Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Cell Commun Signal ; 22(1): 450, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327600

RESUMEN

Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation. We show that within minutes of exposure to differentiation cues and activation of the electron transport chain, the mitochondrial outer membrane transiently fuses with the nuclear membrane of neural progenitors, leading to efflux of nuclear-encoded RNAs (neRNA) into the positively charged mitochondrial intermembrane space. Subsequent degradation of mitochondrial neRNAs by Polynucleotide phosphorylase 1 (PNPase) located in the intermembrane space curbs the transcriptomic memory of progenitor cells. Further, acquisition of neRNA by mitochondria leads to a collapse of proton motive force, suppression of ATP production, and a resultant amplification of autophagic flux that attenuates proteomic memory. Collectively, these events force the progenitor cells towards a "tipping point" characterised by emergence of a competing neuronal differentiation program. It appears that neuronal differentiation is a consequence of reprogrammed coupling of metabolomic and transcriptomic landscapes of progenitor cells, with mitochondria emerging as key "reprogrammers" that operate by acquiring and metabolising neRNAs. However, the documented role of mitochondria as "reprogrammers" of differentiation remains to be validated in other neuronal lineages and in vivo.


Asunto(s)
Diferenciación Celular , Mitocondrias , Neuronas , ARN Nuclear , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/citología , Animales , ARN Nuclear/metabolismo , ARN Nuclear/genética , Humanos , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética
2.
Biochem Soc Trans ; 52(4): 1605-1615, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39082979

RESUMEN

Although the majority of RNAs are retained in the nucleus, their significance is often overlooked. However, it is now becoming clear that nuclear RNA forms a dynamic structure through interacting with various proteins that can influence the three-dimensional structure of chromatin. We review the emerging evidence for a nuclear RNA mesh or gel, highlighting the interplay between DNA, RNA and RNA-binding proteins (RBPs), and assessing the critical role of protein and RNA in governing chromatin architecture. We also discuss a proposed role for the formation and regulation of the nuclear gel in transcriptional control. We suggest that it may concentrate the transcriptional machinery either by direct binding or inducing RBPs to form microphase condensates, nanometre sized membraneless structures with distinct properties to the surrounding medium and an enrichment of particular macromolecules.


Asunto(s)
Cromatina , Transcripción Genética , Cromatina/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , ARN Nuclear/metabolismo , ARN Nuclear/genética , Animales , Núcleo Celular/metabolismo , ARN/metabolismo , ARN/genética , ADN/metabolismo
3.
Mol Cell ; 84(11): 2014-2016, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848690

RESUMEN

In a recent publication in Science, Zocher et al.1 identify and characterize long-lived nuclear RNA in the mouse brain, suggesting their potential roles as guardians of neuronal longevity.


Asunto(s)
Neuronas , Animales , Neuronas/metabolismo , Ratones , Longevidad/genética , Encéfalo/metabolismo , Humanos , ARN Nuclear/metabolismo , ARN Nuclear/genética
4.
Cell Stem Cell ; 31(5): 583-585, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701751

RESUMEN

How nuclear RNA homeostasis impacts cellular functions remains elusive. In this issue of Cell Stem Cell, Han et al.1 utilized a controllable protein degradation system targeting EXOSC2 to perturb RNA homeostasis in mouse pluripotent embryonic stem cells, revealing its vital role in orchestrating crucial nuclear events for cellular fitness.


Asunto(s)
Homeostasis , ARN Nuclear , Animales , Ratones , ARN Nuclear/metabolismo , ARN Nuclear/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Núcleo Celular/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , ARN/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología
5.
Science ; 384(6691): 53-59, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574132

RESUMEN

Genomic DNA that resides in the nuclei of mammalian neurons can be as old as the organism itself. The life span of nuclear RNAs, which are critical for proper chromatin architecture and transcription regulation, has not been determined in adult tissues. In this work, we identified and characterized nuclear RNAs that do not turn over for at least 2 years in a subset of postnatally born cells in the mouse brain. These long-lived RNAs were stably retained in nuclei in a neural cell type-specific manner and were required for the maintenance of heterochromatin. Thus, the life span of neural cells may depend on both the molecular longevity of DNA for the storage of genetic information and also the extreme stability of RNA for the functional organization of chromatin.


Asunto(s)
Encéfalo , Cromatina , ARN Nuclear , Animales , Ratones , Encéfalo/metabolismo , Regulación de la Expresión Génica , Heterocromatina/genética , ARN Nuclear/genética
6.
Science ; 384(6691): 31-32, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574156

RESUMEN

RNA labeled in young mice is detected 2 years later in adult mouse brains.


Asunto(s)
ARN Nuclear , ARN , Animales , Ratones , ARN Nuclear/genética , ARN/genética , Encéfalo
7.
Cell Rep ; 42(11): 113325, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37889751

RESUMEN

The RNA exosome is a versatile ribonuclease. In the nucleoplasm of mammalian cells, it is assisted by its adaptors the nuclear exosome targeting (NEXT) complex and the poly(A) exosome targeting (PAXT) connection. Via its association with the ARS2 and ZC3H18 proteins, NEXT/exosome is recruited to capped and short unadenylated transcripts. Conversely, PAXT/exosome is considered to target longer and adenylated substrates via their poly(A) tails. Here, mutational analysis of the core PAXT component ZFC3H1 uncovers a separate branch of the PAXT pathway, which targets short adenylated RNAs and relies on a direct ARS2-ZFC3H1 interaction. We further demonstrate that similar acidic-rich short linear motifs of ZFC3H1 and ZC3H18 compete for a common ARS2 epitope. Consequently, while promoting NEXT function, ZC3H18 antagonizes PAXT activity. We suggest that this organization of RNA decay complexes provides co-activation of NEXT and PAXT at loci with abundant production of short exosome substrates.


Asunto(s)
ARN Nuclear , Proteínas de Unión al ARN , Animales , Núcleo Celular/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Mamíferos , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Nuclear/genética , Proteínas de Unión al ARN/genética
8.
Science ; 380(6642): eabn7625, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37079685

RESUMEN

RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 (CDK13) is mutated in melanoma, and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We found recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.


Asunto(s)
Proteína Quinasa CDC2 , Carcinógenos , Melanoma , Estabilidad del ARN , ARN Nuclear , Neoplasias Cutáneas , Animales , Proteína Quinasa CDC2/genética , Melanoma/genética , Mutación , ARN Nuclear/genética , Neoplasias Cutáneas/genética , Pez Cebra , Humanos
9.
Sci Rep ; 12(1): 8180, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581240

RESUMEN

Fused in Sarcoma (FUS) is a nuclear RNA/DNA binding protein that mislocalizes to the cytoplasm in the neurodegenerative diseases ALS and FTD. Despite the existence of FUS pathogenic mutations that result in nuclear import defects, a subset of ALS/FTD patients display cytoplasmic accumulation of wild-type FUS, although the underlying mechanism is unclear. Here we confirm that transcriptional inhibition, specifically of RNA polymerase II (RNAP II), induces FUS cytoplasmic translocation, but we show that several other stresses do not. We found unexpectedly that the epitope specificity of different FUS antibodies significantly affects the apparent FUS nucleocytoplasmic ratio as determined by immunofluorescence, explaining inconsistent observations in previous studies. Significantly, depletion of the nuclear mRNA export factor NXF1 or RNA exosome cofactor MTR4 promotes FUS nuclear retention, even when transcription is repressed, while mislocalization was independent of the nuclear protein export factor CRM1 and import factor TNPO1. Finally, we report that levels of nascent RNAP II transcripts, including those known to bind FUS, are reduced in sporadic ALS iPS cells, linking possible aberrant transcriptional control and FUS cytoplasmic mislocalization. Our findings thus reveal that factors that influence accumulation of nuclear RNAP II transcripts modulate FUS nucleocytoplasmic homeostasis, and provide evidence that reduced RNAP II transcription can contribute to FUS mislocalization to the cytoplasm in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteína FUS de Unión a ARN , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Citoplasma/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Mutación , ARN Nuclear/genética , ARN Nuclear/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
10.
Mol Cell ; 82(2): 463-478.e11, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34741808

RESUMEN

The ability of RNAs to form specific contacts with other macromolecules provides an important mechanism for subcellular compartmentalization. Here we describe a suite of hybridization-proximity (HyPro) labeling technologies for unbiased discovery of proteins (HyPro-MS) and transcripts (HyPro-seq) associated with RNAs of interest in genetically unperturbed cells. As a proof of principle, we show that HyPro-MS and HyPro-seq can identify both known and previously unexplored spatial neighbors of the noncoding RNAs 45S, NEAT1, and PNCTR expressed at markedly different levels. Notably, HyPro-seq uncovers an extensive repertoire of incompletely processed, adenosine-to-inosine-edited transcripts accumulating at the interface between their encoding chromosomal regions and the NEAT1-containing paraspeckle compartment. At least some of these targets require NEAT1 for their optimal expression. Overall, this study provides a versatile toolkit for dissecting RNA interactomes in diverse biomedical contexts and expands our understanding of the functional architecture of the mammalian nucleus.


Asunto(s)
Compartimento Celular , Núcleo Celular/metabolismo , Técnicas Genéticas , ARN Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Espectrometría de Masas , Prueba de Estudio Conceptual , Unión Proteica , Proteoma , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Nuclear/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/genética , RNA-Seq , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA