículo Ovárico/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/genética , Ovario/metabolismo , Inmunohistoquímica/veterinaria
6.
Transpl Immunol ; 84: 102020, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452982

RESUMEN

OBJECTIVE: Innate immunity plays a vital role in xenotransplantation. A CD47 molecule, binding to the SIRPα expressed on monocyte/macrophage cells, can suppress cytotoxicity. Particularly, the SIRPα contains ITIM, which delivers a negative signal. Our previous study demonstrated that the binding between CL-P1 and surfactant protein-D hybrid (CL-SP-D) with SIRPα regulates macrophages' phagocytic activity. In this study, we examined the effects of human CD47 and CL-SP-D expression on the inhibition of xenograft rejection by neutrophils in swine endothelial cells (SECs). METHODS: We first examined SIRPα expression on HL-60 cells, a neutrophil-like cell line, and neutrophils isolated from peripheral blood. CD47-expressing SECs or CL-SP-D-expressing SECs were generated through plasmid transfection. Subsequently, these SECs were co-cultured with HL-60 cells or neutrophils. After co-culture, the degree of cytotoxicity was calculated using the WST-8 assay. The suppressive function of CL-SP-D on neutrophils was subsequently examined, and the results were compared with those of CD47 using naïve SECs as controls. Additionally, we assessed ROS production and neutrophil NETosis. RESULTS: In initial experiments, the expression of SIRPα on HL-60 and neutrophils was confirmed. Exposure to CL-SP-D significantly suppressed the cytotoxicity in HL-60 (p = 0.0038) and neutrophils (p = 0.00003). Furthermore, engagement with CD47 showed a suppressive effect on neutrophils obtained from peripheral blood (p = 0.0236) but not on HL-60 (p = 0.4244). The results of the ROS assays also indicated a significant downregulation of SEC by CD47 (p = 0.0077) or CL-SP-D (p = 0.0018). Additionally, the suppression of NETosis was confirmed (p = 0.0125) in neutrophils co-cultured with S/CL-SP-D. CONCLUSION: These results indicate that CL-SP-D is highly effective on neutrophils in xenogeneic rejection. Furthermore, CL-SP-D was more effective than CD47 at inhibiting neutrophil-mediated xenograft rejection.


Asunto(s)
Antígenos de Diferenciación , Antígeno CD47 , Rechazo de Injerto , Neutrófilos , Receptores Inmunológicos , Animales , Humanos , Antígenos de Diferenciación/metabolismo , Antígenos de Diferenciación/inmunología , Antígeno CD47/metabolismo , Antígeno CD47/inmunología , Técnicas de Cocultivo , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Rechazo de Injerto/inmunología , Células HL-60 , Neutrófilos/inmunología , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/metabolismo , Porcinos , Trasplante Heterólogo , Proteína D Asociada a Surfactante Pulmonar/inmunología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Colectinas/inmunología , Colectinas/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L524-L538, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375572

RESUMEN

Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.


Asunto(s)
Calcio , Glicocálix , Glicosaminoglicanos , Alveolos Pulmonares , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Animales , Humanos , Ratones , Células Epiteliales Alveolares/metabolismo , Líquido del Lavado Bronquioalveolar , Calcio/metabolismo , Glicocálix/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Ratones Endogámicos C57BL , Unión Proteica , Alveolos Pulmonares/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo
8.
Mucosal Immunol ; 17(3): 461-475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38184074

RESUMEN

Tuberculosis is the leading cause of death for people living with HIV (PLWH). We hypothesized that altered functions of innate immune components in the human alveolar lining fluid of PLWH (HIV-ALF) drive susceptibility to Mycobacterium tuberculosis (M.tb) infection. Our results indicate a significant increase in oxidation of innate proteins and chemokine levels and significantly lower levels and function of complement components and Th1/Th2/Th17 cytokines in HIV-ALF versus control-ALF (non-HIV-infected people). We further found a deficiency of surfactant protein D (SP-D) and reduced binding of SP-D to M.tb that had been exposed to HIV-ALF. Primary human macrophages infected with M.tb exposed to HIV-ALF were significantly less capable of controlling the infection, which was reversed by SP-D replenishment in HIV-ALF. Thus, based on the limited number of participants in this study, our data suggest that PLWH without antiretroviral therapy (ART) have declining host innate defense function in their lung mucosa, thereby favoring M.tb and potentially other pulmonary infections.


Asunto(s)
Citocinas , Infecciones por VIH , Inmunidad Innata , Mycobacterium tuberculosis , Proteína D Asociada a Surfactante Pulmonar , Humanos , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/fisiología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/inmunología , Infecciones por VIH/inmunología , Citocinas/metabolismo , Masculino , Femenino , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Células Cultivadas , Adulto , Tuberculosis Pulmonar/inmunología , Tuberculosis/inmunología , Persona de Mediana Edad , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo
9.
Eur J Pharmacol ; 963: 176219, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38040079

RESUMEN

Sepsis-associated lung injury often coexists with intestinal dysfunction. Butyrate, an essential gut microbiota metabolite, participates in gut-lung crosstalk and has immunoregulatory effects. This study aims to investigate the effect and mechanism of sodium butyrate (NaB) on lung injury. Sepsis-associated lung injury was established in mice by cecal ligation and puncture (CLP). Mice in treatment groups received NaB gavage after surgery. The survival rate, the oxygenation index and the lung wet-to-dry weight (W/D) ratio were calculated respectively. Pulmonary and intestinal histologic changes were observed. The total protein concentration in bronchoalveolar lavage fluid (BALF) was measured, and inflammatory factors in serum and BALF were examined. Diamine oxidase (DAO), lipopolysaccharide (LPS), and surfactant-associated protein D (SP-D) levels in serum and amphiregulin in lung tissue were assessed. Intercellular junction protein expression in the lung and intestinal tissues were examined. Changes in immune cells were analyzed. NaB treatment improved the survival rate, the oxygenation index and the histologic changes. NaB decreased the W/D ratio, total protein concentration, and the levels of proinflammatory cytokines, as well as SP-D, DAO and LPS, while increased the levels of anti-inflammatory cytokines and amphiregulin. The intercellular junction protein expression were improved by NaB. Furthermore, the CD4+/CD8+ T-cell ratio and the proportion of CD4+Foxp3+ regulatory T cells (Tregs) were increased by NaB. Our data suggested that NaB gavage effectively improved the survival rate and mitigated lung injury in CLP mice. The possible mechanism was that NaB augmented CD4+Foxp3+ Tregs and enhanced the barrier function of the gut and the lung.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Ratones , Animales , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/complicaciones , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Ácido Butírico/metabolismo , Anfirregulina/metabolismo , Linfocitos T Reguladores/metabolismo , Lipopolisacáridos/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Pulmón/patología , Citocinas/metabolismo , Factores de Transcripción/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Factores de Transcripción Forkhead/metabolismo
10.
Protein Pept Lett ; 30(9): 743-753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622713

RESUMEN

BACKGROUND: Apelin-13 is an endogenous adipocytokine known for its antioxidant, antiinflammatory, and antiapoptotic properties. OBJECTIVE: We aimed to investigate the possible protective effects of exogenous Apelin-13 administration on oxidative stress, inflammation, and apoptosis induced by the cytotoxic agent cyclophosphamide (CP) in the lungs. METHODS: Twenty-four male Wistar albino rats were divided into four groups: Control (saline), CP (200 mg/kg), Apelin-13 (10 µg/kg/day), and CP+Apelin-13. CP was administered as a single dose on the fifth day, and apelin-13 was administered intraperitoneally for five days. Total oxidant status (TOS), total antioxidant status (TAS), and lipid peroxidation were determined with spectrophotometry, TNFα and IL1ß were determined with ELISA, APJ, Sirt1, NF-κB, and p53 mRNA expressions were determined with qRT-PCR, cytochrome (Cyt) C and caspase-3 protein expressions were studied with western blotting in lung tissues. The oxidative stress index (OSI) was also calculated. Furthermore, serum surfactant protein-D (SP-D) and Krebs von den Lungen-6 (KL-6) levels were measured with ELISA. RESULTS: Compared to the control group, TOS, OSI, lipid peroxidation, TNFα, IL1ß, cyt C, caspase-3, APJ, NF-κB, and p53 were higher, and Sirt1 was lower in the lung tissue of rats in the CP group. Serum KL-6 and SP-D levels were higher in the CP group. Co-administration of CP with Apelin-13 completely reversed the changes induced by CP administration. CONCLUSION: Exogenous Apelin-13 treatment protected lung tissue against injury by inhibiting cyclophosphamide-induced oxidative stress, inflammation, and apoptosis. This protective effect of apelin-13 was accompanied by upregulation of the Sirt1 and downregulation of NF-κB/p53 in the lungs.


Asunto(s)
Antioxidantes , FN-kappa B , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Ratas Wistar , Antioxidantes/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Caspasa 3/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/farmacología , Estrés Oxidativo , Ciclofosfamida/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Pulmón , Apoptosis , Apelina/efectos adversos , Apelina/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L288-L298, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366541

RESUMEN

Pompe disease is an autosomal recessive glycogen storage disease caused by mutations in the gene that encodes acid alpha-glucosidase (GAA)-an enzyme responsible for hydrolyzing lysosomal glycogen. GAA deficiency results in systemic lysosomal glycogen accumulation and cellular disruption. Glycogen accumulation in skeletal muscles, motor neurons, and airway smooth muscle cells is known to contribute to respiratory insufficiency in Pompe disease. However, the impact of GAA deficiency on the distal alveolar type 1 and type 2 cells (AT1 and AT2) has not been evaluated. AT1 cells rely on lysosomes for cellular homeostasis so that they can maintain a thin barrier for gas exchange, whereas AT2 cells depend on lysosome-like structures (lamellar bodies) for surfactant production. Using a mouse model of Pompe disease, the Gaa-/- mouse, we investigated the consequences of GAA deficiency on AT1 and AT2 cells using histology, pulmonary function and mechanics, and transcriptional analysis. Histological analysis revealed increased accumulation of lysosomal-associated membrane protein 1 (LAMP1) in the Gaa-/- mice lungs. Furthermore, ultrastructural examination showed extensive intracytoplasmic vacuoles enlargement and lamellar body engorgement. Respiratory dysfunction was confirmed using whole body plethysmography and forced oscillometry. Finally, transcriptomic analysis demonstrated dysregulation of surfactant proteins in AT2 cells, specifically reduced levels of surfactant protein D in the Gaa-/- mice. We conclude that GAA enzyme deficiency leads to glycogen accumulation in the distal airway cells that disrupts surfactant homeostasis and contributes to respiratory impairments in Pompe disease.NEW & NOTEWORTHY This research highlights the impact of Pompe disease on distal airway cells. Prior to this work, respiratory insufficiency in Pompe disease was classically attributed to pathology in respiratory muscles and motor neurons. Using the Pompe mouse model, we note significant pathology in alveolar type 1 and 2 cells with reductions in surfactant protein D and disrupted surfactant homeostasis. These novel findings highlight the potential contributions of alveolar pathology to respiratory insufficiency in Pompe disease.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Insuficiencia Respiratoria , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo , Músculo Esquelético/metabolismo , Glucógeno/metabolismo
12.
In Vivo ; 37(4): 1721-1728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369511

RESUMEN

BACKGROUND/AIM: The lung-specific soluble lectins, SP-A and SP-D have been clinically used to diagnose interstitial lung disease, but their clinical significance in COVID-19 remains controversial. This study was undertaken to determine their association with other lectins (MBL and FCN1), disease severity, and radiographs in COVID-19 patients. PATIENTS AND METHODS: A total of 131 patients with COVID-19 admitted in the Sapporo Medical University Hospital between May 22 and September 19, 2021, were enrolled in the study. Data including demographics, medical history, symptoms, signs, laboratory findings, and radiological images were collected from the patients' medical records. Chest computed tomography (CT) scanning was performed at admission. Serum levels of surfactant protein A and D (SP-A and SP-D), mannose-binding lectin (MBL) and ficolin1 (FCN1) were measured using enzyme-linked immunosorbent assay (ELISA) kits. RESULTS: Compared to the control group, the COVID-19 group had significantly higher serum SP-A and FCN1 levels on admission (SP-A: 59.60±38.89 vs. 35.61±11.22 ng/ml; p<0.01, FCN1: 542.45±506.04 vs. 250.6±161.1 ng/ml; p<0.01). The severe group in COVID-19 had significantly higher serum SP-D and lower MBL levels than the non-severe group (SP-D: 141.7±155.7 vs. 61.41±54.54 ng/ml; p<0.01, MBL: 1,670±1,240 vs. 2,170±1,140 ng/ml; p<0.05). SP-D strongly reflected the degree of imaging findings, whereas SP-A showed a significant correlation, albeit slightly weaker than SP-D. Conversely, MBL and FNC1 were not significantly correlated with imaging findings. CONCLUSION: Among soluble serum lectins, SP-A and SP-D may be more sensitive to CT findings than reported disease biomarkers such as IL-6, LDH, and CRP due to their lung-specific characteristics.


Asunto(s)
COVID-19 , Lectinas , Humanos , Proteína D Asociada a Surfactante Pulmonar/metabolismo , COVID-19/diagnóstico , Biomarcadores , Pulmón/diagnóstico por imagen , Pulmón/metabolismo
13.
Environ Health Perspect ; 131(5): 57002, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141245

RESUMEN

BACKGROUND: Exposure to traffic-related air pollution (TRAP) has been associated with increased risks of respiratory diseases, but the biological mechanisms are not yet fully elucidated. OBJECTIVES: Our aim was to evaluate the respiratory responses and explore potential biological mechanisms of TRAP exposure in a randomized crossover trial. METHODS: We conducted a randomized crossover trial in 56 healthy adults. Each participant was exposed to high- and low-TRAP exposure sessions by walking in a park and down a road with high traffic volume for 4 h in random order. Respiratory symptoms and lung function, including forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), the ratio of FEV1 to FVC, and maximal mid-expiratory flow (MMEF), were measured before and after each exposure session. Markers of 8-isoprostane, tumor necrosis factor-α (TNF-α), and ezrin in exhaled breath condensate (EBC), and surfactant proteins D (SP-D) in serum were also measured. We used linear mixed-effects models to estimate the associations, adjusted for age, sex, body mass index, meteorological condition, and batch (only for biomarkers). Liquid chromatography-mass spectrometry was used to profile the EBC metabolome. Untargeted metabolome-wide association study (MWAS) analysis and pathway enrichment analysis using mummichog were performed to identify critical metabolomic features and pathways associated with TRAP exposure. RESULTS: Participants had two to three times higher exposure to traffic-related air pollutants except for fine particulate matter while walking along the road compared with in the park. Compared with the low-TRAP exposure at the park, high-TRAP exposure at the road was associated with a higher score of respiratory symptoms [2.615 (95% CI: 0.605, 4.626), p=1.2×10-2] and relatively lower lung function indicators [-0.075L (95% CI: -0.138, -0.012), p=2.1×10-2] for FEV1 and -0.190L/s (95% CI: -0.351, -0.029; p=2.4×10-2) for MMEF]. Exposure to TRAP was significantly associated with changes in some, but not all, biomarkers, particularly with a 0.494-ng/mL (95% CI: 0.297, 0.691; p=9.5×10-6) increase for serum SP-D and a 0.123-ng/mL (95% CI: -0.208, -0.037; p=7.2×10-3) decrease for EBC ezrin. Untargeted MWAS analysis revealed that elevated TRAP exposure was significantly associated with perturbations in 23 and 32 metabolic pathways under positive- and negative-ion modes, respectively. These pathways were most related to inflammatory response, oxidative stress, and energy use metabolism. CONCLUSIONS: This study suggests that TRAP exposure might lead to lung function impairment and respiratory symptoms. Possible underlying mechanisms include lung epithelial injury, inflammation, oxidative stress, and energy metabolism disorders. https://doi.org/10.1289/EHP11139.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Proteína D Asociada a Surfactante Pulmonar/análisis , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Material Particulado/toxicidad , Material Particulado/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Biomarcadores/análisis , Metaboloma , Pulmón
14.
Ann Anat ; 247: 152048, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36690045

RESUMEN

BACKGROUND: Surfactant protein D (SP-D) is an innate host defense protein that clears infectious pathogens from the lung and regulates pulmonary host defense cells. SP-D is also detected in lower concentrations in plasma and many other non-pulmonary tissues. Plasma levels of SP-D increase during infection and other proinflammatory states; however, the source and functions of SP-D in the systemic circulation are largely unknown. We hypothesized that systemic SP-D may clear infectious pathogens and regulate host defense cells in extrapulmonary systems. METHODS: To determine if SP-D inhibited inflammation induced by systemic lipopolysaccharide (LPS), E.coli LPS was administered to mice via tail vein injection with and without SP-D and the inflammatory response was measured. RESULTS: Systemic SP-D has a circulating half-life of 6 h. Systemic IL-6 levels in mice lacking the SP-D gene were similar to wild type mice at baseline but were significantly higher than wild type mice following LPS treatment (38,000 vs 29,900 ng/ml for 20 mg/kg LPS and 100,700 vs 73,700 ng/ml for 40 mg/kg LPS). In addition, treating wild type mice with purified intravenous SP-D inhibited LPS induced secretion of IL-6 and TNFα in a concentration dependent manner. Inhibition of LPS induced inflammation by SP-D correlated with SP-D LPS binding suggesting SP-D mediated inhibition of systemic LPS requires direct SP-D LPS interactions. CONCLUSIONS: Taken together, the above results suggest that circulating SP-D decreases systemic inflammation and raise the possibility that a physiological purpose of increasing systemic SP-D levels during infection is to scavenge systemic infectious pathogens and limit inflammation-induced tissue injury.


Asunto(s)
Lipopolisacáridos , Proteína D Asociada a Surfactante Pulmonar , Ratones , Animales , Proteína D Asociada a Surfactante Pulmonar/genética , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/farmacología , Lipopolisacáridos/farmacología , Interleucina-6 , Inflamación , Pulmón
15.
Cell Mol Immunol ; 20(1): 38-50, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36376488

RESUMEN

Increased levels of surfactant protein D (SP-D) and lipid-laden foamy macrophages (FMs) are frequently found under oxidative stress conditions and/or in patients with chronic obstructive pulmonary disease (COPD) who are also chronically exposed to cigarette smoke (CS). However, the roles and molecular mechanisms of SP-D and FMs in COPD have not yet been determined. In this study, increased levels of SP-D were found in the bronchoalveolar lavage fluid (BALF) and sera of ozone- and CS-exposed mice. Furthermore, SP-D-knockout mice showed increased lipid-laden FMs and airway inflammation caused by ozone and CS exposure, similar to that exhibited by our study cohort of chronic smokers and COPD patients. We also showed that an exogenous recombinant fragment of human SP-D (rfhSP-D) prevented the formation of oxidized low-density lipoprotein (oxLDL)-induced FMs in vitro and reversed the airway inflammation and emphysematous changes caused by oxidative stress and CS exposure in vivo. SP-D upregulated bone marrow-derived macrophage (BMDM) expression of genes involved in countering the oxidative stress and lipid metabolism perturbations induced by CS and oxLDL. Our study demonstrates the crucial roles of SP-D in the lipid homeostasis of dysfunctional alveolar macrophages caused by ozone and CS exposure in experimental mouse emphysema, which may provide a novel opportunity for the clinical application of SP-D in patients with COPD.


Asunto(s)
Ozono , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratones , Animales , Pulmón/metabolismo , Proteína D Asociada a Surfactante Pulmonar/genética , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Macrófagos/metabolismo , Líquido del Lavado Bronquioalveolar , Inflamación/metabolismo , Ozono/farmacología , Ozono/metabolismo , Lípidos , Ratones Endogámicos C57BL
16.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 95-103, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36352814

RESUMEN

BACKGROUND: Over 43% of the world's population regularly consumes alcohol. Although not commonly known, alcohol can have a significant impact on the respiratory environment. Living in the time of the COVID-19 pandemic, alcohol misuse can have a particularly deleterious effect on SARS-CoV-2-infected individuals and, in turn, the overall healthcare system. Patients with alcohol use disorders have higher odds of COVID-19-associated hospitalization and mortality. Even though the detrimental role of alcohol on COVID-19 outcomes has been established, the underlying mechanisms are yet to be fully understood. Alcohol misuse has been shown to induce oxidative damage in the lungs through the production of reactive aldehydes such as malondialdehyde and acetaldehyde (MAA). MAA can then form adducts with proteins, altering their structure and function. One such protein is surfactant protein D (SPD), which plays an important role in innate immunity against pathogens. METHODS AND RESULTS: In this study, we examined whether MAA adduction of SPD (SPD-MAA) attenuates the ability of SPD to bind SARS-CoV-2 spike protein, reversing SPD-mediated virus neutralization. Using ELISA, we show that SPD-MAA is unable to competitively bind spike protein and prevent ACE2 receptor binding. Similarly, SPD-MAA fails to inhibit entry of wild-type SARS-CoV-2 virus into Calu-3 cells, a lung epithelial cell line, as well as ciliated primary human bronchial epithelial cells isolated from healthy individuals. CONCLUSIONS: Overall, MAA adduction of SPD, a consequence of alcohol overconsumption, represents one mechanism of compromised lung innate defense against SARS-CoV-2, highlighting a possible mechanism underlying COVID-19 severity and related mortality in patients who misuse alcohol.


Asunto(s)
Alcoholismo , COVID-19 , Humanos , Acetaldehído/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Malondialdehído/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Etanol , Proteínas/metabolismo , Unión Proteica
17.
Acta Biochim Pol ; 69(4): 697-702, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36515569

RESUMEN

This study was conducted to investigate the changes of Club cell protein 16 (CC16) and surfactant protein D (SP-D) levels in serum and bronchoalveolar lavage fluid (BALF) in silicotic rats and to explore their potential as early biomarkers for silicosis. Pulmonary fibrosis models of rats were constructed by exposing them to silica particles. BALF and serum were collected to determine CC16 and SP-D levels using enzyme-linked immunosorbent assay (ELISA) at different times after the exposure. Hydroxyproline (HYP) level in BALF and CC16 level in the lung tissues were also measured immunohistochemistrially. The BALF levels of CC16 decreased from 49.65 to 38.02 ng/mg after the rats were exposed to silica for 3 and 28 days, which were all significantly lower as compared with the controls (P<0.05), where the levels remained barely changed during the same period (61.27 to 56.76 ng/mg). The serum CC16 also showed a similar decrease from 9.8 ng/ml to 8.78 ng/ml during the period, while in the controls, the serum CC16 levels remained constantly between 11.04 and 10.96 ng/ml. The levels of SP-D in the serum of silica-exposed rats did not decrease as compared with the controls and BALF SP-D presented a parabolic curve change with silica exposure. Immunohistochemical examinations showed that the lung Club cells were severely damaged and CC16 expression was obviously decreased after silica exposure. BALF HYP level was higher in silica-exposed rats than in control only when the exposure was at 50 mg/ml. Our work demonstrates that expressions of CC16 and SP-D are pulmonary tissue-specific and CC16 expression is down-regulated as a result of silica-exposure. The significant relationship between CC16 and silica dose indicates that CC16 may be exploited as an early biomarker to assess silica-induced pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Ratas , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Uteroglobina/metabolismo , Dióxido de Silicio/efectos adversos , Dióxido de Silicio/metabolismo , Pulmón/metabolismo , Biomarcadores/metabolismo
18.
Allergol. immunopatol ; 50(6): 176-186, 01 nov. 2022. graf, ilus
Artículo en Inglés | IBECS | ID: ibc-211519

RESUMEN

Background Injury to the lung is a common, clinically serious inflammatory disease. However, its pathogenesis remains unclear, and the existing treatments, including cytokine therapy, stem cell therapy, and hormone therapy, are not completely effective in treating this disease. Dimethyl itaconate (DMI) is a surfactant with important anti-inflammatory effects. Objective The present study used alveolar type II (AT II) and bronchial epithelial cells as models to determine the role of DMI in lung injury. Material and Methods First, the effects of DMI were established on the survival, inflammatory release, and apoptosis in lipopolysaccharide (LPS)-induced AT II and bronchial epithelial cells. The association between DMI and Sirtuin1 (SIRT1) was assessed using molecular docking. Next, by constructing interference plasmids to inhibit surfactant protein (SP)-A and SP-D expressions, the effect of DMI was observed on inflammatory release and apoptosis. Results The results revealed that DMI increased the survival rate and expression levels of SP-A, SP-D, and SIRT1, and inhibited inflammatory factors as well as apoptosis in LPS-induced cells. Furthermore, DMI could bind to SIRT1 to regulate SP-A and SP-D expressions. After SP-A and SP-D expressions were inhibited, the inhibitory effect of DMI was reversed on inflammatory release and apoptosis. Conclusion The findings of the present study revealed that DMI inhibited LPS-induced inflammatory release and apoptosis in cells by targeting SIRT1 and then activating SP-A and SP-D. This novel insight into the pharmacological mechanism of DMI lays the foundation for its later use for alleviating lung injury (AU)


Asunto(s)
Humanos , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacología , Células Epiteliales/metabolismo , Apoptosis , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Lesión Pulmonar/metabolismo , Simulación del Acoplamiento Molecular , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/farmacología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/farmacocinética , Sirtuina 1/metabolismo , Sirtuina 1/farmacología
19.
Allergol Immunopathol (Madr) ; 50(6): 176-186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36335462

RESUMEN

BACKGROUND: Injury to the lung is a common, clinically serious inflammatory disease. However, its pathogenesis remains unclear, and the existing treatments, including cytokine therapy, stem cell therapy, and hormone therapy, are not completely effective in treating this disease. Dimethyl itaconate (DMI) is a surfactant with important anti-inflammatory effects. OBJECTIVE: The present study used alveolar type II (AT II) and bronchial epithelial cells as models to determine the role of DMI in lung injury. MATERIAL AND METHODS: First, the effects of DMI were established on the survival, inflammatory release, and apoptosis in lipopolysaccharide (LPS)-induced AT II and bronchial epithelial cells. The association between DMI and Sirtuin1 (SIRT1) was assessed using molecular docking. Next, by constructing interference plasmids to inhibit surfactant protein (SP)-A and SP-D expressions, the effect of DMI was observed on inflammatory release and apoptosis. RESULTS: The results revealed that DMI increased the survival rate and expression levels of SP-A, SP-D, and SIRT1, and inhibited inflammatory factors as well as apoptosis in LPS-induced cells. Furthermore, DMI could bind to SIRT1 to regulate SP-A and SP-D expressions. After SP-A and SP-D expressions were inhibited, the inhibitory effect of DMI was reversed on inflammatory release and apoptosis. CONCLUSION: The findings of the present study revealed that DMI inhibited LPS-induced inflammatory release and apoptosis in cells by targeting SIRT1 and then activating SP-A and SP-D. This novel insight into the pharmacological mechanism of DMI lays the foundation for its later use for alleviating lung injury.


Asunto(s)
Lesión Pulmonar , Surfactantes Pulmonares , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/farmacología , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Lesión Pulmonar/metabolismo , Simulación del Acoplamiento Molecular , Células Epiteliales/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína A Asociada a Surfactante Pulmonar/farmacología , Apoptosis , Tensoactivos/metabolismo , Tensoactivos/farmacología
20.
Front Immunol ; 13: 913901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865531

RESUMEN

Osteoarthritis (OA) is a deteriorating disease of cartilage tissues mainly characterized as low-grade inflammation of the joint. Innate immune molecule surfactant protein D (SP-D) is a member of collectin family of collagenous Ca2+-dependent defense lectins and plays a vital role in the inflammatory and innate immune responses. The present study investigated the SP-D-mediated innate/inflammatory bioregulation in OA and explored the underlying molecular mechanism. Transcriptome analysis revealed that SP-D regulated genes were strongly enriched in the inflammatory response, immune response, cellular response to lipopolysaccharide (LPS), PI3K-Akt signaling, Toll-like receptor (TLR) signaling, and extracellular matrix (ECM)-receptor interaction pathways. Knockdown of the SP-D gene by the recombinant adeno-associated virus promoted the macrophage specific markers of CD68, F4/80 and TLR4 in the articular cartilage in vivo. SP-D alleviated the infiltration of synovial macrophages and neutrophils, and inhibited TLR4, TNF-α and the phosphorylation of PI3K, Akt and NF-κB p65 in cartilage. SP-D suppressed cartilage degeneration, inflammatory and immune responses in the rat OA model, whilst TAK-242 strengthened this improvement. In in vitro conditions, SP-D pre-treatment inhibited LPS-induced overproduction of inflammation-correlated cytokines such as IL-1ß and TNF-α, and suppressed the overexpression of TLR4, MD-2 and NLRP3. SP-D prevented the LPS-induced degradation of ECM by down-regulating MMP-13 and up-regulating collagen II. Blocking of TLR4 by TAK-242 further enhanced these manifestations. We also demonstrated that SP-D binds to the TLR4/MD-2 complex to suppress TLR4-mediated PI3K/Akt and NF-κB signaling activation in chondrocytes. Taken together, these findings indicate that SP-D has chondroprotective properties dependent on TLR4-mediated PI3K/Akt and NF-κB signaling and that SP-D has an optimal bioregulatory effect on the inflammatory and innate responses in OA.


Asunto(s)
Osteoartritis , Proteína D Asociada a Surfactante Pulmonar , Receptor Toll-Like 4 , Animales , Inflamación , Lipopolisacáridos/efectos adversos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Ratas , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA