Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
Microbiol Res ; 285: 127767, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38776619

RESUMEN

Actinobacteria produce a plethora of bioactive secondary metabolites that are often regulated by quorum-sensing signaling molecules via specific binding to their cognate TetR-type receptors. Here, we identified monocyclic α-pyrone as a new class of actinobacterial signaling molecules influencing quorum sensing process in Nocardiopsis sp. LDBS0036, primarily evidenced by a significant reduction in the production of phenazines in the pyrone-null mutant compared to the wild-type strain. Exogenous addition of the α-pyrone can partially restore the expression of some pathways to the wild strain level. Moreover, a unique multicomponent system referred to as a conservon, which is widespread in actinobacteria and generally contains four or five functionally conserved proteins, may play an important role in detecting and transmitting α-pyrone signals in LDBS0036. We found the biosynthetic gene clusters of α-pyrone and their associated conservon genes are highly conserved in Nocardiopsis, indicating the widespread prevalence and significant function of this regulate mechanism within Nocardiopsis genus. Furthermore, homologous α-pyrones from different actinobacterial species were also found to mediate interspecies communication. Our results thus provide insights into a novel quorum-sensing signaling system and imply that various modes of bacterial communication remain undiscovered.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Pironas , Percepción de Quorum , Pironas/metabolismo , Familia de Multigenes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transducción de Señal , Actinobacteria/metabolismo , Actinobacteria/genética , Vías Biosintéticas/genética , Metabolismo Secundario , Actinomycetales/metabolismo , Actinomycetales/genética
2.
BMC Microbiol ; 24(1): 140, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658810

RESUMEN

Kojic acid is a wonderful fungal secondary metabolite that has several applications in the food, medical, and agriculture sectors. Many human diseases become resistant to normal antibiotics and normal treatments. We need to search for alternative treatment sources and understand their mode of action. Aspergillus flavus ASU45 (OL314748) was isolated from the caraway rhizosphere as a non-aflatoxin producer and identified genetically using 18S rRNA gene sequencing. After applying the Box-Behnken statistical design to maximize KA production, the production raised from 39.96 to 81.59 g/l utilizing (g/l) glucose 150, yeast extract 5, KH2PO4 1, MgSO4.7H2O 2, and medium pH 3 with a coefficient (R2) of 98.45%. Extracted KA was characterized using FTIR, XRD, and a scanning electron microscope. Crystalized KA was an effective antibacterial agent against six human pathogenic bacteria (Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, Serratia marcescens, and Serratia plymuthica). KA achieves high inhibition activity against Bacillus cereus, K. pneumonia, and S. plymuthica at 100 µg/ml concentration by 2.75, 2.85, and 2.85 compared with chloramphenicol which gives inhibition zones 1, 1.1, and 1.6, respectively. Crystalized KA had anticancer activity versus three types of cancer cell lines (Mcf-7, HepG2, and Huh7) and demonstrated high cytotoxic capabilities on HepG-2 cells that propose strong antitumor potent of KA versus hepatocellular carcinoma. The antibacterial and anticancer modes of action were illustrated using the molecular docking technique. Crystalized kojic acid from a biological source represented a promising microbial metabolite that could be utilized as an alternative antibacterial and anticancer agent effectively.


Asunto(s)
Antibacterianos , Antineoplásicos , Aspergillus flavus , Simulación del Acoplamiento Molecular , Pironas , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/genética , Pironas/farmacología , Pironas/química , Pironas/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Pruebas de Sensibilidad Microbiana , Línea Celular Tumoral , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación
3.
Biomolecules ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38672503

RESUMEN

The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.


Asunto(s)
Antibacterianos , Galio , Hierro , Compuestos Organometálicos , Fenoles , Pseudomonas aeruginosa , Sideróforos , Galio/química , Galio/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Sideróforos/química , Sideróforos/metabolismo , Hierro/metabolismo , Hierro/química , Oligopéptidos/química , Oligopéptidos/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Tiazoles/farmacología , Simulación por Computador , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Pironas/química , Pironas/metabolismo , Pironas/farmacología
4.
Chem Biodivers ; 21(6): e202400395, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623912

RESUMEN

Endophytic fungi live asymptomatically inside vegetal tissues, and such uncommon habitat contributes to their exceptional chemical diversity. Isolating natural products from endophytic fungi could fail due to silent biosynthetic gene clusters under ordinary in vitro culture conditions, and co-culturing has been assayed to trigger their metabolism. We carried out single and dual cultures with 13 endophyte strains isolated from Euphorbia umbellata leaves. Multivariate statistics applied to untargeted metabolomics compared the chemical profiles of all endophyte cultures. PCA analysis guided the selection of the Aspergillus pseudonomiae J1 - Porogramme brasiliensis J9 dual culture for its most significant chemical differentiation: Five compounds were putatively annotated in the J1-J9 culture according to UHPLC-HRMS data, kojic acid, haliclonol and its diastereoisomer, caffeic acid, and 2-(3,4-dihydroxyphenyl)acetaldehyde. Analysis by PLS-DA using VIP score showed that kojic acid displayed the most significative importance in discriminating single and dual J1-J9 cultures.


Asunto(s)
Endófitos , Euphorbia , Metabolómica , Euphorbia/química , Euphorbia/microbiología , Endófitos/química , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Hojas de la Planta/microbiología , Hojas de la Planta/química , Cromatografía Líquida de Alta Presión , Pironas/química , Pironas/aislamiento & purificación , Pironas/metabolismo , Aspergillus/metabolismo , Aspergillus/química , Aspergillus/aislamiento & purificación
5.
J Biotechnol ; 388: 72-82, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38616039

RESUMEN

The 2-pyrone moiety is present in a wide range of structurally diverse natural products with various biological activities. The plant biosynthetic routes towards these compounds mainly depend on the activity of either type III polyketide synthase-like 2-pyrone synthases or hydroxylating 2-oxoglutarate dependent dioxygenases. In the present study, the substrate specificity of these enzymes is investigated by a systematic screening using both natural and artificial substrates with the aims of efficiently forming (new) products and understanding the underlying catalytic mechanisms. In this framework, we focused on the in vitro functional characterization of a 2-pyrone synthase Gh2PS2 from Gerbera x hybrida and two dioxygenases AtF6'H1 and AtF6'H2 from Arabidopsis thaliana using a set of twenty aromatic and aliphatic CoA esters as substrates. UHPLC-ESI-HRMSn based analyses of reaction intermediates and products revealed a broad substrate specificity of the enzymes, enabling the facile "green" synthesis of this important class of natural products and derivatives in a one-step/one-pot reaction in aqueous environment without the need for halogenated or metal reagents and protective groups. Using protein modeling and substrate docking we identified amino acid residues that seem to be important for the observed product scope.


Asunto(s)
Arabidopsis , Coenzima A , Ésteres , Pironas , Pironas/metabolismo , Pironas/química , Ésteres/química , Ésteres/metabolismo , Arabidopsis/enzimología , Especificidad por Sustrato , Coenzima A/metabolismo , Coenzima A/química , Simulación del Acoplamiento Molecular , Productos Biológicos/metabolismo , Productos Biológicos/química , Dioxigenasas/metabolismo , Dioxigenasas/química
6.
Metab Eng ; 83: 52-60, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521489

RESUMEN

2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudo-aromatic dicarboxylic acid, is a promising building block compound for manufacturing biodegradable polyesters. This study aimed to construct high-performance cell factories enabling the efficient production of PDC from glucose. Firstly, the effective enzymes of the PDC biosynthetic pathway were overexpressed on the chromosome of the 3-dehydroshikimate overproducing strain. Consequently, the one-step biosynthesis of PDC from glucose was achieved. Further, the PDC production was enhanced by multi-copy integration of the key gene PsligC encoding 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and co-expression of Vitreoscilla hemoglobin. Subsequently, the PDC production was substantially improved by redistributing the metabolic flux for cell growth and PDC biosynthesis based on dynamically downregulating the expression of pyruvate kinase. The resultant strain PDC50 produced 129.37 g/L PDC from glucose within 78 h under fed-batch fermentation conditions, with a yield of 0.528 mol/mol and an average productivity of 1.65 g/L/h. The findings of this study lay the foundation for the potential industrial production of PDC.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Poliésteres , Pironas , Escherichia coli/genética , Escherichia coli/metabolismo , Poliésteres/metabolismo , Pironas/metabolismo , Glucosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Dicarboxílicos/metabolismo
7.
Plant Biotechnol J ; 22(1): 216-232, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792967

RESUMEN

Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.


Asunto(s)
Arabidopsis , Infertilidad , Zea mays/genética , Zea mays/metabolismo , Edición Génica , Sistemas CRISPR-Cas/genética , Simulación del Acoplamiento Molecular , Pironas/metabolismo , Fitomejoramiento , Arabidopsis/genética , Lípidos , Polen/genética , Polen/metabolismo , Infertilidad/genética , Infertilidad/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
J Agric Food Chem ; 71(48): 18909-18918, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37999448

RESUMEN

Lignocellulose is a promising renewable feedstock for the bioproduction of high-value biochemicals. The poorly expressed xylose catabolic pathway was the bottleneck in the efficient utilization of the lignocellulose feedstock in yeast. Herein, multiple genetic and process engineering strategies were explored to debottleneck the conversion of xylose to the platform chemical triacetic acid lactone (TAL) in Yarrowia lipolytica. We identified that xylose assimilation generating more cofactor NADPH was favorable for the TAL synthesis. pH control improved the expression of acetyl-CoA carboxylase and generated more precursor malonyl-CoA. Combined with the suppression of the lipid synthesis pathway, 5.03 and 4.18 g/L TAL were produced from pure xylose and xylose-rich wheat straw hydrolysate, respectively. Our work removed the bottleneck of the xylose assimilation pathway and effectively upgraded wheat straw hydrolysate to TAL, which enabled us to build a sustainable oleaginous yeast cell factory to cost-efficiently produce green chemicals from low-cost lignocellulose by Y. lipolytica.


Asunto(s)
Xilosa , Yarrowia , Xilosa/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Pironas/metabolismo , Ingeniería Metabólica
9.
Chem Commun (Camb) ; 59(91): 13587-13590, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37886844

RESUMEN

Fungal tetraketide pyrones possess important and potent bioactivities, but their detailed biosynthetic pathways are unknown and synthetic routes to their production are lengthy. Here we investigated the fungal pathways to the multiforisins and compounds related to islandic acid. Heterologous expression experiments yield high titres of these compounds and pathway intermediates. The results both elucidate the pathway and offer a platform for the total biosynthesis of this class of metabolites.


Asunto(s)
Vías Biosintéticas , Pironas , Pironas/metabolismo
10.
Appl Environ Microbiol ; 89(10): e0090923, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37702504

RESUMEN

Kojic acid (KA) is a valuable secondary metabolite that is regulated by zinc finger proteins in Aspergillus oryzae. However, only two such proteins have been characterized to function in kojic acid production of A. oryzae to date. In this study, we identified a novel zinc finger protein, AoZFA, required for kojic acid biosynthesis in A. oryzae. Our results showed that disruption of AozfA led to increased expression of kojA and kojR involved in kojic acid synthesis, resulting in enhanced kojic acid production, while overexpression of AozfA had the opposite effect. Furthermore, deletion of kojR in the AozfA disruption strain abolished kojic acid production, whereas overexpression of kojR enhanced it, indicating that AoZFA regulates kojic acid production by affecting kojR. Transcriptional activation assay revealed that AoZFA is a transcriptional activator. Interestingly, when kojR was overexpressed in the AozfA overexpression strain, the production of kojic acid failed to be rescued, suggesting that AozfA plays a distinct role from kojR in kojic acid biosynthesis. Moreover, we found that AozfA was highly induced by zinc during early growth stages, and its overexpression inhibited the growth promoted by zinc, whereas its deletion had no effect, suggesting that AoZFA is non-essential but has a role in the response of A. oryzae to zinc. Overall, these findings provide new insights into the roles of zinc finger proteins in the growth and kojic acid production of A. oryzae.IMPORTANCEKojic acid (KA) is an economically valuable secondary metabolite produced by Aspergillus oryzae due to its vast biological activities. Genetic modification of A. oryzae has emerged as an efficient strategy for enhancing kojic acid production, which is dependent on the mining of genes involved in kojic acid synthesis. In this study, we have characterized a novel zinc-finger protein, AoZFA, as a negative regulator of kojic acid production by affecting kojR. AozfA is an excellent target for improving kojic acid production without any effects on the growth of A. oryzae. Furthermore, the simultaneous modification of AozfA and kojR exerts a more significant promotional effect on kojic acid production than the modification of single genes. This study provides new insights for the regulatory mechanism of zinc finger proteins in the growth and kojic acid production of A. oryzae.


Asunto(s)
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Pironas/metabolismo , Zinc/metabolismo , Dedos de Zinc
11.
Plant Sci ; 335: 111792, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37454819

RESUMEN

Fatty acid derivatives are key components of rice pollen exine. The synthesis of aliphatic sporopollenin precursors are initiated in the plastids of the tapetal cells, followed by multiple-step reactions conducted in the endoplasmic reticulum (ER). However, the relative contribution of different precursors to the precise structure of sporopollenin remains largely elusive, let alone the underlying mechanism. Here, we report that two complete male sterile mutants ostkpr1-3 (Tetraketide α-pyrone reductase 1-3, with OsTKPR1P124S substitution) and ostkpr1-4 (with truncated OsTKPR1stop) are defective in pollen exine, Ubisch body and anther cuticle development where ostkpr1-4 display severer phenotypes. Remarkably, OsTKPR1 could produce reduced hydroxylated tetraketide α-pyrone and reduced tetraketide α-pyrone, whereas OsTKPR1P124S fails to produce the latter. Pairwise interaction assays show that mutated OsTKPR1P124S is able to integrate into a recently characterized metabolon, thus its altered catalytic activity is not due to dis-integrity of the metabolon. In short, we find that reduced tetraketide α-pyrone is a key sporopollenin precursor required for normal exine formation, and the conserved 124th proline of OsTKPR1 is essential for the reduction activity. Therefore, this study provided new insights into the sporopollenin precursor constitution critical for exine formation.


Asunto(s)
Oryza , Oryza/metabolismo , Sustitución de Aminoácidos , Pironas/metabolismo , Polen , Regulación de la Expresión Génica de las Plantas
12.
Fungal Genet Biol ; 167: 103813, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37211343

RESUMEN

Aspergillus oryzae is an important filamentous fungus widely used for the industrial production of fermented foods and secondary metabolites. The clarifying of the mechanism of the growth and secondary metabolites in A. oryzae is important for its industrial production and utilization. Here, the C2H2-type zinc-finger protein AoKap5 was characterized to be involved in the growth and kojic acid production in A. oryzae. The Aokap5-disrupted mutants were constructed by the CRISPR/Cas9 system, which displayed increased colony growth but decreased conidial formation. Deletion of Aokap5 enhanced the tolerance to cell-wall and oxidative but not osmotic stress. The transcriptional activation assay revealed that AoKap5 itself didn't have transcriptional activation activity. Disruption of Aokap5 resulted in the reduced production of kojic acid, coupled with the reduced expression of the kojic acid synthesis genes kojA and kojT. Meanwhile, overexpression of kojT could rescue the decreased production of kojic acid in Aokap5-deletion strain, indicating that Aokap5 serves upstream of kojT. Furthermore, the yeast one-hybrid assay demonstrated that AoKap5 could directly bind to the kojT promoter. These findings suggest that AoKap5 regulates kojic acid production through binding to the kojT promoter. This study provides an insight into the role of zinc finger protein in the growth and kojic acid biosynthesis of A. oryzae.


Asunto(s)
Aspergillus oryzae , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pironas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zinc/metabolismo
13.
Phytochemistry ; 211: 113685, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37088350

RESUMEN

Four previously undescribed alkaloids, aspergillinine A-D, and four known diterpene pyrones were isolated from the potato dextrose agar (PDA) culture of Aspergillus sp. HAB10R12. The chemical structures of the isolated compounds were elucidated based on a detailed analysis of their NMR and MS data. The absolute configuration of the isolated compounds was determined by Electronic Circular Dichroism analysis coupled with computational methods. Aspergillinine A represents the first example of a diketopiperazine dipeptide containing the unnatural amino acid N-methyl kynurenine. Its absolute configuration revealed that it adopts a rather unusual conformation. Aspergillinine B represents a previously unencountered skeleton containing an isoindolinone ring. Aspergillinine C and D were similar to previously isolated diketopiperazine alkaloids, namely, lumpidin and brevianamide F, respectively. The diterpene pyrones were isolated twice previously, once from a soil-derived Aspergillus species, and once from the liquid culture of Aspergillus sp. HAB10R12. The alkaloids isolated in this study showed no antiproliferative activity when tested against HepG2 and A549 cancer cell lines.


Asunto(s)
Alcaloides , Dicetopiperazinas , Dicetopiperazinas/química , Pironas/metabolismo , Estructura Molecular , Aspergillus/química , Hongos/química , Alcaloides/química
14.
World J Microbiol Biotechnol ; 39(6): 140, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36995482

RESUMEN

Kojic acid is a fungal secondary metabolite commonly known as a tyrosinase inhibitor, that acts as a skin-whitening agent. Its applications are widely distributed in the area of cosmetics, medicine, food, and chemical synthesis. Renewable resources are the alternative feedstocks that can fulfill the demand for free sugars which are fermented for the production of kojic acid. This review highlights the current progress and importance of bioprocessing of kojic acid from various types of competitive and non-competitive renewable feedstocks. The bioprocessing advancements, secondary metabolic pathway networks, gene clusters and regulations, strain improvement, and process design have also been discussed. The importance of nitrogen sources, amino acids, ions, agitation, and pH has been summarized. Two fungal species Aspergillus flavus and Aspergillus oryzae are found to be extensively studied for kojic acid production due to their versatile substrate utilization and high titer ability. The potential of A. flavus to be a competitive industrial strain for large-scale production of kojic acid has been studied.


Asunto(s)
Aspergillus oryzae , Pironas , Pironas/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aminoácidos/metabolismo , Aspergillus oryzae/genética
15.
J Nat Prod ; 86(4): 804-811, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37001015

RESUMEN

Endolichenic fungi are a rich source of natural products with a wide range of potent bioactivities. Herein, syntheses of the two naturally occurring α-pyrones dothideopyrone E and F are presented. These natural products were isolated from a culture of the endolichenic fungus Dothideomycetes sp. EL003334. The outlined strategy includes a Fu-Suzuki akyl-alkyl cross-coupling, a MacMillan α-oxyamination, and a Sato's pericyclic cascade process to construct the 4-hydroxy-2-pyrone ring system. All the obtained data on the synthesized compounds matched with that of the isolated material.


Asunto(s)
Ascomicetos , Productos Biológicos , Ascomicetos/metabolismo , Pironas/metabolismo , Estructura Molecular
16.
Microb Cell Fact ; 22(1): 40, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36843006

RESUMEN

BACKGROUND: Kojic acid (KA) is a widely used compound in the cosmetic, medical, and food industries, and is typically produced by Aspergillus oryzae. To meet increasing market demand, it is important to optimize KA production through seeking alternatives that are more economic than current A. oryzae-based methods. RESULTS: In this study, we achieved the first successful heterologous production of KA in Aspergillus niger, an industrially important fungus that does not naturally produce KA, through the expression of the kojA gene from A. oryzae. Using the resulting KA-producing A. niger strain as a platform, we identified four genes (nrkA, nrkB, nrkC, and nrkD) that negatively regulate KA production. Knocking down nrkA or deleting any of the other three genes resulted in a significant increase in KA production in shaking flask cultivation. The highest KA titer (25.71 g/L) was achieved in a pH controlled batch bioreactor using the kojA overexpression strain with a deletion of nrkC, which showed a 26.7% improvement compared to the KA titer (20.29 g/L) that was achieved in shaking flask cultivation. CONCLUSION: Our study demonstrates the potential of using A. niger as a platform for studying KA biosynthesis and regulation, and for the cost-effective production of KA in industrial strain development.


Asunto(s)
Aspergillus niger , Aspergillus oryzae , Aspergillus niger/genética , Aspergillus niger/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Pironas/metabolismo
17.
J Exp Bot ; 74(6): 1911-1925, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36638269

RESUMEN

The sporopollenin polymer is a major component of the pollen exine. Fatty acid derivatives synthesized in the tapetum are among the precursors of sporopollenin. Progress has been made to understand sporopollenin metabolism in rice; however, the underlying molecular mechanisms remain elusive. We found that OsTKPR2 and OsTKPR1 share a similar expression pattern, and their coding proteins have a similar subcellular localization and enzyme activities towards reduced tetraketide α-pyrone and hydroxylated tetraketide α-pyrone. Unexpectedly, OsTKPR1pro:OsTKPR2-eGFP could not rescue the phenotype of ostkpr1-4. Three independent ostkpr2 mutant lines generated by CRISPR/Cas9 displayed reduced male fertility to various extents which were correlated with the severity of gene disruptions. Notably, the anther cuticle, Ubisch bodies, and pollen development were affected in the ostkpr2-1 mutant, where a thinner pollen exine was noticed. OsTKPR1 and OsTKPR2 were integrated into a metabolon including OsACOS12 and OsPKS2, which resulted in a significant increased enzymatic efficiency when both OsTKPR1 and OsTKPR2 were present, indicating the mutual dependence of OsTKPR2 and OsTKPR1 for their full biochemical activities. Thus, our results demonstrated that OsTKPR2 is required for anther and pollen development where an OsTKPR2-containing metabolon is functional during rice sporopollenin synthesis. Furthermore, the cooperation and possible functional divergence between OsTKPR2 and OsTKPR1 is also discussed.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Pironas/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Eur J Med Chem ; 244: 114866, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36368255

RESUMEN

Lipids-lowering is considered as the most effective approach to decrease the risk of Atherosclerotic cardiovascular disease (ASCVD), of which atherosclerosis is the most common cause. Natural products containing a unique type of α-pyrone was reported to suppress atherosclerosis in which α-pyrone might be considered as an important pharmacore. In this study, an efficient one-pot intramolecular C-H activation strategy was applied to the synthesis of potentially bioactive α-pyrone derivatives. As the result, three different scaffolds were quickly and conveniently generated, including thiophenes, pyrrole and indole derivatives. Among of them, eight α-pyrone derivatives showed potential effects to promote the uptake of LDL in HepG2 cells. Active unique α-pyrones compounds exhibiting potent in vitro and in vivo lipids-lowering effects, and a novel mechanism associated with the regulation of LXR-IDOL-LDLR axis, the new pathway targeted pharmacologically to control plasma cholesterol levels, were disclosed firstly in this study.


Asunto(s)
Aterosclerosis , Receptores de LDL , Humanos , Receptores de LDL/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Receptores X del Hígado/metabolismo , Pironas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Hígado/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Lípidos
19.
J Nat Prod ; 85(11): 2603-2609, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36327116

RESUMEN

The secondary metabolite pseudopyronine B, isolated from Pseudomonas mosselii P33, was biotransformed by human P450 enzymes, heterologously expressed in the fission yeast Schizosaccharomyces pombe. Small-scale studies confirmed that both CYP4F2 and CYP4F3A were capable of oxidizing the substrate, with the former achieving a higher yield. In larger-scale studies using CYP4F2, three new oxidation products were obtained, the structures of which were elucidated by UV-vis, 1D and 2D NMR, and HR-MS spectroscopy. These corresponded to hydroxylated, carboxylated, and ester derivatives (1-3) of pseudopyronine B, all of which had been oxidized exclusively at the ω-position of the C-6 alkyl chain. In silico homology modeling experiments highlighted key interactions between oxygen atoms of the pyrone ring and two serine residues and a histidine residue of CYP4F2, which hold the substrate in a suitable orientation for oxidation at the terminus of the C-6 alkyl chain. Additional modeling studies with all three pseudopyronines revealed that the seven-carbon alkyl chain of pseudopyronine B was the perfect length for oxidation, with the terminal carbon lying close to the heme iron. The antibacterial activity of the substrates and three oxidation products was also assessed, revealing that oxidation at the ω-position removes all antimicrobial activity. This study both increases the range of known substrates for human CYF4F2 and CYP4F3A enzymes and demonstrates their utility in producing additional natural product derivatives.


Asunto(s)
Antibacterianos , Sistema Enzimático del Citocromo P-450 , Pironas , Humanos , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 4 del Citocromo P450/metabolismo , Hidroxilación , Oxidación-Reducción , Pironas/química , Pironas/metabolismo , Pironas/farmacología , Schizosaccharomyces/enzimología
20.
ACS Chem Biol ; 17(11): 3169-3177, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36255735

RESUMEN

Thermorubin is a tetracyclic naphthoisocoumarin natural product that demands investigation due to its novel mechanism of bacterial protein synthesis inhibition and its unusual structural features. In this work, we describe the identification of the biosynthetic cluster responsible for thermorubin from the sequenced Laceyella sacchari producer species and its confirmation via heterologous production in Escherichia coli. Based on an in-depth annotation of the cluster, we propose a biosynthetic pathway that accounts for the formation of the unique, nonterminal pyrone. Additionally, the expression and use of salicylate synthase TheO enabled testing of the stability properties of this extremophile-derived enzyme. TheO displayed rapid kinetics and a remarkably robust secondary structure, converting chorismate to salicylate with a KM of 109 ± 12 µM, kcat of 9.17 ± 0.36 min-1, and catalytic efficiency (kcat/KM) of 84 ± 9 nM-1 min-1, and retained significant activity up to 50 °C. These studies serve as the basis for continued biosynthetic investigations and bioinspired synthetic approaches.


Asunto(s)
Pironas , Salicilatos , Pironas/metabolismo , Salicilatos/metabolismo , Fenoles/metabolismo , Escherichia coli/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...