Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Prog ; 37(2): e3104, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33274853

RESUMEN

The discovery of CRISPR-Cas9 has revolutionized molecular biology, greatly accelerating the introduction of genetic modifications into organisms and facilitating the development of novel therapeutics and diagnostics. For many applications, guide RNA and Cas9 protein are expressed, combined, and purified to produce a ribonucleic enzyme complex that is then added into a diagnostic device or delivered into cells. The objective of this work was to develop an ultrafiltration process for the selective purification of Cas9 ribonucleoprotein by removal of excess guide RNA. A His-tagged Streptococcus pyogenes Cas9 protein was produced in Escherichia coli, purified by metal affinity chromatography, and complexed with a 40 kDa (124 nucleotide) single guide RNA. Ultrafiltration experiments were first performed on solutions containing either guide RNA or Cas9 protein to identify the effect of filtration conditions and membrane pore size on the selectivity. Shear-induced aggregation of the Cas9 led to significant fouling under some conditions. A diafiltration process was then developed using a Biomax® 300 kDa polyethersulfone membrane to selectively remove excess guide RNA from a solution containing Cas9-bound guide RNA and free guide RNA. These results demonstrate the potential of using ultrafiltration for the removal of excess RNA during the production of functional ribonucleoprotein complexes.


Asunto(s)
Proteína 9 Asociada a CRISPR/aislamiento & purificación , Cromatografía de Afinidad/métodos , Escherichia coli/metabolismo , Histidina/química , ARN Guía de Kinetoplastida/aislamiento & purificación , Streptococcus pyogenes/enzimología , Ultrafiltración/métodos , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/metabolismo , Escherichia coli/genética , Streptococcus pyogenes/genética
2.
Methods ; 164-165: 36-48, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31078796

RESUMEN

The CRISPR/Cas9 system is transforming many biomedical disciplines, including cancer research. Through its flexible programmability and efficiency to induce DNA double strand breaks it has become straightforward to introduce cancer mutations into cells in vitro and/or in vivo. However, not all mutations contribute equally to tumorigenesis and distinguishing essential mutations for tumor growth and survival from biologically inert mutations is cumbersome. Here we present a method to screen for the functional relevance of mutations in high throughput in established cancer cell lines. We employ the CRISPR/Cas9 system to probe cancer vulnerabilities in a colorectal carcinoma cell line in an attempt to identify novel cancer driver mutations. We designed 100 high quality sgRNAs that are able to specifically cleave mutations present in the colorectal carcinoma cell line RKO. An all-in-one lentiviral library harboring these sgRNAs was then generated and used in a pooled screen to probe possible growth dependencies on these mutations. Genomic DNA at different time points were collected, the sgRNA cassettes were PCR amplified, purified and sgRNA counts were quantified by means of deep sequencing. The analysis revealed two sgRNAs targeting the same mutation (UTP14A: S99delS) to be depleted over time in RKO cells. Validation and characterization confirmed that the inactivation of this mutation impairs cell growth, nominating UTP14A: S99delS as a putative driver mutation in RKO cells. Overall, our approach demonstrates that the CRISPR/Cas9 system is a powerful tool to functionally dissect cancer mutations at large-scale.


Asunto(s)
Sistemas CRISPR-Cas/genética , Neoplasias Colorrectales/genética , Análisis Mutacional de ADN/métodos , Edición Génica/métodos , Biblioteca Genómica , Línea Celular Tumoral , Clonación Molecular/métodos , Análisis Mutacional de ADN/instrumentación , Vectores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lentivirus/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/aislamiento & purificación , Transfección/instrumentación , Transfección/métodos
3.
BMC Bioinformatics ; 20(1): 122, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30866794

