Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 540(7631): 80-85, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27842381

RESUMEN

In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Ribosomas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Codón de Terminación/química , Codón de Terminación/genética , Codón de Terminación/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Activación Enzimática , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia Aminoácido-Específico/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Ribosomas/química , Ribosomas/enzimología , Ribosomas/ultraestructura , Ricina/metabolismo , Selenocisteína/metabolismo
2.
Eur J Biochem ; 186(1-2): 87-93, 1989 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-2480897

RESUMEN

Stepwise, solid-phase chemical synthesis has provided long RNA and DNA polymers related to the sequence of Escherichia coli tRNA(fMet). The 34-ribonucleotide oligomer corresponding to the sequence of the 5'-half tRNA molecule has been synthesized and then characterized by gel purification, terminal nucleotide determinations and sequence analysis. This 34-nucleotide oligomer serves as an acceptor in the RNA-ligase-catalyzed reaction with a phosphorylated 43-ribonucleotide oligomer corresponding to the sequence of the 3'-half molecule of tRNA(fMet). The DNA molecule having the sequence of tRNA(fMet) is a 76-deoxyribonucleotide oligomer with a 3'-terminal riboadenosine residue and all U residues replaced by T. These polymers have been compared with an oligodeoxyribonucleotide lacking all 2'-hydroxyl groups except for the 3'-terminal 2'-OH, an oligoribonucleotide lacking modified nucleosides and E. coli tRNA(fMet). The all-RNA 77-nucleotide oligomer can be aminoacylated by E. coli methionyl-tRNA synthetase preparation from E. coli with methionine and threonylated in the A37 position using a yeast extract. In agreement with work by Khan and Roe using tDNA(Phe) and tDNA(Lys), the rA77-DNA(fMet) can be aminoacylated, and preliminary evidence suggests that it can be threonylated to a small extent. Kinetic data support the notion that aminoacylation of tRNA(fMet) does not depend on the presence of 2'-hydroxyl groups with the exception of that in the 3'-terminal nucleotide.


Asunto(s)
Secuencia de Bases , ADN Bacteriano/síntesis química , Escherichia coli/genética , ARN Bacteriano/síntesis química , ARN de Transferencia Aminoácido-Específico/ultraestructura , ARN de Transferencia de Metionina/ultraestructura , Homología de Secuencia de Ácido Nucleico , Moldes Genéticos , Acilación , ADN Bacteriano/fisiología , ADN Bacteriano/ultraestructura , ARN Bacteriano/fisiología , ARN Bacteriano/ultraestructura
3.
Biochemistry ; 28(14): 5794-801, 1989 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-2775736

RESUMEN

We have used NMR to study the structure of the yeast tRNA(Phe) sequence which was synthesized by using T7 RNA polymerase. Many resonances in the imino 1H- spectrum of the transcript have been assigned, including those of several tertiary interactions. When the Mg2+ concentration is high, the transcript appears to fold normally, and the spectral features of the transcript resemble those of tRNA(Phe). The transcript has been shown to be aminoacylated with kinetics similar to the modified tRNA(Phe) [Sampson, J. R., & Uhlenbeck, O. C. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1033-1037], suggesting that the structure of the two molecules must be similar. In the absence of Mg2+ or at [tRNA]:[Mg2+] ratios less than 0.2, the transcript does not adopt the native structure, as shown by both chemical shifts and NOE patterns. In these low Mg2+ conditions, a second GU base pair is found, suggesting a structural rearrangement of the transcript. NMR data indicate that the structure of a mutant having G20 changed to U20 is nearly identical with that of the normal sequence, suggesting that the low aminoacylation activity of this variant is not due to a substantially different conformation.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/ultraestructura , ARN de Transferencia de Fenilalanina/ultraestructura , Composición de Base , Variación Genética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Conformación de Ácido Nucleico , ARN de Transferencia de Fenilalanina/genética , Transcripción Genética
4.
J Biomol Struct Dyn ; 6(5): 971-84, 1989 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2686708

RESUMEN

The present work shows that lead(II) can be used as a convenient structure probe to map the conformation of large RNA's and to follow discrete conformational changes at different functional states. We have investigated the conformation of the 3' domain of the E. coli 16S rRNA (nucleotides 1295-1542) in its naked form, in the 30S subunit and in the 70S ribosome. Our study clearly shows a preferential affinity of Pb(II) for interhelical and loop regions and suggests a high sensitivity for dynamic and flexible regions. Within 30S subunits, some cleavages are strongly decreased as the result of protein-induced protection, while others are enhanced suggesting local conformational adjustments. These rearrangements occur at functionally strategic regions of the RNA centered around nucleotides 1337, 1400, 1500 and near the 3' end of the RNA. The association of 30S and 50S subunits causes further protections at several nucleotides and some enhanced reactivities that can be interpreted in terms of subunits interface and allosteric transitions. The binding of E. coli tRNA-Phe to the 70S ribosome results in message-independent (positions 1337 and 1397) and message-dependent (1399-1400, 1491-1492 and 1505) protections. A third class of protection (1344-1345, 1393-1395, 1403-1409, 1412-1414, 1504, 1506-1507 and 1517-1519) is observed in message-directed 30S subunits, which are induced by both tRNA binding and 50S subunit association. This extensive reduction of reactivity most probably reflects an allosteric transition rather than a direct shielding.


Asunto(s)
Plomo , ARN Ribosómico 16S , ARN Ribosómico , ARN de Transferencia Aminoácido-Específico , ARN de Transferencia de Fenilalanina , Secuencia de Bases , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Hidrólisis , Conformación Molecular , Sondas Moleculares , Datos de Secuencia Molecular , ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia Aminoácido-Específico/ultraestructura , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Fenilalanina/ultraestructura , Ribosomas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...