Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
J Cell Biol ; 223(11)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39283311

RESUMEN

Autophagy plays a crucial role in cancer cell survival by facilitating the elimination of detrimental cellular components and the recycling of nutrients. Understanding the molecular regulation of autophagy is critical for developing interventional approaches for cancer therapy. In this study, we report that migfilin, a focal adhesion protein, plays a novel role in promoting autophagy by increasing autophagosome-lysosome fusion. We found that migfilin is associated with SNAP29 and Vamp8, thereby facilitating Stx17-SNAP29-Vamp8 SNARE complex assembly. Depletion of migfilin disrupted the formation of the SNAP29-mediated SNARE complex, which consequently blocked the autophagosome-lysosome fusion, ultimately suppressing cancer cell growth. Restoration of the SNARE complex formation rescued migfilin-deficiency-induced autophagic flux defects. Finally, we found depletion of migfilin inhibited cancer cell proliferation. SNARE complex reassembly successfully reversed migfilin-deficiency-induced inhibition of cancer cell growth. Taken together, our study uncovers a new function of migfilin as an autophagy-regulatory protein and suggests that targeting the migfilin-SNARE assembly could provide a promising therapeutic approach to alleviate cancer progression.


Asunto(s)
Autofagia , Moléculas de Adhesión Celular , Proliferación Celular , Lisosomas , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Humanos , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Lisosomas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Autofagosomas/metabolismo , Células HeLa , Línea Celular Tumoral , Unión Proteica , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Fusión de Membrana , Proteínas Qa-SNARE
2.
Arthritis Rheumatol ; 76(10): 1566-1572, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38937141

RESUMEN

OBJECTIVE: Our objective was to evaluate whether there is an enrichment of rare variants in familial hemophagocytic lymphohistiocytosis (HLH)-associated genes among patients with systemic juvenile idiopathic arthritis (sJIA) with or without macrophage activation syndrome (MAS). METHODS: Targeted sequencing of HLH genes (LYST, PRF1, RAB27A, STX11, STXBP2, UNC13D) was performed in patients with sJIA from an established cohort. Sequence data from control participants were obtained in silico (database of Genotypes and Phenotypes: phs000280.v8.p2). Rare variant association testing (RVT) was performed with sequence kernel association test package. Significance was defined as P < 0.05 after 100,000 permutations. RESULTS: Sequencing data from 524 sJIA cases were jointly called and harmonized with exome-derived target data from 3,000 controls. Quality control operations produced a set of 480 cases and 2,924 ancestrally matched control participants. RVT of cases and controls revealed a significant association with rare protein-altering variants (minor allele frequency [MAF] < 0.01) of STXBP2 (P = 0.020) and ultrarare variants (MAF < 0.001) of STXBP2 (P = 0.006) and UNC13D (P = 0.046). A subanalysis of 32 cases with known MAS and 90 without revealed a significant difference in the distribution of rare UNC13D variants (P = 0.0047) between the groups. Additionally, patients with sJIA more often carried two or more HLH variants than did controls (P = 0.007), driven largely by digenic combinations involving LYST. CONCLUSION: We identified an enrichment of rare HLH variants in patients with sJIA compared with controls, driven by STXBP2 and UNC13D. Biallelic variation in HLH genes was associated with sJIA, driven by LYST. Only UNC13D displayed enrichment in patients with MAS. This suggests that HLH variants may contribute to the pathophysiology of sJIA, even without MAS.


Asunto(s)
Artritis Juvenil , Linfohistiocitosis Hemofagocítica , Síndrome de Activación Macrofágica , Proteínas de la Membrana , Proteínas Munc18 , Perforina , Proteínas Qa-SNARE , Humanos , Linfohistiocitosis Hemofagocítica/genética , Artritis Juvenil/genética , Proteínas Qa-SNARE/genética , Proteínas de la Membrana/genética , Proteínas Munc18/genética , Perforina/genética , Masculino , Femenino , Niño , Síndrome de Activación Macrofágica/genética , Proteínas rab27 de Unión a GTP/genética , Proteínas de Membrana de los Lisosomas/genética , Proteínas R-SNARE/genética , Preescolar , Estudios de Casos y Controles , Proteínas de Unión al GTP rab/genética , Predisposición Genética a la Enfermedad , Adolescente , Variación Genética , Proteínas de Transporte Vesicular
3.
Curr Opin Plant Biol ; 81: 102571, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38896926

RESUMEN

VAMP721 and VAMP722, play crucial roles in membrane fusion at post-Golgi compartments. They are involved in cell plate formation, recycling, endocytosis, and secretion. While individual SNARE actors and regulators exhibit significant overlap, specificity is achieved through distinct combinations of these components. Cytokinesis-related SNAREs traffic as preformed CIS-complexes, which require disassembly by the NSF/αSNAP chaperoning complex to facilitate subsequent homotypic fusion at the cell plate. Recent findings suggest a similar mechanism may operate during secretion. Regulation of VAMP721 activity involves interactions with tethers, GTPases, and Sec1/Munc18 proteins, along with a newly discovered phosphorylation at Tyrosine residue 57. These advances provide valuable insights into the fascinating world of cellular trafficking and membrane fusion.


Asunto(s)
Transporte de Proteínas , Proteínas R-SNARE , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Fusión de Membrana
4.
J Bioenerg Biomembr ; 56(4): 419-431, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38720136

RESUMEN

Vesicle-associated membrane protein 8 (VAMP8), a soluble n-ethylmaleimide-sensitive factor receptor protein, acts as an oncogenic gene in the progression of several malignancies. Nevertheless, the roles and mechanisms of VAMP8 in colorectal cancer (CRC) progression remain unknown. The expression and prognostic significance of VAMP8 in CRC samples were analyzed through bioinformatics analyses. Cell proliferation was detected using CCK-8 and EdU incorporation assays and apoptosis was evaluated via flow cytometry. Western blot analysis was conducted to examine the protein expression. Ferroptosis was evaluated by measurement of iron metabolism, lipid peroxidation, and glutathione (GSH) content. VAMP8 was increased in CRC samples relative to normal samples on the basis of GEPIA and HPA databases. CRC patients with high level of VAMP8 had a worse overall survival. VAMP8 depletion led to a suppression of proliferation and promotion of apoptosis in CRC cells. Additionally, VAMP8 knockdown suppressed beclin1 expression and LC3-II/LC3-I ratio, elevated p62 expression, increased Fe2+, labile iron pool, lipid reactive oxygen species, and malondialdehyde levels, and repressed GSH content and glutathione peroxidase activity. Moreover, VAMP8 knockdown inhibited the activation of janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in CRC cells. Mechanistically, activation of the JAK/STAT3 pathway by JAK1 or JAK2 overexpression attenuated VAMP8 silencing-mediated anti-proliferative, pro-apoptotic, anti-autophagic, and pro-ferroptotic effects on CRC cells. In conclusion, VAMP8 knockdown affects the proliferation, apoptosis, autophagy, and ferroptosis by the JAK/STAT3 pathway in CRC cells.


Asunto(s)
Apoptosis , Autofagia , Proliferación Celular , Neoplasias Colorrectales , Ferroptosis , Factor de Transcripción STAT3 , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Técnicas de Silenciamiento del Gen , Quinasas Janus/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Transducción de Señal , Factor de Transcripción STAT3/metabolismo
5.
Genes (Basel) ; 15(4)2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674369

RESUMEN

Tuberculosis (TB) remains a significant global health concern, necessitating accurate diagnosis and treatment monitoring. Extracellular vesicles (EVs), including exosomes, play crucial roles in disease progression, with their associated genes serving as potential biomarkers and therapeutic targets. Leveraging publicly available RNA-Seq datasets of TB patients and healthy controls (HCs), to identify differentially expressed genes (DEGs) and their associated protein-protein interaction networks and immune cell profiles, the common EV-related DEGs were identified and validated in the GSE42830 and GSE40553 datasets. We have identified nine common EV-related DEGs (SERPINA1, TNFAIP6, MAPK14, STAT1, ITGA2B, VAMP5, CTSL, CEACAM1, and PLAUR) upregulated in TB patients. Immune cell infiltration analysis revealed significant differences between TB patients and HCs, highlighting increased proportions of various immune cells in TB patients. These DEGs are involved in crucial cellular processes and pathways related to exocytosis and immune response regulation. Notably, VAMP5 exhibited excellent diagnostic performance (AUC-0.993, sensitivity-93.8%, specificity-100%), with potential as a novel biomarker for TB. The EV-related genes can serve as novel potential biomarkers that can distinguish between TB and HCs. VAMP5, which functions in exosome biogenesis and showed significant upregulation in TB, can be targeted for therapeutic interventions and treatment outcomes.


Asunto(s)
Vesículas Extracelulares , Tuberculosis , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/microbiología , Biomarcadores , Mapas de Interacción de Proteínas/genética , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Perfilación de la Expresión Génica , Exosomas/genética , Exosomas/metabolismo
6.
J Biol Chem ; 300(5): 107274, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588809

RESUMEN

The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.


Asunto(s)
Proteínas R-SNARE , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacuolas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Vacuolas/genética , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Fusión de Membrana , Exocitosis , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Mutación
7.
Technol Health Care ; 32(4): 2141-2157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393934

RESUMEN

BACKGROUND: Vesicle-associated membrane protein 7 (VAMP7) plays oncogenic roles in cancers. However, its clinical significance in breast cancer (BC) tissues remains unknown. OBJECTIVE: To elucidate the clinical implications of VAMP7, as well as its involvement in the tumor microenvironment and molecular pathways of breast cancer. METHODS: BC (n=100) and non-cancerous breast tissues (n= 100) were collected for an immunohistochemical experiment (1:200). The protein expression level of VAMP7 was determined by using a semi-quantitative scoring method. High-throughput RNA-sequencing data of BC tissues were analyzed to confirm the mRNA expression trend of VAMP7. Additionally, the largest BC prognosis cohort data were collected to mine the potential impact VAMP7 has on BC progression. The association between VAMP7 and the microenvironment of BC was evaluated by using a CIBERSORT algorithm. Moreover, we explored the co-expressed molecular mechanisms of VAMP7 in BC by calculating Pearson correlation coefficients and overexpressed genes. Finally, the biological mechanism underlying the relationship between VAMP7 and the key pathways was also explored using gene set enrichment analysis (GSEA). Potential therapeutic strategies were predicted targeting VAMP7. RESULTS: VAMP7 protein was significantly over-expressed in BC tissue than that in controls (p< 0.001). Compared with 459 normal breast tissues and 113 non-cancerous breast tissues, the expression level of VAMP7 mRNA was significantly increased in 1111 BC tissues. CD4+T cells, macrophages, and naïve B cells had a higher infiltration rate in BC tissues with high VAMP7 expression, while regulatory T cells and CD8+T cells had a lower infiltration rate. Over-expressed VAMP7 was associated with macrophages activation and transition from M1 to M2 polarization. Upregulated VAMP7 could predicted poorer OS, DMFS, PPS, and RFS outcomes. Upregulated VAMP7 co-expressed genes were significantly enriched in the cell cycle checkpoints. GSEA confirmed that over-expressed VAMP7 are markedly associated with functional enrichment in cell cycle related categories, including mitotic spindle, G2M checkpoint, and E2F targets. KU-55933 was predicted as a putative therapeutic drug for BC targeting VAMP7. CONCLUSIONS: VAMP7 was upregulated in BC tissue and correlated with poor prognosis of BC patients. VAMP7 may promote BC progression by targeting the cell cycle pathway.


Asunto(s)
Neoplasias de la Mama , Proteínas R-SNARE , Regulación hacia Arriba , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Microambiente Tumoral , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica
8.
Sci Rep ; 14(1): 3200, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331993

RESUMEN

In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.


Asunto(s)
Proteínas SNARE , Vesículas Secretoras , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Fusión de Membrana/fisiología , Lisosomas/metabolismo
9.
Plant Physiol ; 194(3): 1467-1480, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38036295

RESUMEN

Root growth is sustained by cell division and differentiation of the root apical meristem (RAM), in which brassinosteroid (BR) signaling mediated via the dynamic targeting of BRASSINOSTEROID-INSENSITIVE1 (BRI1) plays complex roles. BRI1 is constitutively secreted to the plasma membrane (PM), internalized, and recycled or delivered into vacuoles, whose PM abundance is critical for BR signaling. Vesicle-target membrane fusion is regulated by heterotetrameric SNARE complexes. SNARE proteins have been implicated in BRI1 targeting, but how SNAREs affect RAM development is unclear. We report that Arabidopsis (Arabidopsis thaliana) YKT61, an atypical R-SNARE protein, is critical for BR-controlled RAM development through the dynamic targeting of BRI1. Functional loss of YKT61 is lethal for both male and female gametophytes. By using weak mutant alleles of YKT61, ykt61-partially complemented (ykt61-pc), we show that YKT61 knockdown results in a reduction of RAM length due to reduced cell division, similar to that in bri1-116. YKT61 physically interacts with BRI1 and is critical for the dynamic recycling of BRI1 to the PM. We further determine that YKT61 is critical for the dynamic biogenesis of vacuoles, for the maintenance of Golgi morphology, and for endocytosis, which may have a broad effect on development. Endomembrane compartments connected via vesicular machinery, such as SNAREs, influence nuclear-controlled cellular activities such as division and differentiation by affecting the dynamic targeting of membrane proteins, supporting a retro-signaling pathway from the endomembrane system to the nucleus.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brasinoesteroides , División Celular , Meristema/genética , Proteínas R-SNARE/genética , Proteínas SNARE
10.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139155

RESUMEN

The vesicle-associated membrane protein 7 (VAMP7) is a SNARE protein of the longin family involved in a wide range of subcellular trafficking events, including neurite sprouting and elongation. The expression of the human gene SYBL1, encoding VAMP7, is finely regulated by alternative splicing. Among the minor isoforms identified so far, VAMP7j is the one most expressed and modulated in the human brain. Therefore, we focused on gaining functional evidence on VAMP7j, which lacks a functional SNARE motif but retains both the longin and transmembrane domains. In human SH-SY5Y cells, we found VAMP7j to modulate neuritogenesis by mediating transport of L1CAM toward the plasma membrane, in a fashion regulated by phosphorylation of the longin domain. VAMP7-mediated regulation of L1CAM trafficking seems at least to differentiate humans from rats, with VAMP7j CNS expression being restricted to primates, including humans. Since L1CAM is a central player in neuritogenesis and axon guidance, these findings suggest the species-specific splicing of SYBL1 is among the fine tuners of human neurodevelopmental complexity.


Asunto(s)
Molécula L1 de Adhesión de Célula Nerviosa , Neuroblastoma , Animales , Humanos , Ratas , Membrana Celular/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuroblastoma/metabolismo , Proyección Neuronal , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo
11.
Plant J ; 116(6): 1633-1651, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37659090

RESUMEN

The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.


Asunto(s)
Arabidopsis , Proteínas SNARE , Membrana Celular/metabolismo , Fusión de Membrana , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Tirosina/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo
12.
Elife ; 122023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695731

RESUMEN

Tomosyn is a large, non-canonical SNARE protein proposed to act as an inhibitor of SNARE complex formation in the exocytosis of secretory vesicles. In the brain, tomosyn inhibits the fusion of synaptic vesicles (SVs), whereas its role in the fusion of neuropeptide-containing dense core vesicles (DCVs) is unknown. Here, we addressed this question using a new mouse model with a conditional deletion of tomosyn (Stxbp5) and its paralogue tomosyn-2 (Stxbp5l). We monitored DCV exocytosis at single vesicle resolution in tomosyn-deficient primary neurons using a validated pHluorin-based assay. Surprisingly, loss of tomosyns did not affect the number of DCV fusion events but resulted in a strong reduction of intracellular levels of DCV cargos, such as neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF). BDNF levels were largely restored by re-expression of tomosyn but not by inhibition of lysosomal proteolysis. Tomosyn's SNARE domain was dispensable for the rescue. The size of the trans-Golgi network and DCVs was decreased, and the speed of DCV cargo flux through Golgi was increased in tomosyn-deficient neurons, suggesting a role for tomosyns in DCV biogenesis. Additionally, tomosyn-deficient neurons showed impaired mRNA expression of some DCV cargos, which was not restored by re-expression of tomosyn and was also observed in Cre-expressing wild-type neurons not carrying loxP sites, suggesting a direct effect of Cre recombinase on neuronal transcription. Taken together, our findings argue against an inhibitory role of tomosyns in neuronal DCV exocytosis and suggests an evolutionary conserved function of tomosyns in the packaging of secretory cargo at the Golgi.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Vesículas de Núcleo Denso , Proteínas del Tejido Nervioso , Neuronas , Proteínas R-SNARE , Animales , Ratones , Evolución Biológica , Aparato de Golgi , Proteínas del Tejido Nervioso/genética , Proteínas R-SNARE/genética , Exocitosis
13.
Plant Cell ; 35(12): 4347-4365, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37713604

RESUMEN

The extended tubular shape of root hairs is established by tip growth and concomitant hardening. Here, we demonstrate that a syntaxin of plants (SYP)123-vesicle-associated membrane protein (VAMP)727-dependent secretion system delivers secondary cell wall components for hardening the subapical zone and shank of Arabidopsis (Arabidopsis thaliana) root hairs. We found increased SYP123 localization at the plasma membrane (PM) of the subapical and shank zones compared with the tip region in elongating root hairs. Inhibition of phosphatidylinositol (PtdIns)(3,5)P2 production impaired SYP123 localization at the PM and SYP123-mediated root hair shank hardening. Moreover, root hair elongation in the syp123 mutant was insensitive to a PtdIns(3,5)P2 synthesis inhibitor. SYP123 interacts with both VAMP721 and VAMP727. syp123 and vamp727 mutants exhibited reduced shank cell wall stiffness due to impaired secondary cell wall component deposition. Based on these results, we conclude that SYP123 is involved in VAMP721-mediated conventional secretion for root hair elongation as well as in VAMP727-mediated secretory functions for the delivery of secondary cell wall components to maintain root hair tubular morphology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoplasma/metabolismo , Pared Celular/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Raíces de Plantas , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
14.
Platelets ; 34(1): 2237114, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37545110

RESUMEN

Platelet secretion requires Soluble N-ethylmaleimide Sensitive Attachment Protein Receptors (SNAREs). Vesicle SNAREs/Vesicle-Associated Membrane Proteins (v-SNAREs/VAMPs) on granules and t-SNAREs in plasma membranes mediate granule release. Platelet VAMP heterogeneity has complicated the assessment of how/if each is used and affects hemostasis. To address the importance of VAMP-7 (V7), we analyzed mice with global deletions of V3 and V7 together or platelet-specific deletions of V2, V3, and global deletion of V7. We measured the kinetics of cargo release, and its effects on three injury models to define the context-specific roles of these VAMPs. Loss of V7 minimally affected dense and α granule release but did affect lysosomal release. V3-/-7-/- and V2Δ3Δ7-/- platelets showed partial defects in α and lysosomal release; dense granule secretion was unaffected. In vivo assays showed that loss of V2, V3, and V7 caused no bleeding or occlusive thrombosis. These data indicate a role for V7 in lysosome release that is partially compensated by V3. V7 and V3, together, contribute to α granule release, however none of these deletions affected hemostasis/thrombosis. Our results confirm the dominance of V8. When it is present, deletion of V2, V3, or V7 alone or in combination minimally affects platelet secretion and hemostasis.


What did we know? V8 is the primary VAMP isoform for platelet granule secretion, but V2 and V3 play compensatory roles.V3 is important for platelet endocytosis.V7 plays a minimal role in secretion and does not affect hemostasis.What did we discover? The loss of both V3 and V7 increases α and lysosomal secretion defects.Platelet-specific deletion of V2 and V3 with global V7-deletion causes defective α and lysosomal release.Secretion deficiencies in V3−/−7−/− and V2Δ3Δ7−/− have no effect on hemostasis or thrombosis.What is the impact? We show that endosomal v-SNAREs (V3 and V7) play minor roles in secretion.V3−/−7−/− and platelet-specific V2Δ3Δ7−/− mice are viable and will be valuable in in vivo studies of membrane trafficking.


Asunto(s)
Trombosis , Proteína 2 de Membrana Asociada a Vesículas , Ratones , Animales , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Plaquetas/metabolismo , Hemostasis , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Trombosis/metabolismo , Exocitosis
15.
FASEB J ; 37(8): e23075, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37432648

RESUMEN

Stimulus-coupled insulin secretion from the pancreatic islet ß-cells involves the fusion of insulin granules to the plasma membrane (PM) via SNARE complex formation-a cellular process key for maintaining whole-body glucose homeostasis. Less is known about the role of endogenous inhibitors of SNARE complexes in insulin secretion. We show that an insulin granule protein synaptotagmin-9 (Syt9) deletion in mice increased glucose clearance and plasma insulin levels without affecting insulin action compared to the control mice. Upon glucose stimulation, increased biphasic and static insulin secretion were observed from ex vivo islets due to Syt9 loss. Syt9 colocalizes and binds with tomosyn-1 and the PM syntaxin-1A (Stx1A); Stx1A is required for forming SNARE complexes. Syt9 knockdown reduced tomosyn-1 protein abundance via proteasomal degradation and binding of tomosyn-1 to Stx1A. Furthermore, Stx1A-SNARE complex formation was increased, implicating Syt9-tomosyn-1-Stx1A complex is inhibitory in insulin secretion. Rescuing tomosyn-1 blocked the Syt9-knockdown-mediated increases in insulin secretion. This shows that the inhibitory effects of Syt9 on insulin secretion are mediated by tomosyn-1. We report a molecular mechanism by which ß-cells modulate their secretory capacity rendering insulin granules nonfusogenic by forming the Syt9-tomosyn-1-Stx1A complex. Altogether, Syt9 loss in ß-cells decreases tomosyn-1 protein abundance, increasing the formation of Stx1A-SNARE complexes, insulin secretion, and glucose clearance. These outcomes differ from the previously published work that identified Syt9 has either a positive or no effect of Syt9 on insulin secretion. Future work using ß-cell-specific deletion of Syt9 mice is key for establishing the role of Syt9 in insulin secretion.


Asunto(s)
Glucosa , Insulina , Animales , Ratones , Secreción de Insulina , Sinaptotagminas/genética , Sintaxina 1/genética , Proteínas del Tejido Nervioso , Proteínas R-SNARE/genética
16.
Mol Plant Pathol ; 24(9): 1154-1167, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37278116

RESUMEN

The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ralstonia solanacearum , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Nicotiana/microbiología , Inmunidad de la Planta/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
17.
Medicine (Baltimore) ; 102(15): e33546, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058019

RESUMEN

YKT6, as a Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein with vesicle trafficking, plays an essential role in the development and progression of tumor. However, the gene of YKT6 has not been fully assessed in pan-cancer studies. We aim to investigate the gene of YKT6 across 33 different types of tumor by using the Cancer Genome Atlas, Gene Expression Omnibus database, and other several kinds of bioinformatic tools. YKT6 is significantly up-regulated in most tumors, and we found that overexpression of YKT6 is positively associated with poor prognosis of overall survival and poor disease-free survival prognosis in several tumors, such as Adrenocortical carcinoma, Bladder Urothelial Carcinoma, Head and Neck squamous cell carcinoma. We also detected distinct associations exist between YKT6 and tumor mutational burden or microsatellite instability with tumors. YKT6 expression was positively related to cancer-associated fibroblasts for TCGA tumors of colon adenocarcinoma and LGG. Furthermore, we discovered a significantly positively correlation between YKT6 expression and endothelial cell in tumors of colon adenocarcinoma, HNSC-HPV+, OV, READ and THCA. While a negative relationship was obtained between YKT6 expression and endothelial cell in KIRC. Moreover, "Syntaxin binding," "SNARE complex," "vesicle fusion" and "DNA replication" are involved in the influence of YKT6 on tumor pathogenesis. Our pan-cancer analysis offers a deep comprehending the gene of YKT6 in tumoeigenesis from viewpoint of clinical tumor samples.


Asunto(s)
Adenocarcinoma , Carcinoma de Células Transicionales , Neoplasias del Colon , Neoplasias de la Vejiga Urinaria , Humanos , Proteínas R-SNARE/genética , Proteínas SNARE
18.
Plant Physiol ; 191(1): 446-462, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36331331

RESUMEN

DNA damage response (DDR) in eukaryotes is essential for the maintenance of genome integrity in challenging environments. The regulatory mechanisms of DDR have been well-established in yeast and humans. However, increasing evidence supports the idea that plants seem to employ different signaling pathways that remain largely unknown. Here, we report the role of MODIFIER OF SNC1, 4-ASSOCIATED COMPLEX SUBUNIT 5A (MAC5A) in DDR in Arabidopsis (Arabidopsis thaliana). Lack of MAC5A in mac5a mutants causes hypersensitive phenotypes to methyl methanesulfonate (MMS), a DNA damage inducer. Consistent with this observation, MAC5A can regulate alternative splicing of DDR genes to maintain the proper response to genotoxic stress. Interestingly, MAC5A interacts with the 26S proteasome (26SP) and is required for its proteasome activity. MAC core subunits are also involved in MMS-induced DDR. Moreover, we find that MAC5A, the MAC core subunits, and 26SP may act collaboratively to mediate high-boron-induced growth repression through DDR. Collectively, our findings uncover the crucial role of MAC in MMS-induced DDR in orchestrating growth and stress adaptation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Daño del ADN , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas R-SNARE/genética , Proteínas de Unión al ARN/metabolismo
19.
New Phytol ; 234(4): 1278-1293, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35224735

RESUMEN

Salt tolerance during seed germination is essential for seedling establishment under salt stress. Sirtuin-like proteins, NAD+ -dependent histone deacetylases, are involved in plant responses to abiotic stresses; however, the regulatory mechanism remains unknown. We elucidated the mechanism underlying AtSRT2 (a sirtuin-like protein)-mediated regulation of salt tolerance during seed germination in Arabidopsis. The AtSRT2 mutant srt2 exhibited significantly reduced seed germination percentages under salt stress; its targets were identified via chromatin immunoprecipitation coupled with ultra-high-throughput parallel DNA sequencing (ChIP-Seq) assay. Epistasis analysis was performed to identify AtSRT2-related pathways. Overexpression of SRT2.7, an AtSRT2 splice variant, rescued the salt-sensitive phenotype of mutant srt2. AtSRT2 histone deacetylation activity was important for salt tolerance during seed germination. The acetylation level of histone H4K8 locus in srt2-1 increased significantly under salt treatment. Vesicle-associated membrane protein 714 (VAMP714), a negative regulator of hydrogen peroxide (H2 O2 )-containing vesicle trafficking in cells, was identified as a target of AtSRT2. AtSRT2 regulated histone acetylation in the promoter region of VAMP714 and inhibited VAMP714 transcription under salt treatment. Seed germination percentage of double-mutant srt2-1vamp714 was close to that of single-mutant vamp714, and higher than that of single-mutant srt2 under salt stress. Hydrogen peroxide content and DNA damage increased after salt treatment in srt2 during seed germination. AtSRT2 regulates salt tolerance during seed germination through VAMP714 in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sirtuinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas R-SNARE/genética , Tolerancia a la Sal/genética , Semillas/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Estrés Fisiológico/genética
20.
Cell Death Dis ; 13(1): 84, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082283

RESUMEN

Deregulated lncRNAs play critical roles in tumorigenesis and tumor progression. NR2F1-AS1 is an antisense lncRNA of NR2F1. However, the biological function of NR2F1-AS1 in gastric cancer (GC) remains largely unclear. In this study, we revealed that NR2F1-AS1 and NR2F1 were both positively correlated with the degree of malignancy and predicted poor prognosis in two independent GC cohorts. Besides, NR2F1-AS1 and NR2F1 can respond to Epithelial-to-mesenchymal transition (EMT) signaling in GC, since their expression was increased by TGF-beta treatment and decreased after stable overexpression of OVOL2 in GC cell lines. NR2F1-AS1 and NR2F1 were highly co-expressed in pan-tissues and pan-cancers. Depletion of NR2F1-AS1 compromised the expression level of NR2F1 in GC cells. Furthermore, NR2F1-AS1 knockdown inhibited the proliferation, migration, invasion and G1/S transition of GC cells. More importantly, transcriptome sequencing revealed a novel ceRNA network composed of NR2F1-AS1, miR-29a-3p, and VAMP7 in GC. The overexpression of VAMP7 predicted poor prognosis in GC. Rescue assay confirmed that NR2F1-AS1 promotes GC progression through miR-29a-3p/VAMP7 axis. Our finding highlights that the aberrant expression of NR2F1-AS1 is probably due to the abnormal EMT signaling in GC. LncRNA NR2F1-AS1 plays crucial roles in GC progression by modulating miR-29a-3p/VAMP7 axis, suggesting that NR2F1-AS1 may serve as a potential therapeutic target in GC.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Factor de Transcripción COUP I/genética , Factor de Transcripción COUP I/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas R-SNARE/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/patología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA