Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indian J Biochem Biophys ; 51(5): 335-42, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25630102

RESUMEN

Perception of molecular mechanism would provide potent additional knowledge on mammalian membrane proteins involved in causing diseases. In human, syntaxin-3 (STX3) is a significant apical targeting protein in the epithelial membrane and in exocytosis process; it also acts as a vesicle transporter by cellular receptor in neutrophils, which is crucial for protein trafficking event. Structurally, syntaxin-3 has hydrophobic domain at carboxyl terminus that directs itself to intra-cellular compartments. In addition, the experimental structure of STX3 is not available and no mutational study has been carried out with natural variants of proteins. Moreover, there is no evidence so far for the natural variant Val286 of STX3 causing any diseases. Hence, in the present study, analyses of residue-based properties of the homology model STX3 were carried out along with mutations at carboxyl terminus of STX3 by implementing protein engineering and in silico approaches. The model structure of STX3 was constructed adopting Modeller v9.11 and the aggregation propensity was analyzed with BioLuminate tool. The results showed that there was reduction in aggregation propensity with point mutation at Val286, instead of Ile, resulting into increasing the structural stability of STX3. In conclusion, the Ccap exposed residue would be a suitable position for further mutational studies, particularly with Val286 of STX3 in human. This approach could gainfully be applied to STX3 for efficient drug designing which would be a valuable target in the cancer treatment.


Asunto(s)
Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética , Simulación por Computador , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Mutación/genética , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Proteínas Qa-SNARE/ultraestructura , Homología de Secuencia de Aminoácido
2.
Med Mol Morphol ; 44(2): 63-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21717308

RESUMEN

Combined in situ hybridization (ISH) and immunohistochemistry (IHC) under electron microscopy (EM-ISH & IHC) has sufficient ultrastructural resolution to provide two-dimensional images of subcellular localization of pituitary hormone and its mRNA in a pituitary cell. The advantages of semiconductor nanocrystals (Quantum dots; Qdots) and confocal laser scanning microscopy (CLSM) enable us to obtain three-dimensional images of the subcellular localization of pituitary hormone and its mRNA. Both EM-ISH & IHC and ISH & IHC using Qdots and CLSM are useful for understanding the relationship between protein and mRNA simultaneously in two or three dimensions. CLSM observation of rab3B and SNARE proteins such as SNAP-25 and syntaxin revealed that both rab3B and SNARE system proteins play an important role and work together as the exocytotic machinery in anterior pituitary cells. Another important issue is the intracellular transport and secretion of pituitary hormone. An experimental pituitary cell line, the GH3 cell, in which growth hormone (GH) is linked to enhanced yellow fluorescein protein (EYFP), has been developed. This stable GH3 cell secretes GH linked to EYFP upon being stimulated by Ca(2+) influx or Ca(2+) release from storage. This GH3 cell is useful for real-time visualization of the intracellular transport and secretion of GH. These three methods enable us to visualize consecutively the processes of transcription, translation, transport, and secretion of pituitary hormone.


Asunto(s)
Hormona del Crecimiento , Imagenología Tridimensional/métodos , Proteínas Qa-SNARE , ARN Mensajero/metabolismo , Proteína 25 Asociada a Sinaptosomas , Proteínas de Unión al GTP rab3 , Animales , Proteínas Bacterianas , Transporte Biológico/fisiología , Línea Celular , Exocitosis/fisiología , Hormona del Crecimiento/metabolismo , Humanos , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Proteínas Luminiscentes , Microscopía Confocal/métodos , Microscopía Electrónica/métodos , Hipófisis/metabolismo , Hipófisis/ultraestructura , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/ultraestructura , Puntos Cuánticos , Ratas , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteína 25 Asociada a Sinaptosomas/ultraestructura , Proteínas de Unión al GTP rab3/metabolismo , Proteínas de Unión al GTP rab3/ultraestructura
3.
Traffic ; 11(7): 958-71, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20374557

RESUMEN

In neuroendocrine cells, annexin-A2 is implicated as a promoter of monosialotetrahexosylganglioside (GM1)-containing lipid microdomains that are required for calcium-regulated exocytosis. As soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) require a specific lipid environment to mediate granule docking and fusion, we investigated whether annexin-A2-induced lipid microdomains might be linked to the SNAREs present at the plasma membrane. Stimulation of adrenergic chromaffin cells induces the translocation of cytosolic annexin-A2 to the plasma membrane, where it colocalizes with SNAP-25 and S100A10. Cross-linking experiments performed in stimulated chromaffin cells indicate that annexin-A2 directly interacts with S100A10 to form a tetramer at the plasma membrane. Here, we demonstrate that S100A10 can interact with vesicle-associated membrane protein 2 (VAMP2) and show that VAMP2 is present at the plasma membrane in resting adrenergic chromaffin cells. Tetanus toxin that cleaves VAMP2 solubilizes S100A10 from the plasma membrane and inhibits the translocation of annexin-A2 to the plasma membrane. Immunogold labelling of plasma membrane sheets combined with spatial point pattern analysis confirmed that S100A10 is present in VAMP2 microdomains at the plasma membrane and that annexin-A2 is observed close to S100A10 and to syntaxin in stimulated chromaffin cells. In addition, these results showed that the formation of phosphatidylinositol (4,5)-bisphosphate (PIP(2)) microdomains colocalized with S100A10 in the vicinity of docked granules, suggesting a functional interplay between annexin-A2-mediated lipid microdomains and SNAREs during exocytosis.


Asunto(s)
Anexina A2/fisiología , Células Cromafines/metabolismo , Exocitosis/fisiología , Proteínas SNARE/metabolismo , Adrenérgicos/metabolismo , Anexina A2/metabolismo , Anexina A2/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Gránulos Citoplasmáticos/metabolismo , Humanos , Transporte de Proteínas , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/ultraestructura , Proteínas S100/metabolismo , Proteínas S100/ultraestructura , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/ultraestructura
4.
PLoS Biol ; 5(8): e198, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17645391

RESUMEN

Synaptic vesicles dock to the plasma membrane at synapses to facilitate rapid exocytosis. Docking was originally proposed to require the soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins; however, perturbation studies suggested that docking was independent of the SNARE proteins. We now find that the SNARE protein syntaxin is required for docking of all vesicles at synapses in the nematode Caenorhabditis elegans. The active zone protein UNC-13, which interacts with syntaxin, is also required for docking in the active zone. The docking defects in unc-13 mutants can be fully rescued by overexpressing a constitutively open form of syntaxin, but not by wild-type syntaxin. These experiments support a model for docking in which UNC-13 converts syntaxin from the closed to the open state, and open syntaxin acts directly in docking vesicles to the plasma membrane. These data provide a molecular basis for synaptic vesicle docking.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Fusión de Membrana/fisiología , Proteínas Qa-SNARE/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Forma de la Célula , Exocitosis/fisiología , Mosaicismo , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura , Fármacos Neuromusculares no Despolarizantes/farmacología , Neuronas/citología , Neuronas/fisiología , Técnicas de Placa-Clamp , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/ultraestructura , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura , Tubocurarina/farmacología , Ácido gamma-Aminobutírico/metabolismo
5.
J Cell Sci ; 119(Pt 7): 1406-15, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16554438

RESUMEN

Spore formation in Saccharomyces cerevisiae requires the de novo formation of prospore membranes. The coalescence of secretory vesicles into a membrane sheet occurs on the cytoplasmic surface of the spindle pole body. Spo14p, the major yeast phospholipase D, is necessary for prospore membrane formation; however, the specific function of Spo14p in this process has not been elucidated. We report that loss of Spo14p blocks vesicle fusion, leading to the accumulation of prospore membrane precursor vesicles docked on the spindle pole body. A similar phenotype was seen when the t-SNARE Sso1p, or the partially redundant t-SNAREs Sec9p and Spo20p were mutated. Although phosphatidic acid, the product of phospholipase D action, was necessary to recruit Spo20p to the precursor vesicles, independent targeting of Spo20p to the membrane was not sufficient to promote fusion in the absence of SPO14. These results demonstrate a role for phospholipase D in vesicle fusion and suggest that phospholipase D-generated phosphatidic acid plays multiple roles in the fusion process.


Asunto(s)
Fosfolipasa D/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Vesículas Secretoras/metabolismo , Esporas Fúngicas/metabolismo , Western Blotting , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/metabolismo , Indoles , Microscopía Fluorescente , Microscopía por Video , Modelos Biológicos , Mutación , Fosfolipasa D/genética , Fosfolipasa D/ultraestructura , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Vesículas Secretoras/ultraestructura , Esporas Fúngicas/ultraestructura , Temperatura , Tomografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...