Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23.954
1.
Mol Med Rep ; 30(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38757346

Ovarian cancer is a multifactorial and deadly disease. Despite significant advancements in ovarian cancer therapy, its incidence is on the rise and the molecular mechanisms underlying ovarian cancer invasiveness, metastasis and drug resistance remain largely elusive, resulting in poor prognosis. Oncolytic viruses armed with therapeutic transgenes of interest offer an attractive alternative to chemical drugs, which often face innate and acquired drug resistance. The present study constructed a novel oncolytic adenovirus carrying ERCC1 short interfering (si)RNA, regulated by hTERT and HIF promoters, termed Ad­siERCC1. The findings demonstrated that this oncolytic adenovirus effectively inhibits the proliferation, migration and invasion of ovarian cancer cells. Furthermore, the downregulation of ERCC1 expression by siRNA ameliorates drug resistance to cisplatin (DDP) chemotherapy. It was found that Ad­siERCC1 blocks the cell cycle in the G1 phase and enhances apoptosis through the PI3K/AKT­caspase­3 signaling pathways in SKOV3 cells. The results of the present study highlighted the critical effect of oncolytic virus Ad­siERCC1 in inhibiting the survival of ovarian cancer cells and increasing chemotherapy sensitivity to DDP. These findings underscore the potent antitumor effect of Ad­siERCC1 on ovarian cancers in vivo.


Adenoviridae , Apoptosis , Cell Proliferation , Cisplatin , DNA-Binding Proteins , Endonucleases , Oncolytic Virotherapy , Oncolytic Viruses , Ovarian Neoplasms , RNA, Small Interfering , Humans , Female , Ovarian Neoplasms/therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Adenoviridae/genetics , Cell Line, Tumor , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Apoptosis/genetics , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cell Movement/genetics , Drug Resistance, Neoplasm/genetics , Genetic Vectors/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Proto-Oncogene Proteins c-akt/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
RNA Biol ; 21(1): 1-13, 2024 Jan.
Article En | MEDLINE | ID: mdl-38693614

Small non-coding RNAs (sncRNAs) are non-coding RNA molecules that play various roles in metazoans. Among the sncRNAs, microRNAs (miRNAs) guide post-translational gene regulation during cellular development, proliferation, apoptosis, and differentiation, while PIWI-interacting RNAs (piRNAs) suppress transposon activity to safeguard the genome from detrimental insertion mutagenesis. While an increasing number of piRNAs are being identified in the soma and germlines of various organisms, they are scarcely reported in molluscs. To unravel the small RNA (sRNA) expression patterns and genomic function in molluscs, we generated a comprehensive sRNA dataset by sRNA sequencing (sRNA-seq) of eight mollusc species. Abundant miRNAs were identified and characterized in all investigated molluscs, and ubiquitous piRNAs were discovered in both somatic and gonadal tissues in six of the investigated molluscs, which are more closely associated with transposon silencing. Tens of piRNA clusters were also identified based on the genomic mapping results, which varied among different tissues and species. Our dataset serves as important reference data for future genomic and genetic studies on sRNAs in these molluscs and related species, especially in elucidating the ancestral state of piRNAs in bilaterians.


Mollusca , RNA, Small Interfering , RNA, Small Untranslated , Animals , Mollusca/genetics , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , MicroRNAs/genetics , DNA Transposable Elements , Gene Expression Profiling , Gene Expression Regulation , Transcriptome
3.
Arch Insect Biochem Physiol ; 116(1): e22118, 2024 May.
Article En | MEDLINE | ID: mdl-38713637

We detected enzymatic activity that generates 20-nucleotide (nt) RNA from double-stranded RNAs (dsRNAs) in crude extracts prepared from various silkworm (Bombyx mori) organs. The result using knocked-down cultured cells indicated that this dicing activity originated from B. mori Dicer-2 (BmDcr2). Biochemical analyses revealed that BmDcr2 preferentially cleaves 5'-phosphorylated dsRNAs at the 20-nt site-counted from the 5'-phosphorylated end-and required ATP and magnesium ions for the dicing reaction. This is the first report of the biochemical characterization of Dicer-2 in lepidopteran insects. This enzymatic property of BmDcr2 in vitro is consistent with the in vivo small interfering RNA profile in virus-infected silkworm cells.


Bombyx , RNA, Double-Stranded , Ribonuclease III , Animals , Bombyx/genetics , Bombyx/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Ribonuclease III/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , RNA, Small Interfering/metabolism , Magnesium/metabolism , Larva/metabolism , Larva/genetics , Larva/growth & development
4.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739785

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Meiosis , RNA, Plant , Zea mays , Zea mays/genetics , Zea mays/metabolism , Meiosis/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Regulation, Plant , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcriptome , Oryza/genetics , Oryza/metabolism
5.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727303

Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.


Acute Lung Injury , Cholesterol , Interleukin-6 , RNA, Small Interfering , Animals , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Acute Lung Injury/therapy , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cholesterol/metabolism , Mice , Lipopolysaccharides , Male , Disease Models, Animal , Mice, Inbred C57BL , Cell Line , Lung/pathology , Lung/metabolism
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 500-505, 2024 Apr 10.
Article Zh | MEDLINE | ID: mdl-38565519

piRNA is a class of small non-coding RNA which specifically binds with PIWI protein. It is mainly expressed in germ cells and involved in the regulation of spermatogenesis. The role of piRNA pathway in the regulation of spermatogenesis mainly includes inhibition of transposons, induction of mRNA translation or degradation, and mediation of degradation of Miwi ubiquitination in late-stage sperm cells. With the detection of piRNA in seminal plasma, more attention has been attracted to whether piRNA can be used as a non-invasive molecular biomarker for the evaluation of spermatogenesis. This paper has reviewed recent studies on the mechanism of piRNA pathways mediating spermatogenesis and potential roles of piRNA disorders in the diagnosis and treatment of male infertility.


Infertility, Male , Piwi-Interacting RNA , Humans , Male , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Semen/metabolism , Spermatogenesis/genetics , Infertility, Male/diagnosis , Infertility, Male/genetics , Biomarkers
7.
Stem Cell Res Ther ; 15(1): 97, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38581065

BACKGROUND: DNA damage and oxidative stress induced by chemotherapy are important factors in the onset of premature ovarian insufficiency (POI). Studies have shown that mitochondria derived from mesenchymal stem cells (MSC-Mito) are beneficial for age-related diseases, but their efficacy alone is limited. Pyrroloquinoline quinone (PQQ) is a potent antioxidant with significant antiaging and fertility enhancement effects. This study aimed to investigate the therapeutic effect of MSC-Mito in combination with PQQ on POI and the underlying mechanisms involved. METHODS: A POI animal model was established in C57BL/6J mice by cyclophosphamide and busulfan. The effects of MSC-Mito and PQQ administration on the estrous cycle, ovarian pathological damage, sex hormone secretion, and oxidative stress in mice were evaluated using methods such as vaginal smears and ELISAs. Western blotting and immunohistochemistry were used to assess the expression of SIRT1, PGC-1α, and ATM/p53 pathway proteins in ovarian tissues. A cell model was constructed using KGN cells treated with phosphoramide mustard to investigate DNA damage and apoptosis through comet assays and flow cytometry. SIRT1 siRNA was transfected into KGN cells to further explore the role of the SIRT1/ATM/p53 pathway in combination therapy with MSC-Mito and PQQ for POI. RESULTS: The combined treatment of MSC-Mito and PQQ significantly restored ovarian function and antioxidant capacity in mice with POI. This treatment also reduced the loss of follicles at various stages, improving the disrupted estrous cycle. In vitro experiments demonstrated that PQQ facilitated the proliferation of MitoTracker-labelled MSC-Mito, synergistically restoring mitochondrial function and inhibiting oxidative stress in combination with MSC-Mito. Both in vivo and in vitro, the combination of MSC-Mito and PQQ increased mitochondrial biogenesis mediated by SIRT1 and PGC-1α while inhibiting the activation of ATM and p53, consequently reducing DNA damage-mediated cell apoptosis. Furthermore, pretreatment of KGN cells with SIRT1 siRNA reversed nearly all the aforementioned changes induced by the combined treatment. CONCLUSIONS: Our research findings indicate that PQQ facilitates MSC-Mito proliferation and, in combination with MSC-Mito, ameliorates chemotherapy-induced POI through the SIRT1/ATM/p53 signaling pathway.


Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Animals , Female , Humans , Mice , Antioxidants/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , PQQ Cofactor/pharmacology , Primary Ovarian Insufficiency/pathology , RNA, Small Interfering/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
8.
Arch Insect Biochem Physiol ; 115(4): e22107, 2024 Apr.
Article En | MEDLINE | ID: mdl-38591567

RNA interference (RNAi)-based gene silencing is a feasible and sustainable technology for the management of hemipteran pests by double-stranded RNA involvement, including small-interfering RNA, microRNA, and Piwi-interacting RNA (piRNA) pathways, that may help to decrease the usage of chemical insecticides. However, only a few data are available on the somatic piRNAs and their biogenesis genes in Riptortus pedestris, which serves as a significant pest of soybean (Glycine max). In this study, two family members of the PIWI gene were identified and characterized in R. pedestris, containing Argonaute3 (RpAgo3) and Aubergine (RpAub) genes with conserved protein domains, and their clusters were validated by phylogenetic analysis. In addition, they were widely expressed in all developmental stages of the whole body of R. pedestris and had lower expression levels in R. pedestris guts under different rearing conditions based on previous transcriptome sequencing. Furthermore, abundant clean reads were filtered to a total number of 45,998 piRNAs with uridine bias at the first nucleotide (nt) position and 26-32 nt in length by mapping onto the reference genome of R. pedestris according to our previous whole-transcriptome sequencing. Finally, our data revealed that gut bacterial changes were significantly positively or negatively associated with differentially expressed piRNAs among the five comparison groups with Pearson correlation analysis. In conclusion, these findings paved new avenues for the application of RNAi-based biopesticides for broad-spectrum hemipteran pest control.


Heteroptera , Piwi-Interacting RNA , Animals , Phylogeny , Heteroptera/genetics , Heteroptera/metabolism , Glycine max , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
9.
Oncol Rep ; 51(3)2024 Mar.
Article En | MEDLINE | ID: mdl-38624021

It has been reported that PL2L60 proteins, a product of PIWIL2 gene which might be activated by an intragenic promoter, could mediate a common pathway specifically for tumorigenesis. In the present study, it was further identified by using western blot assay that the PL2L60 proteins could be degraded in cancer cells through a mechanism of selective autophagy in response to oxidative stress. The PL2L60 was downregulated in various types of cancer cells under the hypoxic condition independently of HIF­1α, resulting in apoptosis of cancer cells. Inhibition of autophagy by small interfering RNA targeting of either Beclin­1 (BECN1) or Atg5 resulted in restoration of PL2L60 expression in hypoxic cancer cell. The hypoxic degradation of PL2L60 was also blocked by the attenuation of the autophagosome membrane protein Atg8/microtubule­associated protein 1 light chain 3 (LC3) or autophagy cargo protein p62 expression. Surprisingly, Immunofluorescence analysis demonstrated that LC3 could be directly bound to PL2L60 and was required for the transport of PL2L60 from the nucleus to the cytoplasm for lysosomal flux under basal or activated autophagy in cancer cells. Moreover, flow cytometric analysis displayed that knocking down of PL2L60 mRNA but not PIWIL2 mRNA effectively inhibited cancer cell proliferation and promoted apoptosis of cancer cells. The similar results were obtained from in vivo tumorigenic experiment, in which PL2L60 downregulation in necroptosis areas was confirmed by immunohistochemistry. These results suggested that various cancer could be suppressed by promoting autophagy. The present study revealed a key role of autophagic degradation of PL2L60 in hypoxia­induced cancer cell death, which could be used as a novel therapeutic target of cancer.


Neoplasms , Humans , RNA, Small Interfering/metabolism , Hypoxia/metabolism , Apoptosis , Autophagy , Stress, Physiological , RNA, Messenger , Argonaute Proteins/metabolism
10.
Sci Rep ; 14(1): 8670, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622371

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Mice , Humans , Animals , Hypertension, Pulmonary/drug therapy , Osteopontin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Pulmonary Artery/metabolism , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Pulmonary Arterial Hypertension/metabolism , RNA, Small Interfering/metabolism , Autophagy/genetics , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling
11.
Bioorg Med Chem Lett ; 104: 129738, 2024 May 15.
Article En | MEDLINE | ID: mdl-38593925

Copper plays a crucial role in maintaining biological redox balance in living organisms, with elevated levels observed in cancer cells. Short interfering RNAs (siRNAs) are effective in gene silencing and find applications as both research tools and therapeutic agents. A method to regulate RNA interference using copper is especially advantageous for cancer-specific therapy. We present a chemical approach of selective siRNA activation triggered by intracellular copper ions. We designed and synthesized nucleotides containing copper-responsive moieties, which were incorporated into siRNAs. These copper-responsive siRNAs effectively silenced the target cyclin B1 mRNA in living cells. This pioneering study introduces a novel method for conditionally controlling gene silencing using biologically relevant metal ions in human cells, thereby expanding the repertoire of chemical knockdown tools.


Copper , Humans , RNA, Small Interfering/metabolism , RNA Interference , Ions , Gene Expression
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 428-436, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38597433

OBJECTIVE: To investigate the mechanism of metformin for regulating tumor-stromal cell cross-talk in breast cancer. METHODS: Tumor associated fibroblasts (CAFs) co-cultured with breast cancer cells were treated with metformin, and the changes in expressions of hypoxia-inducible factor-1α (HIF-1α), p-AMPK, stroma-derived factor-1 (SDF-1) and interleukin-8 (IL-8) in the CAFs were detected using ELISA, RT-qPCR or Western blotting; Transwell assay was used to evaluate the invasiveness of the tumor cells and its changes following treatment with exogenous SDF-1, IL-8 and TGF-ß1. The effects of HIF-1α shRNA or overexpression plasmid, AMPK shRNA, and treatment with OG (a proline hydroxylase inhibitor) or 2-OXO (a proline hydroxylase activator) were examined on p-AMPK, HIF-1α, SDF-1 and IL-8 expressions and invasiveness of the CAFs. RESULTS: Metformin treatment significantly increased the expression levels of p-AMPK, SDF-1 and IL-8 (P<0.05) and decreased HIF-1α expression (P<0.05) without affecting AMPK expression level (P>0.05) in the CAFs. The invasion ability of metformintreated breast cancer cells was significantly decreased (P<0.05). Exogenous SDF-1 and IL-8, HIF-1α overexpression, and OGinduced upregulation of HIF-1α all significantly attenuated the inhibitory effects of metformin on breast cancer cell invasion (P<0.05) and HIF-1α, SDF-1 and IL-8 expressions in CAFs (P<0.05). Transfection with HIF-1α shRNA or treatment with 2-OXO significantly decreased the invasiveness of breast cancer cells (P<0.05). P-AMPK knockdown significantly suppressed the inhibitory effect of metformin on HIF-1α expression in CAFs and on invasion of breast cancer cells (P<0.05). Treatment with TGF-ß1 partially decreased the inhibitory effect of metformin on HIF-1α expression in CAFs and invasiveness of the breast cancer cells (P<0.05). CONCLUSION: Metformin suppresses HIF-1α expression in CAFs to block tumor-stromal cross talk in breast cancer.


Breast Neoplasms , Cancer-Associated Fibroblasts , Metformin , Humans , Female , Metformin/pharmacology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Interleukin-8/metabolism , Transforming Growth Factor beta1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Breast Neoplasms/genetics , AMP-Activated Protein Kinases/metabolism , RNA, Small Interfering/metabolism , Fibroblasts
13.
Nucleic Acids Res ; 52(9): 4799-4817, 2024 May 22.
Article En | MEDLINE | ID: mdl-38613388

Glioblastoma multiforme is a universally lethal brain tumor that largely resists current surgical and drug interventions. Despite important advancements in understanding GBM biology, the invasiveness and heterogeneity of these tumors has made it challenging to develop effective therapies. Therapeutic oligonucleotides-antisense oligonucleotides and small-interfering RNAs-are chemically modified nucleic acids that can silence gene expression in the brain. However, activity of these oligonucleotides in brain tumors remains inadequately characterized. In this study, we developed a quantitative method to differentiate oligonucleotide-induced gene silencing in orthotopic GBM xenografts from gene silencing in normal brain tissue, and used this method to test the differential silencing activity of a chemically diverse panel of oligonucleotides. We show that oligonucleotides chemically optimized for pharmacological activity in normal brain tissue do not show consistent activity in GBM xenografts. We then survey multiple advanced oligonucleotide chemistries for their activity in GBM xenografts. Attaching lipid conjugates to oligonucleotides improves silencing in GBM cells across several different lipid classes. Highly hydrophobic lipid conjugates cholesterol and docosanoic acid enhance silencing but at the cost of higher neurotoxicity. Moderately hydrophobic, unsaturated fatty acid and amphiphilic lipid conjugates still improve activity without compromising safety. These oligonucleotide conjugates show promise for treating glioblastoma.


Brain Neoplasms , Glioblastoma , Oligonucleotides, Antisense , RNA, Small Interfering , Xenograft Model Antitumor Assays , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Animals , RNA, Small Interfering/genetics , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA, Small Interfering/therapeutic use , Humans , Mice , Cell Line, Tumor , Brain Neoplasms/genetics , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/therapeutic use , Gene Silencing , Mice, Nude
14.
Biophys Chem ; 310: 107247, 2024 Jul.
Article En | MEDLINE | ID: mdl-38663122

In Drosophila melanogaster, Dcr-2:R2D2 heterodimer binds to the 21 nucleotide siRNA duplex to form the R2D2/Dcr-2 Initiator (RDI) complex, which is critical for the initiation of siRNA-induced silencing complex (RISC) assembly. During RDI complex formation, R2D2, a protein that contains three dsRNA binding domains (dsRBD), senses two aspects of the siRNA: thermodynamically more stable end (asymmetry sensing) and the 5'-phosphate (5'-P) recognition. Despite several detailed studies to date, the molecular determinants arising from R2D2 for performing these two tasks remain elusive. In this study, we have performed structural, biophysical, and biochemical characterization of R2D2 dsRBDs. We found that the solution NMR-derived structure of R2D2 dsRBD1 yielded a canonical α1-ß1-ß2-ß3-α2 fold, wherein two arginine salt bridges provide additional stability to the R2D2 dsRBD1. Furthermore, we show that R2D2 dsRBD1 interacts with thermodynamically asymmetric siRNA duplex independent of its 5'-phosphorylation state, whereas R2D2 dsRBD2 prefers to interact with 5'-P siRNA duplex. The mutation of key arginine residues, R53 and R101, in concatenated dsRBDs of R2D2 results in a significant loss of siRNA duplex recognition. Our study deciphers the active roles of R2D2 dsRBDs by showing that dsRBD1 initiates siRNA recognition, whereas dsRBD2 senses 5'-phosphate as an authentic mark on functional siRNA.


Arginine , Drosophila Proteins , Drosophila melanogaster , RNA Interference , RNA, Small Interfering , Animals , Drosophila melanogaster/metabolism , Arginine/chemistry , Arginine/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA Helicases/metabolism , RNA Helicases/chemistry , RNA Helicases/genetics , Protein Domains , RNA-Binding Proteins
15.
EMBO Rep ; 25(5): 2239-2257, 2024 May.
Article En | MEDLINE | ID: mdl-38632376

The PIWI-interacting RNA (piRNA) pathway plays a crucial role in silencing transposons in the germline. piRNA-guided target cleavage by PIWI proteins triggers the biogenesis of new piRNAs from the cleaved RNA fragments. This process, known as the ping-pong cycle, is mediated by the two PIWI proteins, Siwi and BmAgo3, in silkworms. However, the detailed molecular mechanism of the ping-pong cycle remains largely unclear. Here, we show that Spindle-E (Spn-E), a putative ATP-dependent RNA helicase, is essential for BmAgo3-dependent production of Siwi-bound piRNAs in the ping-pong cycle and that this function of Spn-E requires its ATPase activity. Moreover, Spn-E acts to suppress homotypic Siwi-Siwi ping-pong, but this function of Spn-E is independent of its ATPase activity. These results highlight the dual role of Spn-E in facilitating proper heterotypic ping-pong in silkworms.


Bombyx , RNA, Small Interfering , Bombyx/genetics , Bombyx/metabolism , Animals , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Piwi-Interacting RNA
16.
ACS Appl Bio Mater ; 7(5): 2741-2751, 2024 May 20.
Article En | MEDLINE | ID: mdl-38630629

Herb-based extracellular vesicles (EV), inherently replete with bioactive proteins, RNA, lipids, and other medicinal compounds, are noncytotoxic and uniquely capable of cellular delivery to meet the ever-stringent challenges of ongoing clinical applications. EVs are abundant in nature, affordable, and scalable, but they are also incredibly fragile and stuffed with many biomolecules. To address the low drug binding abilities and poor stability of EVs, we demonstrated herb-based EVs (isolated from neem, mint, and curry leaves) conjugated with chitosan (CS) and PEGylated graphene oxide (GP) that led to their transformation into robust and efficient vectors. The designed conjugates successfully delivered estrogen receptor α (ERα1)-targeting siRNA to breast cancer MCF7 cells. Our data revealed that neem-based EV-CS-GP conjugates were most efficient in cellular siRNA delivery, which could be attributed to hyaluronic acid-mediated recognition of neem EVs by MCF7 cells via CD44 receptors. Our approach shows a futuristic direction in designing clinically viable, sustainable, nontoxic EV-based vehicles that can deliver a variety of functional siRNA cargos.


Breast Neoplasms , Chitosan , Estrogen Receptor alpha , Extracellular Vesicles , Graphite , Polyethylene Glycols , RNA, Small Interfering , Humans , Chitosan/chemistry , Graphite/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , MCF-7 Cells , Polyethylene Glycols/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Particle Size , Female , Cell Survival/drug effects
17.
Cell Mol Life Sci ; 81(1): 191, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652315

Lipopolysaccharide (LPS) induces a strong pro-inflammatory reaction of macrophages upon activation of Toll-like receptor 4 (TLR4) with the assistance of CD14 protein. Considering a key role of plasma membrane rafts in CD14 and TLR4 activity and the significant impact exerted on that activity by endocytosis and intracellular trafficking of the both LPS acceptors, it seemed likely that the pro-inflammatory reaction could be modulated by flotillins. Flotillin-1 and -2 are scaffolding proteins associated with the plasma membrane and also with endo-membranes, affecting both the plasma membrane dynamics and intracellular protein trafficking. To verify the above hypothesis, a set of shRNA was used to down-regulate flotillin-2 in Raw264 cells, which were found to also become deficient in flotillin-1. The flotillin deficiency inhibited strongly the TRIF-dependent endosomal signaling of LPS-activated TLR4, and to a lower extent also the MyD88-dependent one, without affecting the cellular level of TLR4. The flotillin depletion also inhibited the pro-inflammatory activity of TLR2/TLR1 and TLR2/TLR6 but not TLR3. In agreement with those effects, the depletion of flotillins down-regulated the CD14 mRNA level and the cellular content of CD14 protein, and also inhibited constitutive CD14 endocytosis thereby facilitating its shedding. Ultimately, the cell-surface level of CD14 was markedly diminished. Concomitantly, CD14 recycling was enhanced via EEA1-positive early endosomes and golgin-97-positive trans-Golgi network, likely to compensate for the depletion of the cell-surface CD14. We propose that the paucity of surface CD14 is the reason for the down-regulated signaling of TLR4 and the other TLRs depending on CD14 for ligand binding.


Lipopolysaccharide Receptors , Lipopolysaccharides , Membrane Proteins , Protein Transport , Signal Transduction , Toll-Like Receptor 4 , Lipopolysaccharide Receptors/metabolism , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Signal Transduction/drug effects , Mice , Animals , RAW 264.7 Cells , Endocytosis/drug effects , Macrophages/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , RNA, Small Interfering/metabolism , Endosomes/metabolism
18.
Biochem Biophys Res Commun ; 711: 149906, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38640879

Cardiovascular diseases (CVD) represent one of the most considerable global health threats, owing to their high incidence and mortality rates. Despite the ongoing advancements in detection, prevention, treatment, and prognosis of CVD, which have resulted in a decline in both incidence and mortality rates, CVD remains a major public health concern. Therefore, novel diagnostic biomarkers and therapeutic interventions are imperative to minimise the risk of CVD. Non-coding RNAs (ncRNAs) have recently gained increasing attention, with PIWI-interacting RNAs (piRNAs) emerging as a class of small ncRNAs traditionally recognised for their role in silencing transposons within cells. Although the functional roles of PIWI proteins and piRNAs in human cells remain unclear, growing evidence suggests that these molecules are gradually becoming valuable biomarkers for the diagnosis and treatment of CVD. This review provides a comprehensive summary of the latest studies on piRNAs in CVD. This review discusses the roles of piRNAs in various cardiovascular subtypes, including myocardial hypertrophy, heart failure, myocardial infarction, and cardiac regeneration. The perceived insights may contribute novel perspectives for the diagnosis and treatment of CVD.


Biomarkers , Cardiovascular Diseases , RNA, Small Interfering , Humans , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Biomarkers/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Animals , Piwi-Interacting RNA
19.
Arch Esp Urol ; 77(2): 193-201, 2024 Mar.
Article En | MEDLINE | ID: mdl-38583012

BACKGROUND: Chronic inflammation is associated with various malignant tumors. Bacterial lipopolysaccharides (LPSs) play a significant part in the event and development of prostate cancer. Dishevelled segment polarity protein 3 (DVL3) is a shared component of the Wnt/ß-catenin and Notch signaling pathways, which are involved in tumor progression, chemoresistance, and maintenance of stem cell-like properties. According to reports, prostatic cancer cell invasion and proliferation are mediated by toll-like receptor 4 (TLR4). However, the role and regulation of DVL3 in prostate cancer and its relationship with TLR4 remain unclear. METHODS: Survival curves were plotted to evaluate the relationship between DVL3 expression and prognosis in patients with prostate cancer. DVL3 was silenced in PC3 and DU145 cells using small interfering RNAs (siRNAs). Subsequently, cell counting kit-8 (CCK-8) assay, colony formation assay, transwell migration assay, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) were performed to investigate the role of DVL3 in cell proliferation and migration in vitro. The protein markers of potential pathways were analyzed via western blotting. RESULTS: DVL3 expression was linked to prognosis in patients with prostate cancer; In particular, patients with high DVL3 expression had a poor prognosis. LPS stimulation increased (p < 0.01) the expression of DVL3 in PC3 cells. DVL3 regulated tumor cell proliferation and migration by mediating the increase (p < 0.01) in TLR4 expression. Knockout of TLR4 validated that TLR4 played a crucial role in LPS-induced DVL3 expression. Silencing of DVL3 decreased (p < 0.01) the LPS-induced proliferation and migration of PC3 cells. CONCLUSIONS: Bacterial LPS-induced DVL3 promoted the multiplication and migration of prostate cancer cells through the TLR4 pathway. This study offers a valuable reference for the development and clinical application of targeted drugs for prostate cancer.


Lipopolysaccharides , Prostatic Neoplasms , Male , Humans , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostate/pathology , RNA, Small Interfering/metabolism , Cell Proliferation , Dishevelled Proteins/metabolism
20.
Shanghai Kou Qiang Yi Xue ; 33(1): 30-35, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38583021

PURPOSE: To explore the mechanism of SETDB1 inhibiting epithelial mesenchymal transition (EMT),migration and invasion in oral cancer via SOX 7 methylation. METHODS: SETDB1 and SOX7 mRNA and protein expression levels in KB cells of oral cancer and oral mucosal epithelial ATCC cells were determined by qRT-PCR and Western blot (WB). SETDB1 si-RNA was structured, then transfect into KB cells of oral cancer by liposome-mediated method. siRNA-SETDB1 was the experimental group (si-S), siRNA empty vector was the negative control group (si-N), and untransfected KB cells were the blank control group(NC). SETDB1 mRNA and protein expression levels were detected by qRT-PCR and Western blot(WB), to verify the transfection effect. The methylation levels of SOX7 were determined by pyrosequencing. The expression of N-cadherin, Vimentin, ß-catenin, and Slug proteins was detected by WB. Cell viability was measured by MTT assay, migration ability was tested by scratch healing assay, and invasion ability was tested by Transwell chamber assay. Statistical analysis was performed with SPSS 21.0 software package. RESULTS: The results of Rt-qPCR and WB showed that the SETDB1 mRNA and protein expression decreased significantly in si-S group(P<0.05). Pyrosequencing test results showed that the regulation of SETDB1 could significantly reduce the SOX7 methylation rate and increased the SOX7 protein expression. WB results showed that knockdown of SETDB1 significantly inhibited the expression of EMT-related proteins N-cadherin, Vimentin, ß-catenin and Slug in oral cancer KB cells (P<0.05). The results of cell functology experiments showed that knockdown of SETDB1 could significantly inhibit survival, migration and invasion of KB cells. CONCLUSIONS: Downregulation of SETDB1 could suppress EMT, migration and invasion of oral cancer cells by regulating SOX7 methylation level, providing new ideas and targets for the diagnosis and treatment of oral cancer.


Mouth Neoplasms , SOXF Transcription Factors , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Down-Regulation , Cell Line, Tumor , Vimentin/genetics , Vimentin/metabolism , Cadherins/genetics , Cadherins/metabolism , RNA, Small Interfering/metabolism , Mouth Neoplasms/genetics , Epithelial-Mesenchymal Transition , RNA, Messenger/metabolism , Methylation , Cell Movement/genetics , Cell Proliferation , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism
...