Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 505
1.
BMC Pharmacol Toxicol ; 25(1): 31, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685129

In the current work, favipiravir (an antiviral drug) loaded pH-responsive polymeric hydrogels were developed by the free redical polymerization technique. Box-Behnken design method via Design Expert version 11 was employed to furnish the composition of all hydrogel formulations. Here, polyethylene glycol (PEG) has been utilized as a polymer, acrylic acid (AA) as a monomer, and potassium persulfate (KPS) and methylene-bisacrylamide (MBA) as initiator and cross-linker, respectively. All networks were evaluated for in-vitro drug release (%), sol-gel fraction (%), swelling studies (%), porosity (%), percentage entrapment efficiency, and chemical compatibilities. According to findings, the swelling was pH sensitive and was shown to be greatest at a pH of 6.8 (2500%). The optimum gel fraction offered was 97.8%. A sufficient porosity allows the hydrogel to load a substantial amount of favipiravir despite its hydrophobic behavior. Hydrogels exhibited maximum entrapment efficiency of favipiravir upto 98%. The in-vitro release studies of drug-formulated hydrogel revealed that the drug release from hydrogel was between 85 to 110% within 24 h. Drug-release kinetic results showed that the Korsmeyer Peppas model was followed by most of the developed formulations based on the R2 value. In conclusion, the hydrogel-based technology proved to be an excellent option for creating the sustained-release dosage form of the antiviral drug favipiravir.


Amides , Antiviral Agents , Delayed-Action Preparations , Drug Liberation , Hydrogels , Pyrazines , Delayed-Action Preparations/chemistry , Hydrogels/chemistry , Amides/chemistry , Amides/administration & dosage , Hydrogen-Ion Concentration , Antiviral Agents/chemistry , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Pyrazines/chemistry , Pyrazines/administration & dosage , Pyrazines/pharmacokinetics , Polyethylene Glycols/chemistry , Cross-Linking Reagents/chemistry
2.
J Pharm Biomed Anal ; 245: 116155, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38652938

Favipiravir is a broad-spectrum antiviral that is metabolised intracellularly into the active form, favipiravir ribofuranosyl-5'-triphosphate (F-RTP). Measurement of the intracellular concentration of F-RTP in mononuclear cells is a crucial step to characterising the pharmacokinetics of F-RTP and to enable more appropriate dose selection for the treatment of COVID-19 and emerging infectious diseases. The described method was validated over the range 24 - 2280 pmol/sample. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood and lysed using methanol-water (70:30, v/v) before cellular components were precipitated with acetonitrile and the supernatant further cleaned by weak anion exchange solid phase extraction. The method was found to be both precise and accurate and was successfully utilised to analyse F-RTP concentrations in patient samples collected as part of the AGILE CST-6 clinical trial.


Amides , Antiviral Agents , Leukocytes, Mononuclear , Pyrazines , Tandem Mass Spectrometry , Humans , Leukocytes, Mononuclear/metabolism , Tandem Mass Spectrometry/methods , Pyrazines/pharmacokinetics , Pyrazines/analysis , Amides/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/analysis , COVID-19 Drug Treatment , Chromatography, Liquid/methods , Solid Phase Extraction/methods , SARS-CoV-2/drug effects , COVID-19 , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry
3.
Clin Pharmacol Drug Dev ; 13(6): 672-676, 2024 Jun.
Article En | MEDLINE | ID: mdl-38523571

This study aimed to assess the bioequivalence of 2 avapritinib tablets formulations. A randomized, open-label, single-center trial was conducted on fasting, healthy Chinese participants. The study utilized a partial replicated design with 3 sequences and 3 periods. Participants were assigned to 1 of 3 sequences, with each sequence receiving the reference formulation twice and the test formulation once. Plasma samples were collected and analyzed to determine pharmacokinetic parameters. The bioequivalence of the 2 avapritinib formulations was assessed using reference-scaled average bioequivalence for the maximum plasma concentration (Cmax) and the average bioequivalence analysis for the area under the concentration-time curve (AUC). Out of 39 participants, 38 completed the study. For Cmax, the 1-sided 95% upper confidence interval (CI) bound from the scaled approach was -0.035 (<0) and the point estimate value was 0.958, falling inside the acceptance range of 0.8-1.25. For both the AUC over all concentrations measured (AUC0-t) and the AUC from time 0 to infinity (AUC0-inf), the 90% CIs of geometric mean ratios (0.87-1.01) also met the bioequivalence criteria of 0.8-1.25. Consequently, the study demonstrated that the 2 avapritinib formulations were bioequivalent under fasting conditions.


Area Under Curve , Fasting , Tablets , Therapeutic Equivalency , Humans , Male , Adult , Young Adult , Female , Cross-Over Studies , Asian People , Healthy Volunteers , Administration, Oral , Pyrazines/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/blood , Middle Aged , East Asian People
4.
Adv Healthc Mater ; 13(14): e2303659, 2024 Jun.
Article En | MEDLINE | ID: mdl-38386849

Sustainable retinal codelivery poses significant challenges technically, although it is imperative for synergistic treatment of wet age-related macular degeneration (wAMD). Here, a microemulsion-doped hydrogel (Bor/PT-M@TRG) is engineered as an intravitreal depot composing of temperature-responsive hydrogel (TRG) and borneol-decorated paeoniflorin (PF) & tetramethylpyrazine (TMP)-coloaded microemulsions (Bor/PT-M). Bor/PT-M@TRG, functioning as the "ammunition depot", resides in the vitreous and continuously releases Bor/PT-M as the therapeutic "bullet", enabling deep penetration into the retina for 21 days. A single intravitreal injection of Bor/PT-M@TRG yields substantial reductions in choroidal neovascularization (CNV, a hallmark feature of wAMD) progression and mitigates oxidative stress-induced damage in vivo. Combinational PF&TMP regulates the "reactive oxygen species/nuclear factor erythroid-2-related factor 2/heme oxygenase-1" pathway and blocks the "hypoxia inducible factor-1α/vascular endothelial growth factor" signaling in retina, synergistically cutting off the loop of CNV formation. Utilizing fluorescence resonance energy transfer and liquid chromatography-mass spectrometry techniques, they present compelling multifaceted evidence of sustainable retinal codelivery spanning formulations, ARPE-19 cells, in vivo eye balls, and ex vivo section/retina-choroid complex cell levels. Such codelivery approach is elucidated as the key driving force behind the exceptional therapeutic outcomes of Bor/PT-M@TRG. These findings highlight the significance of sustainable retinal drug codelivery and rational combination for effective treatment of wAMD.


Pyrazines , Animals , Pyrazines/chemistry , Pyrazines/administration & dosage , Pyrazines/pharmacology , Pyrazines/pharmacokinetics , Retina/drug effects , Retina/metabolism , Macular Degeneration/drug therapy , Drug Delivery Systems/methods , Humans , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Oxidative Stress/drug effects , Camphanes/chemistry , Camphanes/pharmacology , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
5.
J Mol Graph Model ; 124: 108549, 2023 11.
Article En | MEDLINE | ID: mdl-37339569

The quest in finding an everlasting panacea to the pernicious impact of sickle cell disease (SCD) in the society hit a turn of success since the recent discovery of a small molecule reversible covalent inhibitor, Voxelotor. A drug that primarily promotes the stability of oxygenated hemoglobin and inhibit the polymerization of HbS by enhancing hemoglobin's affinity for oxygen has opened a new frontier in drug discovery and development. Despite eminent efforts made to reproduce small molecules with better therapeutic targets, none has been successful. To this end, we employed the use of structure-based computational techniques with emphasis on the electrophilic warhead group of Voxelotor to harness novel covalent binders that could elicit better therapeutic response against HbS. The PubChem database and DataWarrior software were used to design random molecules using Voxelotor's electrophilic functionality. Following the compilation of these chemical entities, a high-throughput covalent docking-based virtual screening campaign was conducted which revealed three (Compound_166, Compound_2301, and Compound_2335) putative druglike candidates with higher baseline energy value compared to the standard drug. Subsequently, in silico ADMET profiling was carried out to evaluate their pharmacokinetics and pharmacodynamics properties, and their stability was evaluated for 1 µs (1 µs) using molecular dynamics simulation. Finally, to prioritize these compounds for further development in drug discovery, MM/PBSA calculations was employed to evaluate their molecular interactions and solvation energy within the HbS protein. Despite the admirable druglike and stability properties of these compounds, further experimental validations are required to establish their preclinical relevance for drug development.


Anemia, Sickle Cell , Humans , Anemia, Sickle Cell/drug therapy , Benzaldehydes/pharmacokinetics , Benzaldehydes/therapeutic use , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Molecular Dynamics Simulation , Hemoglobins/therapeutic use , Molecular Docking Simulation
6.
Clin Pharmacol Drug Dev ; 11(11): 1294-1307, 2022 11.
Article En | MEDLINE | ID: mdl-36029150

Acalabrutinib is a Bruton tyrosine kinase (BTK) inhibitor approved to treat adults with chronic lymphocytic leukemia, small lymphocytic lymphoma, or previously treated mantle cell lymphoma. As the bioavailability of the acalabrutinib capsule (AC) depends on gastric pH for solubility and is impaired by acid-suppressing therapies, coadministration with proton-pump inhibitors (PPIs) is not recommended. Three studies in healthy subjects (N = 30, N = 66, N = 20) evaluated the pharmacokinetics (PKs), pharmacodynamics (PDs), safety, and tolerability of acalabrutinib maleate tablet (AT) formulated with pH-independent release. Subjects were administered AT or AC (orally, fasted state), AT in a fed state, or AT in the presence of a PPI, and AT or AC via nasogastric (NG) route. Acalabrutinib exposures (geometric mean [% coefficient of variation, CV]) were comparable for AT versus AC (AUCinf 567.8 ng h/mL [36.9] vs 572.2 ng h/mL [38.2], Cmax 537.2 ng/mL [42.6] vs 535.7 ng/mL [58.4], respectively); similar results were observed for acalabrutinib's active metabolite (ACP-5862) and for AT-NG versus AC-NG. The geometric mean Cmax for acalabrutinib was lower when AT was administered in the fed versus the fasted state (Cmax 255.6 ng/mL [%CV, 46.5] vs 504.9 ng/mL [49.9]); AUCs were similar. For AT + PPI, geometric mean Cmax was lower (371.9 ng/mL [%CV, 81.4] vs 504.9 ng/mL [49.9]) and AUCinf was higher (AUCinf 694.1 ng h/mL [39.7] vs 559.5 ng h/mL [34.6]) than AT alone. AT and AC were similar in BTK occupancy. Most adverse events were mild with no new safety concerns. Acalabrutinib formulations were comparable and AT could be coadministered with PPIs, food, or via NG tube without affecting the PKs or PDs.


Proton Pump Inhibitors , Pyrazines , Adult , Humans , Biological Availability , Therapeutic Equivalency , Proton Pump Inhibitors/adverse effects , Proton Pump Inhibitors/pharmacokinetics , Pyrazines/adverse effects , Pyrazines/pharmacokinetics , Tablets , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics
7.
Pharm Biol ; 60(1): 1-8, 2022 Dec.
Article En | MEDLINE | ID: mdl-34860644

CONTEXT: As an inhibitor cytochrome P450 family 2 subfamily C polypeptide 8 (CYP2C8), quercetin is a naturally occurring flavonoid with its glycosides consumed at least 100 mg per day in food. However, it is still unknown whether quercetin and selexipag interact. OBJECTIVE: The study investigated the effect of quercetin on the pharmacokinetics of selexipag and ACT-333679 in beagles. MATERIALS AND METHODS: The ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to investigate the pharmacokinetics of orally administered selexipag (2 mg/kg) with and without quercetin (2 mg/kg/day for 7 days) pre-treatment in beagles. The effect of quercetin on the pharmacokinetics of selexipag and its potential mechanism was studied through the pharmacokinetic parameters. RESULTS: The assay method was validated for selexipag and ACT-333679, and the lower limit of quantification for both was 1 ng/mL. The recovery and the matrix effect of selexipag were 84.5-91.58% and 94.98-99.67%, while for ACT-333679 were 81.21-93.90% and 93.17-99.23%. The UPLC-MS/MS method was sensitive, accurate and precise, and had been applied to the herb-drug interaction study of quercetin with selexipag and ACT-333679. Treatment with quercetin led to an increased in Cmax and AUC0-t of selexipag by about 43.08% and 26.92%, respectively. While the ACT-333679 was about 11.11% and 18.87%, respectively. DISCUSSION AND CONCLUSION: The study indicated that quercetin could inhibit the metabolism of selexipag and ACT-333679 when co-administration. Therefore, the clinical dose of selexipag should be used with caution when co-administered with foods high in quercetin.


Acetamides/pharmacokinetics , Acetates/pharmacokinetics , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Pyrazines/pharmacokinetics , Quercetin/pharmacology , Animals , Antihypertensive Agents/pharmacokinetics , Area Under Curve , Chromatography, High Pressure Liquid , Dogs , Female , Herb-Drug Interactions , Male , Tandem Mass Spectrometry
8.
Br J Clin Pharmacol ; 88(2): 846-852, 2022 02.
Article En | MEDLINE | ID: mdl-34265100

This analysis aimed to describe the pharmacokinetics (PK) of acalabrutinib and its active metabolite, ACP-5862. A total of 8935 acalabrutinib samples from 712 subjects and 2394 ACP-5862 samples from 304 subjects from 12 clinical studies in patients with B-cell malignancies and healthy subjects were analysed by nonlinear mixed-effects modelling. Acalabrutinib PK was characterized by a 2-compartment model with first-order elimination. The large variability in absorption was adequately described by transit compartment chain and first-order absorption, with between-occasion variability on the mean transit time and relative bioavailability. The PK of ACP-5862 was characterized by a 2-compartment model with first-order elimination, and the formation rate was defined as the acalabrutinib clearance multiplied by the fraction metabolized. Health status, Eastern Cooperative Oncology Group performance status, and coadministration of proton-pump inhibitors were significant covariates. However, none of the investigated covariates led to clinically meaningful changes in exposure, supporting a flat dosing of acalabrutinib.


Benzamides , Neoplasms , Benzamides/pharmacokinetics , Healthy Volunteers , Humans , Models, Biological , Pyrazines/pharmacokinetics
9.
Article En | MEDLINE | ID: mdl-34365291

A simple, fast and precise LC-MS/MS method for the quantitation of the tyrosine kinase inhibitor gilteritinib was developed and validated for micro-volumes of mouse plasma. The assay procedure involved a one-step extraction of gilteritinib and the internal standard [2H5]-gilteritinib with acetonitrile. An Accucore aQ column was used to separate analytes using a gradient elution delivered at a flow rate of 0.4 mL/min, and a total run time of 2.5 min. Validation studies with quality control samples processed on consecutive days revealed that values for intra-day and inter-day precision were <7.04%, with an accuracy of 101-108%. Linear responses were observed over the entire calibration curve range (up to 500 ng/mL), and the lower limit of quantification was 5 ng/mL. The developed method was successfully used to examine the pharmacokinetics of oral gilteritinib in wild-type mice and mice lacking the organic cation transporters OCT1, OCT2, and MATE1 to further understand mechanisms contributing to drug-drug interactions and causes of inter-individual pharmacokinetic variability.


Aniline Compounds/blood , Chromatography, Liquid/methods , Pyrazines/blood , Tandem Mass Spectrometry/methods , Aniline Compounds/chemistry , Aniline Compounds/pharmacokinetics , Animals , Female , HEK293 Cells , Humans , Limit of Detection , Linear Models , Mice , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Reproducibility of Results
10.
J Med Chem ; 64(16): 12304-12321, 2021 08 26.
Article En | MEDLINE | ID: mdl-34384024

Using a novel physiologically relevant in vitro human whole blood neutrophil shape change assay, an aminopyrazine series of selective PI3Kγ inhibitors was identified and prioritized for further optimization. Severe solubility limitations associated with the series leading to low oral bioavailability and poor exposures, especially at higher doses, were overcome by moving to an aminopyridine core. Compound 33, with the optimal balance of on-target activity, selectivity, and pharmacokinetic parameters, progressed into in vivo studies and demonstrated good efficacy (10 mg/kg) in a rat model of airway inflammation. Sufficient exposures were achieved at high doses to support toxicological studies, where unexpected inflammatory cell infiltrates in cardiovascular tissue prevented further compound development.


Aminopyridines/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Inflammation/drug therapy , Protein Kinase Inhibitors/therapeutic use , Aminopyridines/chemical synthesis , Aminopyridines/pharmacokinetics , Aminopyridines/toxicity , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/toxicity , Female , Humans , Molecular Structure , No-Observed-Adverse-Effect Level , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/toxicity , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Pyrazines/toxicity , Rats, Sprague-Dawley , Structure-Activity Relationship
11.
CPT Pharmacometrics Syst Pharmacol ; 10(10): 1161-1170, 2021 10.
Article En | MEDLINE | ID: mdl-34292670

The antiretroviral drug favipiravir (FPV) inhibits RNA-dependent RNA polymerase. It has been developed for the treatment of the novel coronavirus (severe acute respiratory syndrome coronavirus 2) infection disease, coronavirus disease 2019 (COVID-19). However, its pharmacokinetics in patients with COVID-19 is poorly understood. In this study, we measured FPV serum concentration by liquid chromatography-tandem mass spectrometry and conducted population pharmacokinetic analysis. A total of 39 patients were enrolled in the study: 33 were administered FPV 1600 mg twice daily (b.i.d.) on the first day followed by 600 mg b.i.d., and 6 were administered FPV 1800 mg b.i.d. on the first day followed by 800 mg or 600 mg b.i.d. The median age was 68 years (range, 27-89 years), 31 (79.5%) patients were men, median body surface area (BSA) was 1.72 m2 (range, 1.11-2.2 m2 ), and 10 (25.6%) patients required invasive mechanical ventilation (IMV) at the start of FPV. A total of 204 serum concentrations were available for pharmacokinetic analysis. A one-compartment model with first-order elimination was used to describe the pharmacokinetics. The estimated mean clearance/bioavailability (CL/F) and distribution volume/bioavailability (V/F) were 5.11 L/h and 41.6 L, respectively. Covariate analysis revealed that CL/F was significantly related to dosage, IMV use, and BSA. A simulation study showed that the 1600 mg/600 mg b.i.d. regimen was insufficient for the treatment of COVID-19 targeting the 50% effective concentration (9.7 µg/mL), especially in patients with larger BSA and/or IMV. A higher FPV dosage is required for COVID-19, but dose-dependent nonlinear pharmacokinetics may cause an unexpected significant pharmacokinetic change and drug toxicity. Further studies are warranted to explore the optimal FPV regimen.


Amides/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Pyrazines/administration & dosage , Adult , Aged , Aged, 80 and over , Amides/pharmacokinetics , Antiviral Agents/pharmacokinetics , COVID-19/blood , Chromatography, Liquid , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Male , Middle Aged , Models, Theoretical , Pyrazines/pharmacokinetics , Retrospective Studies , Tandem Mass Spectrometry , Treatment Outcome
12.
Mol Cancer Ther ; 20(10): 1846-1857, 2021 10.
Article En | MEDLINE | ID: mdl-34315764

PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical in vitro anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma. Using X-ray crystallography, it was determined that PTC596 binds to the colchicine site of tubulin with unique key interactions. PTC596 exhibited broad-spectrum anticancer activity. PTC596 showed efficacy as monotherapy and additive or synergistic efficacy in combinations in mouse models of leiomyosarcomas and glioblastoma. PTC596 demonstrated efficacy in an orthotopic model of glioblastoma under conditions where temozolomide was inactive. In a first-in-human phase I clinical trial in patients with cancer, PTC596 monotherapy drug exposures were compared with those predicted to be efficacious based on mouse models. PTC596 is currently being tested in combination with dacarbazine in a clinical trial in adults with leiomyosarcoma and in combination with radiation in a clinical trial in children with diffuse intrinsic pontine glioma.


Benzimidazoles/pharmacology , Glioblastoma/drug therapy , Leiomyosarcoma/drug therapy , Pyrazines/pharmacology , Tubulin Modulators/pharmacology , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Benzimidazoles/pharmacokinetics , Cell Proliferation , Female , Glioblastoma/pathology , Humans , Leiomyosarcoma/pathology , Male , Maximum Tolerated Dose , Mice , Mice, Nude , Middle Aged , Prognosis , Pyrazines/pharmacokinetics , Tissue Distribution , Tubulin Modulators/pharmacokinetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Expert Opin Drug Metab Toxicol ; 17(9): 1023-1030, 2021 Sep.
Article En | MEDLINE | ID: mdl-34275396

INTRODUCTION: The first-in-class BTK inhibitor ibrutinib has substantially changed the therapeutic landscape of chronic lymphocytic leukemia (CLL). The next-generation BTK inhibitor acalabrutinib is more selective and may have less off-target toxicities as compared to ibrutinib. Acalabrutinib has demonstrated safety and efficacy in CLL and has been approved to treat CLL. AREAS COVERED: Current clinical trials investigated acalabrutinib monotherapy or acalabrutinib-based combination therapies in relapsed/refractory and treatment-naive CLL. Data on the efficacy and safety of acalabrutinib in clinical trials were summarized in this review. The pharmacokinetic and pharmacodynamic data of acalabrutinib were also discussed. EXPERT OPINION: Acalabrutinib selectively inhibits BTK by covalent binding and shows rapid absorption and elimination. Acalabrutinib does not inhibit EGFR, TEC, or ITK and shows fewer off-target toxicities. Completed phase 3 trials have demonstrated that acalabrutinib improves the outcomes of patients with relapsed/refractory CLL and patients with treatment-naive CLL. The phase 3 trial that evaluates acalabrutinib versus ibrutinib has met its primary endpoint. Early phase studies suggested the combinations of acalabrutinib with a CD20 antibody and venetoclax led to high rates of undetectable minimal residual disease in the bone marrow in CLL patients and might provide a fixed-duration therapeutic option for patients with CLL.


Antineoplastic Agents/administration & dosage , Benzamides/administration & dosage , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Pyrazines/administration & dosage , Adenine/administration & dosage , Adenine/adverse effects , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Benzamides/adverse effects , Benzamides/pharmacokinetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Piperidines/administration & dosage , Piperidines/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Pyrazines/adverse effects , Pyrazines/pharmacokinetics
14.
Mol Pharm ; 18(8): 3108-3115, 2021 08 02.
Article En | MEDLINE | ID: mdl-34250805

Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the ß-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.


Amides/administration & dosage , Antiviral Agents/administration & dosage , Ionic Liquids/chemistry , Pyrazines/administration & dosage , Administration, Oral , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacokinetics , Animals , Female , Mice , Mice, Inbred BALB C , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Solubility , Tissue Distribution , COVID-19 Drug Treatment
15.
J Med Chem ; 64(12): 8607-8620, 2021 06 24.
Article En | MEDLINE | ID: mdl-34080424

Our previous scaffold-hopping attempts resulted in dihydropyrazino-benzimidazoles as metabotropic glutamate receptor-2 (mGluR2) positive allosteric modulators (PAMs) with suboptimal drug-like profiles. Here, we report an alternative fragment-based optimization strategy applied on the new dihydropyrazino-benzimidazolone scaffold. Analyzing published high-affinity mGluR2 PAMs, we used a pharmacophore-guided approach to identify suitable growing vectors and optimize the scaffold in these directions. This strategy resulted in a new fragment like lead (34) with improved druglike properties that were translated to sufficient pharmacokinetics and validated proof-of-concept studies in migraine. Gratifyingly, compound 34 showed reasonable activity in the partial infraorbital nerve ligation, a migraine disease model that might open this indication for mGluR2 PAMs.


Benzimidazoles/therapeutic use , Excitatory Amino Acid Agonists/therapeutic use , Migraine Disorders/drug therapy , Pyrazines/therapeutic use , Receptors, Metabotropic Glutamate/agonists , Animals , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Excitatory Amino Acid Agonists/chemical synthesis , Excitatory Amino Acid Agonists/pharmacokinetics , Male , Molecular Structure , Proof of Concept Study , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship
16.
J Med Chem ; 64(12): 8076-8100, 2021 06 24.
Article En | MEDLINE | ID: mdl-34081466

The beta-site APP cleaving enzyme 1, known as BACE1, has been a widely pursued Alzheimer's disease drug target owing to its critical role in the production of amyloid-beta. We have previously reported the clinical development of LY2811376 and LY2886721. LY2811376 advanced to Phase I before development was terminated due to nonclinical retinal toxicity. LY2886721 advanced to Phase II, but development was halted due to abnormally elevated liver enzymes. Herein, we report the discovery and clinical development of LY3202626, a highly potent, CNS-penetrant, and low-dose BACE inhibitor, which successfully addressed these key development challenges.


Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Heterocyclic Compounds, 2-Ring/pharmacology , Protease Inhibitors/pharmacology , Pyrazines/pharmacology , Pyrroles/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Blood-Brain Barrier/physiology , Brain/metabolism , Crystallography, X-Ray , Dogs , Drug Stability , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Humans , Madin Darby Canine Kidney Cells , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacokinetics , Protein Binding , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Rats , Structure-Activity Relationship
17.
Br J Cancer ; 125(4): 520-527, 2021 08.
Article En | MEDLINE | ID: mdl-34040174

BACKGROUND: Berzosertib (formerly M6620, VX-970) is a highly potent and selective, first-in-class ataxia telangiectasia-mutated and Rad3-related protein kinase (ATR) inhibitor. We assessed the safety, tolerability, pharmacokinetics, and preliminary efficacy of berzosertib plus cisplatin. METHODS: Adult patients with advanced solid tumours refractory or resistant to standard of care therapies received ascending doses of cisplatin (day 1) and berzosertib (days 2 and 9) every 3 weeks (Q3W). RESULTS: Thirty-one patients received berzosertib (90-210 mg/m2) and cisplatin (40-75 mg/m2) across seven dose levels. The most common grade ≥3 treatment-emergent adverse events were neutropenia (20.0%) and anaemia (16.7%). There were two dose-limiting toxicities: a grade 3 hypersensitivity reaction and a grade 3 increase in alanine aminotransferase. Berzosertib 140 mg/m2 (days 2 and 9) and cisplatin 75 mg/m2 (day 1) Q3W was determined as the recommended Phase 2 dose. Cisplatin had no apparent effect on berzosertib pharmacokinetics. Of the 31 patients, four achieved a partial response (two confirmed and two unconfirmed) despite having previously experienced disease progression following platinum-based chemotherapy. CONCLUSIONS: Berzosertib plus cisplatin is well tolerated and shows preliminary clinical activity in patients with advanced solid tumours, warranting further evaluation in a Phase 2 setting. CLINICAL TRIALS IDENTIFIER: NCT02157792.


Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cisplatin/administration & dosage , Isoxazoles/administration & dosage , Neoplasms/drug therapy , Pyrazines/administration & dosage , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cisplatin/adverse effects , Cisplatin/pharmacokinetics , Drug Administration Schedule , Drug Resistance, Neoplasm/drug effects , Female , Humans , Isoxazoles/adverse effects , Isoxazoles/pharmacokinetics , Male , Middle Aged , Pyrazines/adverse effects , Pyrazines/pharmacokinetics , Treatment Outcome
18.
Br J Cancer ; 125(4): 510-519, 2021 08.
Article En | MEDLINE | ID: mdl-34040175

BACKGROUND: Berzosertib (formerly M6620, VX-970) is a highly potent and selective, first-in-class inhibitor of ataxia telangiectasia and Rad3-related protein kinase (ATR). We assessed multiple ascending doses of berzosertib + gemcitabine ± cisplatin in patients with resistant/refractory advanced solid tumours. METHODS: We evaluated the safety, tolerability, pharmacokinetics (PK) and preliminary efficacy of intravenous berzosertib + gemcitabine ± cisplatin using a standard 3 + 3 dose-escalation design. The starting doses were berzosertib 18 mg/m2, gemcitabine 875 mg/m2 and cisplatin 60 mg/m2. RESULTS: Fifty-two patients received berzosertib + gemcitabine and eight received berzosertib + gemcitabine + cisplatin. Four patients receiving berzosertib + gemcitabine had a total of seven dose-limiting toxicities (DLTs) and three receiving berzosertib + gemcitabine + cisplatin had a total of three DLTs. Berzosertib 210 mg/m2 (days 2 and 9) + gemcitabine 1000 mg/m2 (days 1 and 8) Q3W was established as the recommended Phase 2 dose (RP2D); no RP2D was determined for berzosertib + gemcitabine + cisplatin. Neither gemcitabine nor cisplatin affected berzosertib PK. Most patients in both arms achieved a best response of either partial response or stable disease. CONCLUSIONS: Berzosertib + gemcitabine was well tolerated in patients with advanced solid tumours and showed preliminary efficacy signs. CLINICAL TRIAL IDENTIFIER: NCT02157792.


Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cisplatin/administration & dosage , Deoxycytidine/analogs & derivatives , Isoxazoles/administration & dosage , Neoplasms/drug therapy , Pyrazines/administration & dosage , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Cisplatin/adverse effects , Cisplatin/pharmacokinetics , Deoxycytidine/administration & dosage , Deoxycytidine/adverse effects , Deoxycytidine/pharmacokinetics , Drug Administration Schedule , Female , Humans , Isoxazoles/adverse effects , Isoxazoles/pharmacokinetics , Male , Middle Aged , Pyrazines/adverse effects , Pyrazines/pharmacokinetics , Survival Analysis , Treatment Outcome , Gemcitabine
19.
Toxicol Appl Pharmacol ; 424: 115595, 2021 08 01.
Article En | MEDLINE | ID: mdl-34038714

Ibrutinib and acalabrutinib are two Bruton's tyrosine kinase (BTK) inhibitors which have gained Food and Drug Administration (FDA) approval for the treatment of various B cell malignancies. Herein, we investigated the effects of the two drugs on UDP-glucuronosyltransferase (UGT) activities to evaluate their potential risk for drug-drug interactions (DDIs) via UGT inhibition. Our data indicated that ibrutinib exerted broad inhibition on most of UGTs, including a potent competitive inhibition against UGT1A1 with a Ki value of 0.90 ± 0.03 µM, a noncompetitive inhibition against UGT1A3 and UGT1A7 with Ki values of 0.88 ± 0.03 µM and 2.52 ± 0.23 µM, respectively, while acalabrutinib only exhibited weak UGT inhibition towards all tested UGT isoforms. DDI risk prediction suggested that the inhibition against UGT1A1 and UGT1A3 by ibrutinib might bring a potential DDIs risk, while acalabrutinib was unlikely to trigger clinically significant UGT-mediated DDIs due to its weak effects. Our study raises an alarm bell about potential DDI risk associated with ibrutinib, however, the extrapolation from in vitro data to in vivo drug interactions should be taken with caution, and additional systemic study is needed.


Adenine/analogs & derivatives , Benzamides/pharmacokinetics , Glucuronosyltransferase/antagonists & inhibitors , Piperidines/pharmacokinetics , Pyrazines/pharmacokinetics , Adenine/chemistry , Adenine/pharmacokinetics , Benzamides/chemistry , Drug Interactions , Humans , Isoenzymes , Molecular Structure , Piperidines/chemistry , Pyrazines/chemistry
20.
Pediatr Nephrol ; 36(11): 3771-3776, 2021 11.
Article En | MEDLINE | ID: mdl-34021797

BACKGROUND: The rising number of infections due to Severe Acute Respiratory Syndrome Coronavirus-2 (popularly known as COVID-19) has brought to the fore new antiviral drugs as possible treatments, including favipiravir. However, there is currently no data regarding the safety of this drug in patients with kidney impairment. The aim of this paper, therefore, is to share our experience of the use of favipiravir in pediatric patients affected by COVID-19 with any degree of kidney impairment. METHODS: The study enrolled pediatric patients aged under 18 years and confirmed as suffering from COVID-19 and multisystem inflammatory syndrome in children (MIS-C) with any degree of kidney injury, who were treated with favipiravir at the time of admission. RESULTS: Out of a total of 11 patients, 7 were diagnosed with MIS-C and 4 with severe COVID-19. The median age of the cases was 15.45 (9-17.8) years and the male/female ratio was 7/4. At the time of admission, the median serum creatinine level was 1.1 mg/dl. Nine patients were treated with favipiravir for 5 days, and 2 patients for 5 days followed by remdesivir for 5-10 days despite kidney injury at the time of admission. Seven patients underwent plasma exchange for MIS-C while 2 severely affected cases underwent continuous kidney replacement therapy (CKRT) as well. One severe COVID-19 patient received plasma exchange as well as CKRT. Serum creatinine values returned to normal in mean 3.07 days. CONCLUSIONS: Favipiravir seems a suitable therapeutic option in patients affected by COVID-19 with kidney injury without a need for dose adjustment.


Acute Kidney Injury/physiopathology , Amides/administration & dosage , COVID-19 Drug Treatment , COVID-19/complications , Pyrazines/administration & dosage , Renal Elimination , Systemic Inflammatory Response Syndrome/drug therapy , Acute Kidney Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/virology , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adolescent , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/pharmacokinetics , Amides/pharmacokinetics , COVID-19/immunology , COVID-19/virology , Child , Creatinine/blood , Dose-Response Relationship, Drug , Drug Therapy, Combination , Female , Glomerular Filtration Rate , Humans , Male , Pyrazines/pharmacokinetics , SARS-CoV-2/isolation & purification , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/virology , Treatment Outcome
...