RESUMEN

BACKGROUND: Balancer chromosomes are tools used by fruit fly geneticists to prevent meiotic recombination. Recently, CRISPR/Cas9 genome editing has been shown capable of generating inversions similar to the chromosomal rearrangements present in balancer chromosomes. Extending the benefits of balancer chromosomes to other multicellular organisms could significantly accelerate biomedical and plant genetics research. RESULTS: Here, we present GRIBCG (Guide RNA Identifier for Balancer Chromosome Generation), a tool for the rational design of balancer chromosomes. GRIBCG identifies single guide RNAs (sgRNAs) for use with Streptococcus pyogenes Cas9 (SpCas9). These sgRNAs would efficiently cut a chromosome multiple times while minimizing off-target cutting in the rest of the genome. We describe the performance of this tool on six model organisms and compare our results to two routinely used fruit fly balancer chromosomes. CONCLUSION: GRIBCG is the first of its kind tool for the design of balancer chromosomes using CRISPR/Cas9. GRIBCG can accelerate genetics research by providing a fast, systematic and simple to use framework to induce chromosomal rearrangements.


Asunto(s)
Cromosomas de Insectos/genética , ARN Guía de Kinetoplastida/aislamiento & purificación , Programas Informáticos , Animales , Proteína 9 Asociada a CRISPR/genética , Inversión Cromosómica , Drosophila/genética , Edición Génica , ARN Guía de Kinetoplastida/genética , Streptococcus pyogenes
4.
J Ind Microbiol Biotechnol ; 46(2): 187-201, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30484125

RESUMEN

This study details a reliable and efficient method for CRISPR-Cas9 genome engineering in the high amino acid-producing strain of Corynebacterium glutamicum, NRRL-B11474. Our investigation demonstrates that a plasmid-encoded single-guide RNA paired with different edit-encoding fragments is sufficient to generate edits without the addition of an exogenous recombinase. This approach leverages a genome-integrated copy of the cas9 gene for reduced toxicity, in combination with a single plasmid carrying the targeting guide RNA and matching edit fragment. Our study systematically investigated the impact of homology arm length on editing efficiency and demonstrates genome editing with homology arm lengths as small as 25 bp for single-nucleotide polymorphisms and 75 bp for 100 bp sequence swaps. These homology arm lengths are smaller than previously reported for other strains of C. glutamicum. Our study finds that C. glutamicum NRRL-B11474 is not amenable to efficient transformation with plasmids containing the BL1, NG2, or CC1 origins of replication. This finding differs from all previously reported approaches to plasmid-based CRISPR-Cas9 or Cpf1 editing in other strains of C. glutamicum. Two alternative origins of replication (CG1 and CASE1) can be used to successfully introduce genome edits; furthermore, our data demonstrate improved editing efficiency when guide RNAs and edit fragments are encoded on plasmids carrying the CASE1 origin of replication (compared to plasmids carrying CG1). In addition, this study demonstrates that efficient editing can be done using an integrated Cas9 without the need for a recombinase. We demonstrate that the specifics of CRISPR-Cas9 editing configurations may need to be tailored to enable different edit types in a particular strain background. Refining configuration parameters such as edit type, homology arm length, and plasmid origin of replication enables robust, flexible, and efficient CRISPR-Cas9 editing in differing genetic strain contexts.


Asunto(s)
Sistemas CRISPR-Cas , Corynebacterium glutamicum/genética , Edición Génica , Eliminación de Gen , Plásmidos/genética , Polimorfismo de Nucleótido Simple , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/aislamiento & purificación
5.
ACS Synth Biol ; 7(12): 2908-2917, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30458109

RESUMEN

Despite being utilized widely in genome sciences, CRISPR-Cas9 remains limited in achieving high fidelity in cleaving DNA. A better understanding of the molecular basis of Cas9 holds the key to improve Cas9-based tools. We employed direct evolution and in vitro characterizations to explore structural parameters that impact the specificity of the thermophilic Cas9 from Acidothermus cellulolyticus (AceCas9). By identifying variants that are able to cleave mismatched protospacers within the seed region, we found a critical role of the phosphate lock residues in substrate specificity in a manner that depends on their sizes and charges. Removal of the negative charge from the phosphate lock residues significantly decreases sensitivity to the guide-DNA mismatches. An increase in size of the substituted residues further reduces the sensitivity to mismatches at the first position of the protospacer. Our findings identify the phosphate lock residues as an important site for tuning the specificity and catalytic efficiency of Cas9.


Asunto(s)
Actinomycetales/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Edición Génica/métodos , Fosfatos/química , Disparidad de Par Base , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/genética , Evolución Molecular Dirigida , Mutagénesis , Plásmidos/genética , Plásmidos/metabolismo , ARN Guía de Kinetoplastida/aislamiento & purificación , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato
6.
Curr Protoc Mol Biol ; 120: 31.10.1-31.10.19, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28967993

RESUMEN

CRISPR-Cas systems have been harnessed as modular genome editing reagents for functional genomics and show promise to cure genetic diseases. Directed by a guide RNA, a Cas effector introduces a double stranded break in DNA and host cell DNA repair leads to the introduction of errors (e.g., to knockout a gene) or a programmed change. Introduction of a Cas effector and guide RNA as a purified Cas ribonucleoprotein complex (CasRNP) has recently emerged as a powerful approach to alter cell types and organisms. Not only does CasRNP editing exhibit increased efficacy and specificity, it avoids optimization and iteration of species-specific factors such as codon usage, promoters, and terminators. CasRNP editing has been rapidly adopted for research use in many contexts and is quickly becoming a popular method to edit primary cells for therapeutic application. This article describes how to make a Cas9 RNP and outlines its use for gene editing in human cells. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR , Sistema Libre de Células , Endonucleasas/genética , Endonucleasas/aislamiento & purificación , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica/métodos , Expresión Génica , Marcación de Gen/métodos , Humanos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/aislamiento & purificación , Proteínas Recombinantes , Transcripción Genética
7.
Arch Virol ; 162(12): 3881-3886, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28900740

RESUMEN

Pseudorabies virus (PRV) is a swine herpesvirus that causes significant morbidity and mortality in swine populations and has caused huge economic losses in the worldwide swine industry. Currently, there is no effective antiviral drug in clinical use for PRV infection; it is also difficult to eliminate PRV from infected swine. In our study, we set out to combat these swine herpesvirus infections by exploiting the CRISPR/Cas9 system. We designed 75 single guide RNAs (sgRNA) by targeting both essential and non-essential genes across the genome of PRV. We applied a firefly luciferase-tagged reporter PRV virus for high-throughput sgRNA screening and found that most of the sgRNAs significantly inhibited PRV replication. More importantly, using a transfection assay, we demonstrated that simultaneous targeting of PRV with multiple sgRNAs completely abolished the production of infectious viruses in cells. These data suggest that CRISPR/Cas9 could be a novel therapeutic agent against PRV in the future.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Herpesvirus Suido 1/efectos de los fármacos , Herpesvirus Suido 1/fisiología , ARN Guía de Kinetoplastida/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Sistemas CRISPR-Cas , Línea Celular , Marcación de Gen , ARN Guía de Kinetoplastida/aislamiento & purificación , Porcinos
8.
Methods Mol Biol ; 1421: 97-109, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26965260

RESUMEN

Pseudouridylation is the most abundant and widespread RNA modification, and it plays an important role in modulating the structure and function of RNA. In eukaryotes and archaea, RNA pseudouridylation is catalyzed largely by box H/ACA ribonucleoproteins (RNPs), a distinct group of RNA-protein complexes each consisting of a unique RNA and four common proteins. The RNA component of the complex serves as a guide that base-pairs with its substrate RNA and specifies the target uridine to be modified. In order to systematically study the function and mechanism of pseudouridylation, it is desirable to have a reconstitution system in which biochemically purified/reconstituted box H/ACA RNPs are capable of introducing pseudouridines into an RNA at any target site. Here, we describe a method for the reconstitution of functional box H/ACA RNPs using designer box H/ACA guide RNAs, which in principle can be adopted to reconstitute other RNA-protein complexes as well.


Asunto(s)
Proteínas Fúngicas/metabolismo , Seudouridina/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/metabolismo , Levaduras/metabolismo , Técnicas de Cultivo de Célula/métodos , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Inmunoprecipitación/métodos , Seudouridina/genética , Procesamiento Postranscripcional del ARN , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/aislamiento & purificación , Ribonucleoproteínas/genética , Ribonucleoproteínas/aislamiento & purificación , Transcripción Genética , Levaduras/genética
9.
Biochem Biophys Res Commun ; 471(4): 528-32, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26879140

RESUMEN

CRISPR-Cas9 mediated genome editing system has been developed as a powerful tool for elucidating the function of genes through genetic engineering in multiple cells and organisms. This system takes advantage of a single guide RNA (sgRNA) to direct the Cas9 endonuclease to a specific DNA site to generate mutant alleles. Since the targeting efficiency of sgRNAs to distinct DNA loci can vary widely, there remains a need for a rapid, simple and efficient sgRNA selection method to overcome this limitation of the CRISPR-Cas9 system. Here we report a novel system to select sgRNA with high efficacy for DNA sequence modification by a luciferase assay. Using this sgRNAs selection system, we further demonstrated successful examples of one sgRNA for generating one gene knockout cell lines where the targeted genes are shown to be functionally defective. This system provides a potential application to optimize the sgRNAs in different species and to generate a powerful CRISPR-Cas9 genome-wide screening system with minimum amounts of sgRNAs.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ingeniería Genética , ARN Guía de Kinetoplastida/aislamiento & purificación , Selección Genética , Proteínas Bacterianas , Proteína 9 Asociada a CRISPR , Endonucleasas , Técnicas de Inactivación de Genes , Células HEK293 , Células HT29 , Humanos , Lentivirus , Luciferasas/química , ARN Guía de Kinetoplastida/genética , Transfección
10.
RNA Biol ; 5(2): 84-91, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18418086

RESUMEN

The majority of mitochondrial mRNAs in African trypanosomes are subject to an RNA editing reaction, which is characterized by the insertion and/or deletion of U nucleotides only. The reaction creates functional mRNAs and is catalyzed by a high molecular mass enzyme complex, the editosome. Editosomes interact with a unique class of small non-coding, 3'-oligouridylated (oU) RNAs, so-called guide RNAs (gRNAs). Guide RNAs function as transacting templates in the U deletion/insertion reaction and thus, represent key components in the reaction cycle. Furthermore, by utilizing different gRNAs, alternative editing events can take place, thereby expanding the protein diversity in the mitochondria of the parasites. In this study, we have analyzed small, non-coding mitochondrial transcripts from Trypanosoma brucei. By generating cDNA libraries from size-selected RNA populations we identified 51 novel oU-RNAs. For 29 of these RNAs we were able to predict cognate mRNA targets. By Northern blot analysis, we verified the expression of 22 of these oU-RNAs and demonstrate that they share all known gRNA characteristics. Five of these 51 putative gRNAs are characterized by single mismatches to their cognate, fully edited mRNA sequences suggesting that they could act as gRNAs for alternative editing events.


Asunto(s)
Mitocondrias/metabolismo , ARN Guía de Kinetoplastida/aislamiento & purificación , ARN Protozoario/aislamiento & purificación , Trypanosoma brucei brucei/metabolismo , Animales , Células Clonales , ADN de Cinetoplasto/metabolismo , Regulación de la Expresión Génica , Biblioteca de Genes , Genoma/genética , Oligorribonucleótidos/metabolismo , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/clasificación , ARN Protozoario/química , ARN Protozoario/clasificación , Análisis de Secuencia de ADN , Nucleótidos de Uracilo/metabolismo
11.
J Mol Biol ; 359(3): 585-96, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16631792

RESUMEN

RNA editing in trypanosomes is a post-transcriptional process responsible for correcting the coding sequences of many mitochondrial mRNAs. Uridine bases are specifically added or deleted from mRNA by an enzymatic cascade in which a pre-edited mRNA is cleaved specifically, uridine bases are added or removed, and the corrected mRNA is ligated. The process is directed by RNA molecules, termed guide RNAs (gRNA). The ability of this class of small, non-coding RNA to function in RNA editing is essential for these organisms. Typically, gRNAs are transcribed independent of their cognate mRNA and anneal to form a binary RNA complex. An exception from this process is the cytochrome oxidase subunit II (COII) mRNA, which encodes its gRNA within its 3' untranslated region. This gRNA lacks the ability to function in trans. Using an in vitro editing assay, we find that improving thermodynamic stability to the anchor region through increased Watson-Crick base-pairing is sufficient to impart trans editing activity. We further show that a point mutation outside the known functional regions of a gRNA induces both a conformational rearrangement of the gRNA and causes a decrease in the rate of editing. Taken together, these results lead us to propose a model for a potential proofreading step in the formation of a gRNA:pre-edited mRNA binary complex. The mechanism relies on the thermodynamic stability supplied to the RNA complex through Watson-Crick base-pairing. Through mutations in the gRNA, we demonstrate the importance of gRNA structure to the RNA editing reaction.


Asunto(s)
Conformación de Ácido Nucleico , Edición de ARN , Precursores del ARN/química , ARN Guía de Kinetoplastida/química , ARN Protozoario/química , Trypanosoma brucei brucei/genética , Regiones no Traducidas 3' , Animales , Emparejamiento Base , Secuencia de Bases , Complejo IV de Transporte de Electrones/genética , Datos de Secuencia Molecular , Mutación Puntual , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/aislamiento & purificación , ARN Protozoario/genética , ARN Protozoario/aislamiento & purificación , Termodinámica
12.
J Biol Chem ; 270(13): 7233-40, 1995 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-7535769

RESUMEN

RNA editing in Trypanosoma brucei results in the addition and deletion of uridine residues within several mitochondrial mRNAs. Editing is thought to be directed by guide RNAs and may proceed via a chimeric guide RNA/mRNA intermediate. We have previously shown that chimera-forming activity sediments with 19 S and 35-40 S mitochondrial ribonucleoprotein particles (RNPs). In this report we examine the involvement of RNA ligase in the production of chimeric molecules in vitro. Two adenylylated proteins of 50 and 57 kDa co-sediment on glycerol gradients with RNA ligase activity as components of the ribonucleoprotein particles. The two adenylylated proteins differ in sequence and contain AMP linked via a phosphoamide bond. Both proteins are deadenylylated by the addition of ligatable RNA substrate with the concomitant release of AMP and by the addition of pyrophosphate to yield ATP. Incubation with nonligatable RNA substrate results in an accumulation of the adenylylated RNA intermediate. These experiments identify the adenylylated proteins as RNA ligases. AMP release from the mitochondrial RNA ligase is also concomitant with chimera formation. Inhibition by nonhydrolyzable analogs indicates that both RNA ligase and chimera-forming activities require alpha-beta bond hydrolysis of ATP. Deadenylylation of the ligase inhibits chimera formation. These results strongly suggest the involvement of RNA ligase in in vitro chimera formation and support the cleavage-ligation mechanism for kinetoplastid RNA editing.


Asunto(s)
ARN Ligasa (ATP)/metabolismo , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , Trypanosoma brucei brucei/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Quimera , Cinética , Mitocondrias/metabolismo , ARN/metabolismo , ARN Ligasa (ATP)/aislamiento & purificación , ARN Guía de Kinetoplastida/biosíntesis , ARN Guía de Kinetoplastida/aislamiento & purificación , ARN Mensajero/biosíntesis , ARN Mensajero/aislamiento & purificación , ARN Mitocondrial , ARN Protozoario/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA