RESUMEN
First-line tuberculostatic agents, Rifampicin (RIF), Isoniazid (ISH), Ethambutol (ETB), and Pyrazinamide (PZA) are generally administered as a fixed-dose combination (FDC) for improving patient adherence. The major quality challenge of these FDC products is their variable bioavailability, where RIF and its solid state are key factors. In this work, the analysis of the impact of the polymorphism in the performance of RIF in RIF-ISH and PZA-RIF-ISH combined products was carried out by an overall approach that included the development and validation of two methodologies combining near-infrared (NIR) spectroscopy and partial least squares (PLS) to the further evaluation of commercial products. For NIR-PLS methods, training and validation sets were prepared with mixtures of Form I/Form II of RIF, and the appropriate amount of ISH (for double associations) or ISH-PZA (for triple associations). The corresponding matrix of the excipients was added to the mixture of APIs to simulate the environment of each FDC product. Four PLS factors, reduced spectral range, and the combination of standard normal variate and Savitzky-Golay 1st derivative (SNV-D') were selected as optimum data pre-treatment for both methods, yielding satisfactory recoveries during the analysis of validation sets (98.5±2.0%, and 98.7±1.8% for double- and triple-FDC products, respectively). The NIR-PLS model for RIF-ISH successfully estimated the polymorphic purity of Form II in double-FDC capsules (1.02 ± 0.02w/w). On the other hand, the NIR-PLS model for RIF-ISH-PZA detected a low purity of Form II in triple FDC tablets (0.800 ± 0.021w/w), these results were confirmed by X-ray powder diffraction. Nevertheless, the triple-FDC tablets showed good performance in the dissolution test (Q=99-102%), implying a Form II purity about of 80% is not low enough to affect the safety and efficacy of the product.
Asunto(s)
Antituberculosos , Rifampin , Humanos , Rifampin/química , Antituberculosos/química , Isoniazida/química , Pirazinamida/química , Etambutol/química , Comprimidos/químicaRESUMEN
BACKGROUND: Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, which still has high prevalence worldwide. In addition, cases of drug resistance are frequently observed. In the search for new anti-TB drugs, compounds with antimycobacterial activity have been developed, such as derivatives of pyrazinoic acid, which is the main pyrazinamide metabolite. In a previous study, the compounds were evaluated and showed moderate antimycobacterial activity and no important cytotoxic profile; however, information about their pharmacokinetic profile is lacking. OBJECTIVE: The aim of this work was to perform physicochemical, permeability, and metabolic properties of four pyrazinoic acid esters. METHOD: The compounds were analyzed for their chemical stability, n-octanol:water partition coefficient (logP) and apparent permeability (Papp) in monolayer of Caco-2 cells. The stability of the compounds in rat and human microsomes and in rat plasma was also evaluated. RESULTS: The compounds I, II and IV were found to be hydrophilic, while compound III was the most lipophilic (logP 1.59) compound. All compounds showed stability at the three evaluated pHs (1.2, 7.4 and 8.8). The apparent permeability measured suggests good intestinal absorption of the compounds. Additionally, the compounds showed metabolic stability under action of human and rat microsomal enzymes and stability in rat plasma for at least 6 hours. CONCLUSION: The results bring favorable perspectives for the future development of the evaluated compounds and other pyrazinoic acid derivatives.
Asunto(s)
Pirazinamida/análogos & derivados , 1-Octanol/química , Animales , Línea Celular , Estabilidad de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Microsomas Hepáticos/metabolismo , Permeabilidad , Pirazinamida/química , Pirazinamida/farmacocinética , Ratas , Agua/químicaRESUMEN
This work reports a repurposing study of pyrazinoic acid (1) and methyl (2), ethyl (3) and 2-chloroethyl (4) ester derivatives with antimycobacterial activity, in assays against Trypanosoma cruzi. The compounds and benznidazole, the standard antitrypanosoma drug, were evaluated in concentrations ranging from 100 to 6.25 µg/mL. The results showed that compounds 2 and 3 (EC50 = 182 and 447 µM) significantly reduced the infection rate of the parasite into the mammalian cells at 100 µg/mL (p < 0.05) in a similar way to benznidazole. In addition, all the compounds also significantly reduced the number of intracellular parasites (compound 1 at 50 µg/mL, and compounds 2-4 at 100 µg/mL, p < 0.05) in comparison to the control. Compounds 1 and 2 were more effective than benznidazole at 50 µg/mL (p < 0.001). Moreover, compounds 1-4 did not show significant cytotoxicity against THP-1, J774, and HeLa cells (>1000 µM), indicating that they possess considerable selectivity against the parasites. This report represents the first study of such compounds against T. cruzi, indicating the potential of pyrazinoates as antiparasitic agents.
Asunto(s)
Antiparasitarios/farmacología , Pirazinamida/análogos & derivados , Trypanosoma cruzi/efectos de los fármacos , Antiparasitarios/síntesis química , Antiparasitarios/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Pirazinamida/síntesis química , Pirazinamida/química , Pirazinamida/farmacología , Relación Estructura-Actividad , Células THP-1RESUMEN
This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets.
Asunto(s)
Antituberculosos/química , Etambutol/química , Isoniazida/química , Pirazinamida/química , Rifampin/química , Espectroscopía Infrarroja Corta/métodos , Calibración , Cromatografía Líquida de Alta Presión , SolubilidadRESUMEN
Tuberculosis is an infection caused mainly by Mycobacterium tuberculosis. A first-line antimycobacterial drug is pyrazinamide (PZA), which acts partially as a prodrug activated by a pyrazinamidase releasing the active agent, pyrazinoic acid (POA). As pyrazinoic acid presents some difficulty to cross the mycobacterial cell wall, and also the pyrazinamide-resistant strains do not express the pyrazinamidase, a set of pyrazinoic acid esters have been evaluated as antimycobacterial agents. In this work, a QSAR approach was applied to a set of forty-three pyrazinoates against M. tuberculosis ATCC 27294, using genetic algorithm function and partial least squares regression (WOLF 5.5 program). The independent variables selected were the Balaban index (J), calculated n-octanol/water partition coefficient (ClogP), van-der-Waals surface area, dipole moment, and stretching-energy contribution. The final QSAR model (N = 32, r(2) = 0.68, q(2) = 0.59, LOF = 0.25, and LSE = 0.19) was fully validated employing leave-N-out cross-validation and y-scrambling techniques. The test set (N = 11) presented an external prediction power of 73%. In conclusion, the QSAR model generated can be used as a valuable tool to optimize the activity of future pyrazinoic acid esters in the designing of new antituberculosis agents.
Asunto(s)
Antituberculosos/farmacología , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/análogos & derivados , Algoritmos , Antituberculosos/síntesis química , Antituberculosos/química , Diseño de Fármacos , Ésteres , Análisis de los Mínimos Cuadrados , Pruebas de Sensibilidad Microbiana , Profármacos , Pirazinamida/síntesis química , Pirazinamida/química , Pirazinamida/farmacología , Relación Estructura-Actividad CuantitativaRESUMEN
The present article describes a series of twenty-six N'-[(E)-(monosubstituted-benzylidene)]-2-pyrazinecarbohydrazide (4-29), which were synthesized and evaluated for their cell viabilities in non infected and infected macrophages with Mycobacterium bovis Bacillus Calmette-Guerin (BCG). Afterwards, the non-cytotoxic compounds (4, 6, 8, 15, 21, 23, 24, 27 and 28) were assessed against Mycobacterium tuberculosis ATCC 27294 using the micro plate Alamar Blue assay (MABA) and the activity expressed as the minimum inhibitory concentration (MIC) in microg/mL. The compounds 6, 23, 27 and 28 exhibited a significant activity (50-100 microg/mL) when compared with first line drugs such as pyrazinamide and were not cytotoxic in their respective MIC values.
Asunto(s)
Antibacterianos , Antituberculosos , Compuestos de Bencilideno/síntesis química , Hidrazinas/síntesis química , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/síntesis química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antituberculosos/síntesis química , Antituberculosos/farmacología , Compuestos de Bencilideno/química , Compuestos de Bencilideno/farmacología , Supervivencia Celular , Diseño de Fármacos , Humanos , Hidrazinas/química , Hidrazinas/farmacología , Macrófagos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pirazinamida/química , Pirazinamida/farmacologíaRESUMEN
Three of the most frequent antitubercular agents employed against Mycobacterium tuberculosis are: Rifampicin, Isoniazid and Pyrazinamide. It has been proven that the use of these antitubercular agents together, shortens the treatment period from 12-18 months to 6 months [1]. In this work we use a new Density Functional Theory chemistry model called CHIH-DFT (Chihuahua-Heterocycles-Density Functional Theory) that reflects the mixture of Hartree Fock exchange and DFT exchange, according to a mixing parameter based on empirical rules suited for heterocyclic systems. This new chemistry model was used to calculate the molecular structure of these antitubercular compounds, as well as their infrared, UV spectra, chemical reactivity and electronic properties. The UV and infrared spectra were obtained by experimental techniques. The calculated molecular structure, UV and IR spectra values from CHIH-DFT were compared with experimentally obtained values and theoretical studies. These results are in good agreement with experimental and theoretical studies. We also predicted using the relative electrophilicity and relative nucleophilicity concepts as defined by Roy et al. [2] the chemical active sites for the three antitubercular compounds as well as their electronegativity, ionization potential, electron affinity, hardness, dipole moment, E(HOMO)-E(LUMO) gap energy, etc.
Asunto(s)
Antituberculosos/análisis , Antituberculosos/química , Isoniazida/análisis , Isoniazida/química , Pirazinamida/análisis , Pirazinamida/química , Rifampin/análisis , Rifampin/química , Espectrofotometría Infrarroja , Espectrofotometría UltravioletaRESUMEN
The use of multivariate spectrophotometric calibration is presented for the simultaneous determination of the active components of tablets used in the treatment of pulmonary tuberculosis. The resolution of ternary mixtures of rifampicin, isoniazid and pyrazinamide has been accomplished by using partial least squares (PLS-1) regression analysis. Although the components show an important degree of spectral overlap, they have been simultaneously determined with high accuracy and precision, rapidly and with no need of nonaqueous solvents for dissolving the samples. No interference has been observed from the tablet excipients. A comparison is presented with the related multivariate method of classical least squares (CLS) analysis, which is shown to yield less reliable results due to the severe spectral overlap among the studied compounds. This is highlighted in the case of isoniazid, due to the small absorbances measured for this component.