Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.024
1.
AAPS PharmSciTech ; 25(5): 90, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649513

To formulate and optimize Ozenoxacin nano-emulsion using Quality by Design (QbD) concept by means of Box-Behnken Design (BBD) and converting it to a gel to form Ozenoxacin nano-emulgel followed by physico-chemical, in-vitro, ex-vivo and in-vivo evaluation. This study demonstrates the application of QbD methodology for the development and optimization of an effective topical nanoemulgel formulation for the treatment of Impetigo focusing on the selection of appropriate excipients, optimization of formulation and process variables, and characterization of critical quality attributes. BBD was used to study the effect of "% of oil, % of Smix and homogenization speed" on critical quality attributes "globule size and % entrapment efficiency" for the optimisation of Ozenoxacin Nano-emulsion. Ozenoxacin loaded nano-emulgel was characterized for "description, identification, pH, specific gravity, amplitude sweep, viscosity, assay, organic impurities, antimicrobial effectiveness testing, in-vitro release testing, ex-vivo permeation testing, skin retention and in-vivo anti-bacterial activity". In-vitro release and ex-vivo permeation, skin retention and in-vivo anti-bacterial activity were found to be significantly (p < 0.01) higher for the nano-emulgel formulation compared to the innovator formulation (OZANEX™). Antimicrobial effectiveness testing was performed and found that even at 70% label claim of benzoic acid is effective to inhibit microbial growth in the drug product. The systematic application of QbD principles facilitated the successful development and optimization of a Ozenoxacin Nano-Emulsion. Optimised Ozenoxacin Nano-Emulgel can be considered as an effective alternative and found to be stable at least for 6 months at 40 °C / 75% RH and 30 °C / 75% RH.


Anti-Bacterial Agents , Emulsions , Impetigo , Quinolones , Animals , Impetigo/drug therapy , Mice , Quinolones/administration & dosage , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Gels/chemistry , Chemistry, Pharmaceutical/methods , Disease Models, Animal , Aminopyridines/administration & dosage , Aminopyridines/pharmacology , Aminopyridines/chemistry , Aminopyridines/pharmacokinetics , Excipients/chemistry , Skin/drug effects , Skin/metabolism , Microbial Sensitivity Tests/methods , Skin Absorption/drug effects , Administration, Topical , Viscosity , Drug Compounding/methods
3.
Ter Arkh ; 94(12): 1431-1437, 2023 Jan 16.
Article Ru | MEDLINE | ID: mdl-37167190

The MedLine database contains 570 publications, including 71 randomized clinical trials and 6 meta-analyses on the rebamipide molecule in 2022. Indications for the use of rebamipide are gastric ulcer, chronic gastritis with hyperacidityin the acute stage, erosive gastritis, prevention of damage to the gastrointestinal mucosa while taking non-steroidal anti-inflammatory drugs, eradication of Helicobacter pylori. Currently trials are studying the efficacy and safety of the drug in gouty and rheumatoid arthritis, osteoarthritis, Sjögren's syndrome, bronchial asthma, vitiligo, atherosclerosis, diseases of the kidneys and liver; using in traumatology to accelerate bone regeneration; in ophthalmology to improve the regeneration of corneal epithelium; in oncology to reduce inflammatory changes in the oral mucosa after chemoradiotherapy. The review article is about the main pharmacokinetic and pharmacodynamic characteristics of rebamipide. A detailed understanding of pharmacodynamics and pharmacokinetics allows for individual selection of therapy based on the characteristics of the patient's body - gender, age, comorbidities; choose the optimal route of administration and dosing regimen; predict adverse effects and drug interactions; be determined with new clinical indications.


Alanine , Quinolones , Alanine/pharmacokinetics , Alanine/pharmacology , Quinolones/pharmacokinetics , Quinolones/pharmacology , Biological Availability , Humans
4.
Basic Clin Pharmacol Toxicol ; 133(1): 73-81, 2023 Jul.
Article En | MEDLINE | ID: mdl-37069136

OBJECTIVE: We aimed to unravel potential pharmacokinetic interactions between aripiprazole and duloxetine. METHODS: Plasma concentrations of aripiprazole in two groups of 78 patients each, receiving aripiprazole as a monotherapy or combined with duloxetine, were compared. A potential impact of duloxetine on the metabolism of aripiprazole was expected in higher plasma concentrations of aripiprazole and higher dose-adjusted plasma concentrations. RESULTS: Patients co-medicated with duloxetine showed significantly higher plasma concentrations of aripiprazole by 54.2% (p = 0.019). Dose-adjusted plasma concentrations were 45.6% higher (p = 0.001); 12.8% of these patients exhibited aripiprazole plasma concentrations above the upper limit of the therapeutic reference range, in the control group this was only the case for 10.3% of the patients. A positive relationship was found between the daily dose of duloxetine and dose-adjusted plasma concentrations of aripiprazole (p = 0.034). As dehydroaripiprazole concentrations were not available, conclusions for the active moiety (aripiprazole plus dehydroaripiprazole) could not be drawn. CONCLUSIONS: Combining duloxetine and aripiprazole leads to significantly higher drug concentrations of aripiprazole, most likely via an inhibition of cytochrome P450 CYP2D6 and to a lesser extent of CYP3A4 by duloxetine. Clinicians have to consider increasing aripiprazole concentrations when adding duloxetine to a treatment regimen with aripiprazole.


Antipsychotic Agents , Quinolones , Humans , Aripiprazole , Duloxetine Hydrochloride/therapeutic use , Antipsychotic Agents/pharmacology , Piperazines/pharmacokinetics , Quinolones/pharmacokinetics , Cytochrome P-450 CYP2D6/metabolism
5.
Clin Pharmacol Drug Dev ; 11(2): 150-164, 2022 02.
Article En | MEDLINE | ID: mdl-34979059

An intramuscular formulation of aripiprazole monohydrate dosed once monthly (AOM) was developed to address nonadherence with the approved oral tablets. A 3-compartment linear population pharmacokinetic model for oral and AOM doses was developed; relative bioavailability was estimated for AOM relative to oral dosing and body mass index and sex were significant predictors of AOM absorption rate constant (longer absorption half-life for women and absorption half-life increases with increasing body mass index). Aripiprazole apparent oral clearance for subjects with cytochrome P450 (CYP) 2D6 poor metabolizer status and in the presence of strong CYP2D6 inhibitors was approximately half that of subjects with CYP2D6 extensive metabolizer status and 24% lower in the presence of strong CYP3A4 inhibitors. Simulations of the population pharmacokinetics were conducted to evaluate the effect of different dose initiation strategies for AOM, the effects of CYP2D6 metabolizer status, coadministration of CYP2D6 and CYP3A4 inhibitors, and missed doses. An exposure-response model with an exponential hazard function of the model-predicted minimum concentration (Cmin ) described the time to relapse. The hazard ratio (95% confidence interval) was 4.41 (2.89-6.75). Thus, a subject with a diagnosis of schizophrenia and Cmin  ≥ 95 ng/mL is 4.41 times less likely to relapse relative to a subject with Cmin  < 95 ng/mL.


Antipsychotic Agents , Quinolones , Schizophrenia , Aripiprazole , Female , Humans , Piperazines/pharmacokinetics , Quinolones/pharmacokinetics , Schizophrenia/drug therapy
6.
J Clin Pharmacol ; 62(1): 55-65, 2022 01.
Article En | MEDLINE | ID: mdl-34339048

Brexpiprazole is an oral antipsychotic agent indicated for use in patients with schizophrenia or as adjunctive treatment for major depressive disorder. As obesity (body mass index ≥35 kg/m2 ) has the potential to affect drug pharmacokinetics and is a common comorbidity of both schizophrenia and major depressive disorder, it is important to understand changes in brexpiprazole disposition in this population. This study uses a whole-body physiologically based pharmacokinetic model to compare the pharmacokinetics of brexpiprazole in obese and normal-weight (body mass index 18-25 kg/m2 ) individuals known to be cytochrome P450 2D6 extensive metabolizers (EMs) and poor metabolizers (PMs). The physiologically based pharmacokinetic simulations demonstrated significant differences in the time to effective concentrations between obese and normal-weight individuals within metabolizer groups according to the label-recommended titration. Simulations using an alternative dosing strategy of 1 week of twice-daily dosing in obese EMs or 2 weeks of twice-daily dosing in obese poor metabolizers, followed by a return to once-daily dosing, yielded more consistent plasma concentrations between normal-weight and obese patients without exceeding the area under the plasma concentration-time curve observed in the normal-weight EMs. These alternative dosing strategies reduce the time to effective concentrations in obese patients and may improve clinical response to brexpiprazole.


Antipsychotic Agents/pharmacokinetics , Cytochrome P-450 CYP2D6/metabolism , Obesity/epidemiology , Quinolones/pharmacokinetics , Thiophenes/pharmacokinetics , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/therapeutic use , Area Under Curve , Body Mass Index , Computer Simulation , Drug Administration Schedule , Female , Humans , Male , Models, Biological , Quinolones/administration & dosage , Quinolones/therapeutic use , Schizophrenia/drug therapy , Thiophenes/administration & dosage , Thiophenes/therapeutic use
7.
J Clin Pharmacol ; 62(1): 66-75, 2022 01.
Article En | MEDLINE | ID: mdl-34328221

Brexpiprazole is an oral antipsychotic agent indicated for use in patients with schizophrenia, or as adjunctive treatment for major depressive disorder. As cytochrome P450 (CYP) 2D6 contributes significantly to brexpiprazole metabolism, there is a label-recommended 50% reduction in dose among patients with the CYP2D6 poor metabolizer phenotype. This study uses a whole-body physiologically based pharmacokinetic (PBPK) model to compare the pharmacokinetics of brexpiprazole in patients known to be extensive metabolizers (EMs) and poor metabolizers (PMs). A PBPK model was constructed, verified, and validated against brexpiprazole clinical data, and simulations of 500 subjects were performed to establish the median time to effective concentrations in EMs and PMs. The PBPK simulations captured brexpiprazole PK well and demonstrated significant differences in the time to effective concentrations between EMs and PMs according to the label-recommended titration. Additionally, these simulations suggest that CYP2D6 PMs consistently achieve lower minimum concentrations during the dosing interval than CYP2D6 EMs. Simulations using an alternative dosing strategy of twice-daily dosing (as opposed to once daily) in PMs during the first week of brexpiprazole dosing yielded more consistent plasma concentrations between EMs and PMs, without exceeding the area under the plasma concentration-time curve observed in the EMs. Taken together, the results of these PBPK simulations suggest that product labeling for brexpiprazole titration in CYP2D6 PMs likely overcompensates for the decreased clearance seen in this population. We propose an alternative dosing strategy that decreases the time to effective concentrations and recommend a reevaluation of steady-state PK in this population to potentially allow for higher daily doses in CYP2D6 PMs.


Antipsychotic Agents/pharmacokinetics , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Quinolones/pharmacokinetics , Thiophenes/pharmacokinetics , Antipsychotic Agents/therapeutic use , Area Under Curve , Drug Administration Schedule , Genotype , Half-Life , Humans , Metabolic Clearance Rate , Models, Biological , Phenotype , Quinolones/therapeutic use , Schizophrenia/drug therapy , Thiophenes/therapeutic use
8.
Pharm Res ; 38(12): 2129-2145, 2021 Dec.
Article En | MEDLINE | ID: mdl-34904202

PURPOSE: Rebamipide (REB) a potent anti-ulcer agent, has not been exploited to its full potential, owing to it extremely poor solubility, leading to highly diminutive bioavailability (<10%). The purpose is to carry out its solid-state modification. METHOD: Cocrystallisation was done with three GRAS coformers namely citric acid (CA), 3,4-dihydroxybenzoic acid (DHBA) and oxalic acid (OXA) employing the liquid-assisted grinding method. Cocrystal formation was based upon amide-carboxyl and amide-hydroxyl supramolecular synthons. Characterization of novel cocrystals i.e. RCA, RDHBA and ROXA was carried out by DSC, PXRD and additionally by FT-IR spectroscopy. Chemical structures have been determined utilizing the PXRD pattern by Material Studio®. Furthermore, cocrystals were subjected to solubility and intrinsic dissolution rate (IDR) evaluation. Also, pharmacodynamic and pharmacokinetic studies were performed and compared with pure rebamipide. RESULT: The appearances of a single sharp melting endotherm in DSC, along with novel characteristic peaks in PXRD infer the existence of a new crystalline form. Shifting in characteristic vibrations in FT-IR spectroscopy supports the establishment of distinct hydrogen-bonded networks. Structural determination revealed that RCA crystallizes in 'Bb2b' space groups whereas RDHBA in 'P1' and ROXA crystallize out in the 'P-1' space group. All the cocrystals exhibited superior apparent solubility and almost 7-13 folds increase in IDR. Furthermore, 1.6-2.5 folds enhancement in relative bioavailability and remarkable amplification in anti-ulcer, anti-inflammatory and the antioxidant potential of these cocrystals were observed. CONCLUSION: The study ascertains the advantages of cocrystallization, with RCA showing greatest potential and suggests a viable alternative approach for improved formulation of rebamipide.


Alanine/analogs & derivatives , Biological Products/chemistry , Chemical Engineering , Edema/drug therapy , Quinolones/chemistry , Stomach Ulcer/drug therapy , Alanine/administration & dosage , Alanine/chemistry , Alanine/pharmacokinetics , Animals , Biological Availability , Biological Products/pharmacokinetics , Carrageenan/administration & dosage , Carrageenan/immunology , Chemistry, Pharmaceutical/methods , Crystallization , Disease Models, Animal , Drug Compounding/methods , Edema/chemically induced , Edema/immunology , Humans , Hydrogen Bonding , Indomethacin , Male , Powder Diffraction , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Rats , Spectroscopy, Fourier Transform Infrared , Stomach Ulcer/chemically induced
9.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article En | MEDLINE | ID: mdl-34948159

The big problem of antimicrobial resistance is that it requires great efforts in the design of improved drugs which can quickly reach their target of action. Studies of antibiotic uptake and interaction with their target it is a key factor in this important challenge. We investigated the accumulation of ozenoxacin (OZN), moxifloxacin (MOX), levofloxacin (LVX), and ciprofloxacin (CIP) into the bacterial cells of 5 species, including Staphylococcus aureus (SA4-149), Staphylococcus epidermidis (SEP7602), Streptococcus pyogenes (SPY165), Streptococcus agalactiae (SAG146), and Enterococcus faecium (EF897) previously characterized.The concentration of quinolone uptake was estimated by agar disc-diffusion bioassay. Furthermore, we determined the inhibitory concentrations 50 (IC50) of OZN, MOX, LVX, and CIP against type II topoisomerases from S. aureus.The accumulation of OZN inside the bacterial cell was superior in comparison to MOX, LVX, and CIP in all tested species. The accumulation of OZN inside the bacterial cell was superior in comparison to MOX, LVX, and CIP in all tested species. The rapid penetration of OZN into the cell was reflected during the first minute of exposure with antibiotic values between 190 and 447 ng/mg (dry weight) of bacteria in all strains. Moreover, OZN showed the greatest inhibitory activity among the quinolones tested for both DNA gyrase and topoisomerase IV isolated from S. aureus with IC50 values of 10 and 0.5 mg/L, respectively. OZN intracellular concentration was significantly higher than that of MOX, LVX and CIP. All of these features may explain the higher in vitro activity of OZN compared to the other tested quinolones.


Aminopyridines , Bacterial Proteins/metabolism , Gram-Positive Bacteria/metabolism , Quinolones , Topoisomerase I Inhibitors , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Quinolones/pharmacokinetics , Quinolones/pharmacology , Topoisomerase I Inhibitors/pharmacokinetics , Topoisomerase I Inhibitors/pharmacology
10.
J Cyst Fibros ; 20(5): 857-864, 2021 09.
Article En | MEDLINE | ID: mdl-34193363

BACKGROUND: The potential effects of ivacaftor during pregnancy and breastfeeding on the offspring are still unknown. This study aimed to investigate pre-/postnatal age-related entry into the brain and lungs and transfer of maternally administered drug by the placental and via the milk. METHODS: In acute experiments Sprague Dawley rats at embryonic day (E) 19, postnatal days (P) 4, 9, 16, and adult were administered an intraperitoneal injection of ivacaftor (40 mg/kg) traced with [3H] ivacaftor. To determine tissue entry, plasma, cerebrospinal fluid (CSF), lungs and brains were collected, and radioactivity measured using liquid scintillation counting. For long term experiments pregnant dams were orally treated at 25 mg/kg/day for 7 days and pups collected at E19. For postnatal pups, dams received treatment for 7 or 14 days and pups were collected at P6, 9, 13 and 16. To estimate placental and milk transfer concentration of ivacaftor in pup & maternal plasma was determined by liquid chromatography-mass spectrometry. RESULTS: At all ages, entry of ivacaftor into lungs, following either acute or prolonged exposure, was much higher than into brain & CSF. Brain entry appeared higher at earlier ages. Transfer across the placenta and breast milk. was estimated to be around ~40% of maternal plasma. CONCLUSIONS: Fetal and postnatal rats were exposed to maternally administered ivacaftor via placental and milk transfer. Preferential entry in the lungs at all ages suggests the possibility that exposing CF babies to maternally administered ivacaftor could be beneficial for limiting progression of CF pathology in early development.


Aminophenols/pharmacokinetics , Brain/metabolism , Cystic Fibrosis/drug therapy , Lung/metabolism , Quinolones/pharmacokinetics , Animals , Cystic Fibrosis Transmembrane Conductance Regulator , Female , Milk/chemistry , Placenta/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley
11.
Biomed Chromatogr ; 35(11): e5201, 2021 Nov.
Article En | MEDLINE | ID: mdl-34148241

Brexpiprazole (BRX) is approved for the treatment of schizophrenia and major depressive disorders and it is mainly metabolized by CYP3A4 and CYP2D6. Grapefruit juice (GFJ), pomegranate juice (PJ) and tomato juice (TJ) have the potential to inhibit CYP3A4 enzymes in the body. However, fruit juice-drug interactions between BRX and GFJ, PJ and TJ have not been studied extensively. The present study describes the influence of GFJ, PJ and TJ on the pharmacokinetic parameters of BRX in rats. The study samples were analyzed using a mass-accurate and single-step bioanalytical method by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry over a wide calibration range of 20-1,500 ng/ml. The results of the pharmacokinetic study denoted that the combined administration of GFJ and PJ could increase systemic exposure of BRX. The area under the curve of BRX increased 3.43- and 1.88-fold with co-administration of GFJ and PJ, respectively, while TJ with BRX had no effect on the area under the curve. Time to peak concentration and half-life were not significantly changed by any juice co-administration. The results show that GFJ and PJ affect the pharmacokinetic profile of BRX and hence advice needs to be given to patients.


Chromatography, High Pressure Liquid/methods , Fruit and Vegetable Juices , Mass Spectrometry/methods , Quinolones , Thiophenes , Animals , Citrus paradisi/chemistry , Herb-Drug Interactions , Limit of Detection , Linear Models , Solanum lycopersicum/chemistry , Male , Pomegranate/chemistry , Quinolones/analysis , Quinolones/pharmacokinetics , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Thiophenes/analysis , Thiophenes/pharmacokinetics
12.
Eur J Drug Metab Pharmacokinet ; 46(4): 487-504, 2021 Jul.
Article En | MEDLINE | ID: mdl-34024035

BACKGROUND AND OBJECTIVE: Clinical evidence suggests no clinically relevant pharmacokinetic interactions between indacaterol (IND), glycopyrronium (GLY) and mometasone furoate (MF). A population pharmacokinetic (popPK) analysis was conducted to identify structural models describing systemic pharmacokinetic profiles of IND, GLY and MF, and estimate the effect of covariates on their pharmacokinetics following inhalation as IND/GLY/MF. METHODS: Pharmacokinetic data from 698 patients with asthma were pooled from two Phase III studies that evaluated IND/MF medium- (150/160 µg) and high-dose (150/320 µg), IND/GLY/MF medium- (150/50/80 µg) and high-dose (150/50/160 µg), and a device bridging Phase II study with MF. One popPK model was developed each for IND, GLY and MF using a nonlinear mixed-effect modelling approach. Maximal and trough plasma concentrations were compared across formulations and studies, including data for IND/GLY from chronic obstructive pulmonary disease (COPD) patients. The effect of predefined covariates on the pharmacokinetics of components was evaluated using a full covariate modelling approach. RESULTS: The final pharmacokinetic models were two-compartment disposition models with first-order elimination and sequential zero-order/first-order absorption (IND), with bolus administration and first-order elimination (GLY), and with mixed zero-order/first-order absorption and first-order elimination (MF). All model parameters were estimated with good precision (% relative standard error: IND and MF ≤25%; GLY <10%). No clinically relevant covariate effect was observed on the pharmacokinetics of IND, GLY and MF. IND and GLY pharmacokinetic profiles were similar across different formulations. CONCLUSION: Two-compartment popPK models adequately described the pharmacokinetics of IND, GLY and MF. The effect of covariates was not clinically relevant. The pharmacokinetic profiles of MF were comparable for combination products at corresponding medium- or high-dose inhaled corticosteroids. On a population level, the pharmacokinetics of IND and GLY were comparable between patients with asthma and COPD.


Asthma/drug therapy , Glycopyrrolate/analogs & derivatives , Indans/pharmacokinetics , Models, Biological , Mometasone Furoate/pharmacokinetics , Quinolones/pharmacokinetics , Administration, Inhalation , Adolescent , Adult , Aged , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/pharmacokinetics , Child , Clinical Trials, Phase III as Topic , Dose-Response Relationship, Drug , Drug Combinations , Female , Glycopyrrolate/administration & dosage , Glycopyrrolate/pharmacokinetics , Humans , Indans/administration & dosage , Male , Middle Aged , Mometasone Furoate/administration & dosage , Nebulizers and Vaporizers , Pulmonary Disease, Chronic Obstructive/drug therapy , Quinolones/administration & dosage , Randomized Controlled Trials as Topic , Young Adult
13.
J Med Chem ; 64(10): 6581-6595, 2021 05 27.
Article En | MEDLINE | ID: mdl-33979164

Preclinical and clinical development of numerous small molecules is prevented by their poor aqueous solubility, limited absorption, and oral bioavailability. Herein, we disclose a general prodrug approach that converts promising lead compounds into aminoalkoxycarbonyloxymethyl (amino AOCOM) ether-substituted analogues that display significantly improved aqueous solubility and enhanced oral bioavailability, restoring key requirements typical for drug candidate profiles. The prodrug is completely independent of biotransformations and animal-independent because it becomes an active compound via a pH-triggered intramolecular cyclization-elimination reaction. As a proof-of-concept, the utility of this novel amino AOCOM ether prodrug approach was demonstrated on an antimalarial compound series representing a variety of antimalarial 4(1H)-quinolones, which entered and failed preclinical development over the last decade. With the amino AOCOM ether prodrug moiety, the 3-aryl-4(1H)-quinolone preclinical candidate was shown to provide single-dose cures in a rodent malaria model at an oral dose of 3 mg/kg, without the use of an advanced formulation technique.


Antimalarials/chemistry , Ethers/chemistry , Prodrugs/chemistry , Quinolones/chemistry , Administration, Oral , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Cyclization , Disease Models, Animal , Female , Half-Life , Hydrogen-Ion Concentration , Malaria/drug therapy , Malaria/parasitology , Mice , Mice, Inbred BALB C , Plasmodium falciparum/drug effects , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/therapeutic use , Quinolones/pharmacokinetics , Quinolones/pharmacology , Quinolones/therapeutic use , Solubility , Structure-Activity Relationship
14.
J Cyst Fibros ; 20(5): e72-e76, 2021 09.
Article En | MEDLINE | ID: mdl-34006500

BACKGROUND: Ivacaftor is currently the only CFTR potentiator approved and is increasingly used since the development of CFTR correctors. Ivacaftor is metabolized by CYP3A4 and therefore dose reduction is required when treating patients on ivacaftor with CYP3A4 inhibiting drugs. As this advice is based on studies in healthy volunteers and not in cystic fibrosis (CF) patients, we need to investigate this in both groups to be able to extrapolate these data to CF. METHODS: A cohort of CF patients and healthy subjects were exposed to a single dose of ivacaftor in combination with a strong (ritonavir), moderate (clarithromycin) and mild (azithromycin) CYP3A4 inhibitor. Ivacaftor concentrations were measured in all blood samples in order to calculate the pharmacokinetic parameters for ivacaftor. RESULTS: We found that exposure to ivacaftor was higher in healthy volunteers than in subjects with CF. However this difference was not statistically significant. No differences were observed in the interaction potential of CYP3A4 inhibitors between both study groups. The strong CYP3A4 inhibitor ritonavir, increased exposure to ivacaftor 7 times. CONCLUSION: Our data support current recommendations for dose adjustment of ivacaftor in case of co-treatment with CYP3A4 inhibitors in people with CF. However, exposure to ivacaftor was higher in healthy subjects than in CF patients. Further study is needed to investigate the cause and implication of this difference.


Aminophenols/administration & dosage , Aminophenols/pharmacokinetics , Chloride Channel Agonists/administration & dosage , Chloride Channel Agonists/pharmacokinetics , Cystic Fibrosis/drug therapy , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Adult , Azithromycin/administration & dosage , Case-Control Studies , Drug Interactions , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Ritonavir/administration & dosage
15.
Pharm Dev Technol ; 26(6): 701-708, 2021 Jul.
Article En | MEDLINE | ID: mdl-33938359

In this study, a novel rebamipide-loaded spray-dried microsphere (RSM) with enhanced drug solubility and oral bioavailability has been developed utilizing meglumine, an alkalizing agent. The influence of carriers on the drug solubility alone, and the solubility and dissolution of the drug in the RSM was investigated. Among the alkalizing agents and hydrophilic polymers tested, meglumine and polyvinyl alcohol (PVA) showed the highest drug solubility and dissolution rate, respectively. Many RSMs were manufactured with various amounts of meglumine and PVA using distilled water, and their drug solubility and dissolution were determined. The physicochemical properties, dissolution and pharmacokinetics of the chosen RSM in rats were assessed compared to the rebamipide powder and commercial tablet. Among the RSMs tested, the one composed of rebamipide, meglumine and PVA at a weight ratio of 3:1.75:6 showed the highest drug solubility and dissolution. This RSM with a smooth spherical form significantly decreased the particle size and modified the amorphous rebamipide. Furthermore, the drug solubility, dissolution, plasma concentrations, AUC and Cmax values of RSM were significantly higher than those of drug powder and commercial tablet. Thus, this RSN system developed with distilled water and meglumine is recommended as an oral water-soluble rebamipide-loaded pharmaceutical product.


Alanine/analogs & derivatives , Meglumine/chemical synthesis , Meglumine/pharmacokinetics , Microspheres , Quinolones/chemical synthesis , Quinolones/pharmacokinetics , Water/chemistry , Alanine/chemical synthesis , Alanine/pharmacokinetics , Animals , Chemical Phenomena , Male , Rats , Rats, Sprague-Dawley , Solubility , X-Ray Diffraction/methods
16.
J Integr Neurosci ; 20(1): 247-254, 2021 Mar 30.
Article En | MEDLINE | ID: mdl-33834710

The hiccup (Latin singultus) is an involuntary periodic contraction of the diaphragm followed by glottic closure, which can be a rare side effect of aripiprazole. In contrast to the structurally closely related aripiprazole, brexpiprazole was not associated with this particular adverse drug reaction. Having two very similar drugs that differ in their ability to induce hiccups represents a unique opportunity to gain insight into the receptors involved in the pathophysiology of the symptom and differences in clinical effects between aripiprazole and brexpiprazole. The overlap between maneuvers used to terminate paroxysmal supraventricular tachycardia and those employed to terminate bouts of hiccups suggests that activation of efferent vagal fibers can be therapeutic in both instances. Recent work seems to support a pivotal role for serotonin receptors in such vagal activation. It is unlikely that a unique receptor-drug interaction could explain the different effects of the examined drugs on hiccup. The different effect is most likely the consequence of several smaller effects at more than one receptor. Brexpiprazole is a highly affine (potent) α2C antagonist and, therefore, also an indirect 5-HT1A agonist. In contrast, aripiprazole is a partial 5-HT1A agonist (weak antagonist) and an HT3 antagonist. Activation of 5-HT1A receptors enhances vagal activity while HT3 blockade reduces it. Vagus nerve activation is therapeutic for hiccups. A definitive answer continues to be elusive.


Aripiprazole/pharmacology , Hiccup/chemically induced , Neurotransmitter Agents/pharmacology , Quinolones/pharmacology , Thiophenes/pharmacology , Aripiprazole/adverse effects , Aripiprazole/pharmacokinetics , Humans , Neurotransmitter Agents/adverse effects , Neurotransmitter Agents/pharmacokinetics , Quinolones/adverse effects , Quinolones/pharmacokinetics , Thiophenes/adverse effects , Thiophenes/pharmacokinetics
17.
Am J Respir Crit Care Med ; 203(12): 1522-1532, 2021 06 15.
Article En | MEDLINE | ID: mdl-33734030

Rationale: Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was shown to be efficacious and safe in patients ≥12 years of age with cystic fibrosis and at least one F508del-CFTR (cystic fibrosis transmembrane conductance regulator) allele, but it has not been evaluated in children <12 years of age. Objectives: To assess the safety, pharmacokinetics, and efficacy of ELX/TEZ/IVA in children 6 through 11 years of age with F508del-minimal function or F508del-F508del genotypes. Methods: In this 24-week open-label phase 3 study, children (N = 66) weighing <30 kg received 50% of the ELX/TEZ/IVA adult daily dose (ELX 100 mg once daily, TEZ 50 mg once daily, and IVA 75 mg every 12 h) whereas children weighing ⩾30 kg received the full adult daily dose (ELX 200 mg once daily, TEZ 100 mg once daily, and IVA 150 mg every 12 h). Measurements and Main Results: The primary endpoint was safety and tolerability. The safety and pharmacokinetic profiles of ELX/TEZ/IVA were generally consistent with those observed in older patients. The most commonly reported adverse events included cough, headache, and pyrexia; in most of the children who had adverse events, these were mild or moderate in severity. Through Week 24, ELX/TEZ/IVA treatment improved the percentage of predicted FEV1 (10.2 percentage points; 95% confidence interval [CI], 7.9 to 12.6), Cystic Fibrosis Questionnaire-Revised respiratory domain score (7.0 points; 95% CI, 4.7 to 9.2), lung clearance index2.5 (-1.71 units; 95% CI, -2.11 to -1.30), and sweat chloride (-60.9 mmol/L; 95% CI, -63.7 to -58.2); body mass index-for-age z-score increased over the 24-week treatment period when compared with the pretreatment baseline. Conclusions: Our results show ELX/TEZ/IVA is safe and efficacious in children 6 through 11 years of age with at least one F508del-CFTR allele, supporting its use in this patient population. Clinical trial registered with www.clinicaltrials.gov (NCT03691779).


Chloride Channel Agonists/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Indoles/therapeutic use , Pyrazoles/therapeutic use , Quinolones/therapeutic use , Alleles , Child , Chloride Channel Agonists/pharmacokinetics , Drug Combinations , Female , Genetic Variation , Genotype , Humans , Indoles/pharmacokinetics , Male , Pyrazoles/pharmacokinetics , Quinolones/pharmacokinetics
18.
J Med Chem ; 64(3): 1435-1453, 2021 02 11.
Article En | MEDLINE | ID: mdl-33492141

In this paper, we present a copper(I)-catalyzed nitrile-addition/N-arylation ring-closure cascade for the synthesis of 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones from 2-(2-bromophenyl)-N-(2-cyanophenyl)acetamides. Using CuBr and t-BuONa in dimethylformamide (DMF) as the optimal reaction conditions, the cascade reaction gave the target products, in high yields, with a good substrate scope. Application of the cascade reaction was demonstrated on the concise total syntheses of alkaloid isocryptolepine. Further optimization of the products from the cascade reaction led to 3-chloro-5,12-bis[2-(dimethylamino)ethyl]-5,12-dihydro-6H-[1,3]dioxolo[4',5':5,6]indolo[3,2-c]quinolin-6-one (2k), which exhibited the characteristic DNA topoisomerase-I inhibitory mechanism of action with potent in vitro anticancer activity. Compound 2k actively inhibited ARC-111- and SN-38-resistant HCT-116 cells and showed in vivo activity in mice bearing human HCT-116 and SJCRH30 xenografts. The interaction of 2k with the Top-DNA cleavable complex was revealed by docking simulations to guide the future optimization of 5,11-dihydro-6H-indolo[3,2-c]quinolin-6-ones as topoisomerase-I inhibitors.


Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Copper/chemistry , Nitriles/chemistry , Quinolones/chemical synthesis , Quinolones/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacology , Animals , Catalysis , DNA Topoisomerases, Type I/chemistry , Drug Design , Drug Screening Assays, Antitumor , Female , Humans , Male , Mice , Mice, Nude , Models, Molecular , Molecular Docking Simulation , Quinolones/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Topoisomerase I Inhibitors/pharmacokinetics , Xenograft Model Antitumor Assays
19.
BMC Pulm Med ; 21(1): 18, 2021 Jan 07.
Article En | MEDLINE | ID: mdl-33413291

BACKGROUND: A once-daily (o.d.) fixed-dose combination of indacaterol acetate (IND), glycopyrronium bromide (GLY), and mometasone furoate (MF) delivered via the Breezhaler® device (IND/GLY/MF) is being developed for treatment of asthma. This study compared steady-state pharmacokinetics of IND, GLY and MF between Japanese and Caucasian male subjects after multiple inhalations of IND/GLY/MF o.d. METHODS: This was a single-center, open-label, 2-treatment crossover study with a 21-day washout period. Japanese and Caucasian subjects received IND/GLY/MF 150/50/80 µg (inhaled corticosteroid [ICS] medium-dose) or 150/50/160 µg o.d. (ICS high-dose) for 14 days in each period. Pharmacokinetics were characterized up to 24 h post-dose on Days 1 and 14. RESULTS: In total, 16 Japanese (median age 31 years [range 20-40 years], mean weight 68.3 kg) and 17 Caucasian subjects (median age 27 years [range 21-43 years], mean weight 75.0 kg) were randomized. Geometric mean ratios (Japanese/Caucasian) [90% confidence interval (CI)] for Cmax for IND, GLY and MF at the high ICS dose on Day 14 were 1.31 [1.13, 1.51] 1.38 [1.13, 1.69] and 1.07 [0.969, 1.18], respectively. Geometric mean ratios (Japanese/Caucasian) [90% CI] for AUC0-24h on Day 14 for IND, GLY and MF at the high ICS dose were 1.17 [1.01, 1.35], 1.05 [0.920, 1.20] and 1.15 [1.05, 1.27] respectively. Similar trends were noted for all components for the medium ICS dose treatment. IND/GLY/MF was safe and well tolerated; no AEs suspected to be study drug-related were observed. CONCLUSION: Pharmacokinetics of IND, GLY and MF (high and medium dose) when delivered as a fixed-dose combination were comparable between Japanese and Caucasian subjects. The IND/GLY/MF combination at the administrated doses was safe and well tolerated in both ethnic groups. TRIAL REGISTRATION: Japan Registry of Clinical Trial: jRCT2031200227, retrospectively registered on 04, December, 2020.


Anti-Asthmatic Agents/pharmacokinetics , Glycopyrrolate/pharmacokinetics , Indans/pharmacokinetics , Mometasone Furoate/pharmacokinetics , Quinolones/pharmacokinetics , Administration, Inhalation , Adult , Anti-Asthmatic Agents/administration & dosage , Asian People , Cross-Over Studies , Drug Combinations , Female , Glycopyrrolate/administration & dosage , Healthy Volunteers , Humans , Indans/administration & dosage , Male , Mometasone Furoate/administration & dosage , Quinolones/administration & dosage , White People , Young Adult
20.
Methods Mol Biol ; 2207: 199-220, 2021.
Article En | MEDLINE | ID: mdl-33113138

Ceranib-2 is a recently discovered, poorly water-soluble potent ceramidase inhibitor, with the ability to suppress cancer cell proliferation and delay tumor growth. However, its poor water solubility and weak cellular bioavailability hinder its use as a therapeutic agent for cancer. PEGylated rosin esters are an excellent platform as a natural polymer for drug delivery applications, especially for controlling drug release due to their degradability, biocompatibility, capability to improve solubility, and pharmacokinetics of potent drugs. In this study, stable aqueous amphiphilic submicron-sized PEG400-rosin ester-ceranib-2 (PREC-2) particles, ranging between 100 and 350 nm in a 1:1 mixture, were successfully synthesized by solvent evaporation mediated by sonication.Conclusion: Stable aqueous PEGylated rosin ester nanocarriers might present a significant solution to improve solubility, pharmacokinetic, and bioavailability of ceranib-2, and hold promises for use as an anticancer adjacent drug after further investigations.


Antineoplastic Agents , Drug Carriers , Neoplasms , Polyethylene Glycols/chemistry , Quinolones , Resins, Plant/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , HeLa Cells , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Quinolones/chemistry , Quinolones/pharmacokinetics , Quinolones/pharmacology
...