Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Int J Biol Macromol ; 253(Pt 5): 127121, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37778588

The precise coupling of tRNAs with their cognate amino acids, known as tRNA aminoacylation, is a stringently regulated process that governs translation fidelity. To ensure fidelity, organisms deploy multiple layers of editing mechanisms to correct mischarged tRNAs. Prior investigations have unveiled the propensity of eukaryotic AlaRS to erroneously attach alanine onto tRNACys and tRNAThr featuring the G4:U69 base pair. In light of this, and given ProXp-ala's capacity in deacylating Ala-tRNAPro, we embarked on exploring whether this trans-editing factor could extend its corrective function to encompass these mischarged tRNAs. Our in vitro deacylation assays demonstrate that murine ProXp-ala (mProXp-ala) is able to efficiently hydrolyze Ala-tRNAThr, while Ala-tRNACys remains unaffected. Subsequently, we determined the first structure of eukaryotic ProXp-ala, revealing a dynamic helix α2 involved in substrate binding. By integrating molecular dynamics simulations and biochemical assays, we pinpointed the pivotal interactions between mProXp-ala and Ala-tRNA, wherein the basic regions of mProXp-ala as well as the C3-G70 plays essential role in recognition. These observations collectively provide a cogent rationale for mProXp-ala's deacylation proficiency against Ala-tRNAThr. Our findings offer valuable insights into the translation quality control within higher eukaryotic organisms, where the fidelity of translation is safeguarded by the multi-functionality of extensively documented proteins.


Alanine , Amino Acyl-tRNA Synthetases , Animals , Mice , Alanine/genetics , RNA, Transfer, Thr , RNA, Transfer, Cys , Amino Acyl-tRNA Synthetases/chemistry , Amino Acids/chemistry , RNA, Transfer/genetics , Mammals/genetics
2.
RNA ; 29(9): 1400-1410, 2023 09.
Article En | MEDLINE | ID: mdl-37279998

Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.


Saccharomyces cerevisiae , Codon, Terminator/genetics , Codon, Terminator/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Aeromonas salmonicida/genetics , Protein Engineering , RNA, Transfer, Cys/chemistry , RNA, Transfer, Cys/genetics , RNA, Transfer, Cys/metabolism , Humans , Nucleic Acid Conformation
3.
RNA ; 29(9): 1379-1387, 2023 09.
Article En | MEDLINE | ID: mdl-37221013

Under certain circumstances, any of the three termination codons can be read through by a near-cognate tRNA; i.e., a tRNA whose two out of three anticodon nucleotides base pair with those of the stop codon. Unless programed to synthetize C-terminally extended protein variants with expanded physiological roles, readthrough represents an undesirable translational error. On the other side of a coin, a significant number of human genetic diseases is associated with the introduction of nonsense mutations (premature termination codons [PTCs]) into coding sequences, where stopping is not desirable. Here, the tRNA's ability to induce readthrough opens up the intriguing possibility of mitigating the deleterious effects of PTCs on human health. In yeast, the UGA and UAR stop codons were described to be read through by four readthrough-inducing rti-tRNAs-tRNATrp and tRNACys, and tRNATyr and tRNAGln, respectively. The readthrough-inducing potential of tRNATrp and tRNATyr was also observed in human cell lines. Here, we investigated the readthrough-inducing potential of human tRNACys in the HEK293T cell line. The tRNACys family consists of two isoacceptors, one with ACA and the other with GCA anticodons. We selected nine representative tRNACys isodecoders (differing in primary sequence and expression level) and tested them using dual luciferase reporter assays. We found that at least two tRNACys can significantly elevate UGA readthrough when overexpressed. This indicates a mechanistically conserved nature of rti-tRNAs between yeast and human, supporting the idea that they could be used in the PTC-associated RNA therapies.


Cysteine , Saccharomyces cerevisiae , Humans , Codon, Terminator/genetics , Cysteine/genetics , Cysteine/metabolism , HEK293 Cells , Saccharomyces cerevisiae/genetics , RNA, Transfer, Cys/metabolism , RNA, Transfer, Trp/metabolism , RNA, Transfer, Tyr , RNA, Transfer/genetics , RNA, Transfer/metabolism , Anticodon , Codon, Nonsense/genetics , Protein Biosynthesis
4.
Nucleic Acids Res ; 50(16): 9453-9469, 2022 09 09.
Article En | MEDLINE | ID: mdl-36039763

In this report, we investigated the molecular mechanism underlying a deafness-associated m.5783C > T mutation that affects the canonical C50-G63 base-pairing of TΨC stem of tRNACys and immediately adjacent to 5' end of light-strand origin of mitochondrial DNA (mtDNA) replication (OriL). Two dimensional agarose gel electrophoresis revealed marked decreases in the replication intermediates including ascending arm of Y-fork arcs spanning OriL in the mutant cybrids bearing m.5783C > T mutation. mtDNA replication alterations were further evidenced by decreased levels of PolγA, Twinkle and SSBP1, newly synthesized mtDNA and mtDNA contents in the mutant cybrids. The m.5783C > T mutation altered tRNACys structure and function, including decreased melting temperature, conformational changes, instability and deficient aminoacylation of mutated tRNACys. The m.5783C > T mutation impaired the 5' end processing efficiency of tRNACys precursors and reduced the levels of tRNACys and downstream tRNATyr. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced effects in the polypeptides harboring higher numbers of cysteine and tyrosine codons. These alterations led to deficient oxidative phosphorylation including instability and reduced activities of the respiratory chain enzyme complexes I, III, IV and intact supercomplexes overall. Our findings highlight the impact of mitochondrial dysfunction on deafness arising from defects in mitochondrial DNA replication and tRNA metabolism.


DNA, Mitochondrial , Deafness , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , RNA, Transfer, Cys/metabolism , Deafness/genetics , Deafness/metabolism , Mitochondria/metabolism , Mutation , DNA Replication/genetics , DNA-Binding Proteins/genetics , Mitochondrial Proteins/metabolism
5.
Sci Rep ; 12(1): 12848, 2022 07 27.
Article En | MEDLINE | ID: mdl-35896582

Fluorescence reporter groups are important tools to study the structure and dynamics of proteins. Genetic code reprogramming allows for cotranslational incorporation of non-canonical amino acids at any desired position. However, cotranslational incorporation of bulky fluorescence reporter groups is technically challenging and usually inefficient. Here we analyze the bottlenecks for the cotranslational incorporation of NBD-, BodipyFL- and Atto520-labeled Cys-tRNACys into a model protein using a reconstituted in-vitro translation system. We show that the modified Cys-tRNACys can be rejected during decoding due to the reduced ribosome selectivity for the modified aa-tRNA and the competition with native near-cognate aminoacyl-tRNAs. Accommodation of the modified Cys-tRNACys in the A site of the ribosome is also impaired, but can be rescued by one or several Gly residues at the positions -1 to -4 upstream of the incorporation site. The incorporation yield depends on the steric properties of the downstream residue and decreases with the distance from the protein N-terminus to the incorporation site. In addition to the full-length translation product, we find protein fragments corresponding to the truncated N-terminal peptide and the C-terminal fragment starting with a fluorescence-labeled Cys arising from a StopGo-like event due to a defect in peptide bond formation. The results are important for understanding the reasons for inefficient cotranslational protein labeling with bulky reporter groups and for designing new approaches to improve the yield of fluorescence-labeled protein.


Amino Acids , RNA, Transfer, Cys , Amino Acids/metabolism , Escherichia coli/genetics , Protein Biosynthesis , Proteins/metabolism , RNA, Transfer/metabolism , RNA, Transfer, Cys/genetics , RNA, Transfer, Cys/metabolism , Ribosomes/metabolism
6.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article En | MEDLINE | ID: mdl-34362841

The Mycobacterium tuberculosis (Mtb) VapBC4 toxin-antitoxin system is essential for the establishment of Mtb infection. Using a multitier, systems-level approach, we uncovered the sequential molecular events triggered by the VapC4 toxin that activate a circumscribed set of critical stress survival pathways which undoubtedly underlie Mtb virulence. VapC4 exclusively inactivated the sole transfer RNACys (tRNACys) through cleavage at a single site within the anticodon sequence. Depletion of the pool of tRNACys led to ribosome stalling at Cys codons within actively translating messenger RNAs. Genome mapping of these Cys-stalled ribosomes unexpectedly uncovered several unannotated Cys-containing open reading frames (ORFs). Four of these are small ORFs (sORFs) encoding Cys-rich proteins of fewer than 50 amino acids that function as Cys-responsive attenuators that engage ribosome stalling at tracts of Cys codons to control translation of downstream genes. Thus, VapC4 mimics a state of Cys starvation, which then activates Cys attenuation at sORFs to globally redirect metabolism toward the synthesis of free Cys. The resulting newly enriched pool of Cys feeds into the synthesis of mycothiol, the glutathione counterpart in this pathogen that is responsible for maintaining cellular redox homeostasis during oxidative stress, as well as into a circumscribed subset of cellular pathways that enable cells to defend against oxidative and copper stresses characteristically endured by Mtb within macrophages. Our ability to pinpoint activation or down-regulation of pathways that collectively align with Mtb virulence-associated stress responses and the nonreplicating persistent state brings to light a direct and vital role for the VapC4 toxin in mediating these critical pathways.


Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Copper/toxicity , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/physiology , Oxidative Stress/physiology , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Codon Usage , Cysteine/genetics , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Mycobacterium tuberculosis/pathogenicity , Open Reading Frames , Protein Biosynthesis , RNA, Bacterial/metabolism , RNA, Transfer, Cys/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Sulfur/metabolism
7.
Osteoarthritis Cartilage ; 28(8): 1102-1110, 2020 08.
Article En | MEDLINE | ID: mdl-32407895

OBJECTIVES: Recent studies have shown that tRNA-derived RNA fragments (tRFs) are novel regulators of post-transcriptional gene expression. However, the expression profiles and their role in post-transcriptional gene regulation in chondrocytes is unknown. Here, we determined tRFs expression profile and explored tRF-3003a role in post-transcriptional gene regulation in IL-1ß stimulated chondrocytes. METHODS: We used qPCR arrays to determine tRNAs and tRFs expression in age- and sex-matched primary human OA chondrocytes and TC28/I2 cells stimulated with IL-1ß. Chondrocytes were transfected with tRNA-CysGCA overexpression plasmid or tRF-3003a mimic and 3'UTR luciferase reporter plasmids of mRNAs harboring predicted tRF target "seed sequence". The AGO-RNA-induced silencing complex (AGO-RISC)-dependent repressive activity of tRF-3003a was determined by siRNA-mediated knockdown of AGO2. RESULTS: IL-1ß increased the expression levels of specific tRNAs and of tRF-3003a, a type 3 tRF produced by the cleavage of tRNA-CysGCA. tRF-3003a "seed sequence" was identified in the 3'UTR of JAK3 mRNA and tRNA-CysGCA overexpression or transfection of a tRF-3003a mimic in chondrocytes downregulated JAK3 expression and significantly reduced the activity of the 3'UTR reporter. RIP assay showed enrichment of tRF-3003a into AGO2/RISC in IL-1ß treated chondrocytes. The suppressive effect of tRF-3003a on JAK3 3'UTR reporter was abrogated with siRNA-mediated depletion of AGO2. CONCLUSIONS: We demonstrate that under pathological conditions chondrocytes display perturbations in the expression profile of specific tRNAs and tRFs. Furthermore, a specific tRF namely tRF-3003a can post-transcriptionally regulate JAK3 expression via AGO/RISC formation in chondrocytes. Identification of this novel mechanism may be of value in the design of precision therapies for OA.


Chondrocytes/metabolism , Gene Expression Regulation , Osteoarthritis/genetics , RNA, Messenger/metabolism , RNA, Small Untranslated/genetics , RNA, Transfer, Cys/genetics , 3' Untranslated Regions , Argonaute Proteins , Cell Line , Chondrocytes/drug effects , Humans , Interleukin-1beta/pharmacology , Janus Kinase 3/genetics , Osteoarthritis/metabolism , Primary Cell Culture , RNA, Messenger/drug effects , RNA, Small Untranslated/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer, Cys/metabolism
8.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140438, 2020 08.
Article En | MEDLINE | ID: mdl-32330624

tRNA synthetases are responsible for decoding the molecular information, from codons to amino acids. Seryl-tRNA synthetase (SerRS), besides the five isoacceptors of tRNASer, recognizes tRNA[Ser]Sec for the incorporation of selenocysteine (Sec, U) into selenoproteins. The selenocysteine synthesis pathway is known and is dependent on several protein-protein and protein-RNA interactions. Those interactions are not fully described, in particular, involving tRNA[Ser]Sec and SerRS. Here we describe the molecular interactions between the Escherichia coli Seryl-tRNA synthetase (EcSerRS) and tRNA[Ser]Sec in order to determine their specificity, selectivity and binding order, leading to tRNA aminoacylation. The dissociation constant of EcSerRS and tRNA[Ser]Sec was determined as (126 ± 20) nM. We also demonstrate that EcSerRS binds initially to tRNA[Ser]Sec in the presence of ATP for further recognition by E. coli selenocysteine synthetase (EcSelA) for Ser to Sec conversion. The proposed studies clarify the mechanism of tRNA[Ser]Sec incorporation in Bacteria as well as of other domains of life.


Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , RNA, Transfer, Amino Acid-Specific/metabolism , RNA, Transfer, Cys/metabolism , Serine-tRNA Ligase/metabolism , Transferases/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Escherichia coli/genetics , Kinetics , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Transfer, Amino Acid-Specific/genetics , RNA, Transfer, Cys/genetics , Serine-tRNA Ligase/genetics , Thermodynamics , Transfer RNA Aminoacylation/genetics , Transferases/genetics
9.
Biosci Rep ; 40(2)2020 02 28.
Article En | MEDLINE | ID: mdl-32010935

In a recent article Wang et al. reported about a 9-year-old Chinese male with obesity, insulin resistance, acanthosis nigricans, hyperuricemia, and non-alcoholic fatty liver disease (NALFD) being attributed to the variant m.5802A>G in tRNA(Cys) (Bioscience Reports (2020) 40(1), BSR20192153). Pathogenicity of the variant was substantiated by documentation of perturbed stability and mobility of the tRNA(Cys). The interesting study has a number of shortcomings, which do not allow drawing conclusions as provided before they are solved. Obesity is multifactorial and many differential causes of mtDNA variants were not discussed or excluded.


Mitochondria , RNA, Transfer, Cys , Child , DNA, Mitochondrial , Humans , Male , Mutation , Obesity
11.
Biosci Rep ; 40(1)2020 01 31.
Article En | MEDLINE | ID: mdl-31868206

A Chinese family with matrilineally inherited obesity was assessed and its clinical, genetic, and molecular profiling was conducted. Obesity was observed in matrilineal relatives (3 out of 7) of a single generation (of 3 alive generations) in this family. On pedigree analysis and sequencing of their mitochondrial DNA (mtDNA), a novel homoplasmic mutation of the mitochondrial tRNACys gene (5802A>G) was identified in these individuals. This mutation correlated with a destabilized conserved base pair in this tRNA anticodon stem. Position 30 is known to be crucial for carrying out effective codon recognition and stability of tRNA. In accordance with the importance of this conserved site, we observed that the predicted structure of tRNACys with the mutation was noticeably remodeled in a molecular dynamics simulation when compared with the isoform of the wild-type. All other 46 mutations observed in the individual's mtDNA were known variants belonging to haplogroup D4. Thus, this is the first report that provides evidence of the association between a mutation in tRNA and an enhanced risk of maternally transmissible obesity, offering more insights into obesity and its underlying nature.


DNA, Mitochondrial/genetics , Mutation , Obesity/genetics , RNA, Transfer, Cys/genetics , Weight Gain/genetics , Adult , Asian People/genetics , Body Mass Index , Child , China , Female , Genetic Predisposition to Disease , Haplotypes , Heredity , Humans , Male , Molecular Dynamics Simulation , Obesity/diagnosis , Obesity/ethnology , Obesity/physiopathology , Pedigree , Phenotype , Weight Gain/ethnology
13.
Braz J Microbiol ; 50(2): 471-480, 2019 04.
Article En | MEDLINE | ID: mdl-30666531

American foulbrood (AFB) caused by Paenibacillus larvae is the most destructive honeybee bacterial disease and its dissemination via commercial bee pollen is an important mechanism for the spread of this bacterium. Because Mexico imports bee pollen from several countries, we developed a tRNACys-PCR strategy and complemented that strategy with MALDI-TOF MS and amplicon-16S rRNA gene analysis to evaluate the presence of P. larvae in pollen samples. P. larvae was not detected when the tRNACys-PCR approach was applied to spore-forming bacterial colonies obtained from three different locations and this result was validated by bacterial identification via MALDI-TOF MS. The genera identified in the latter analysis were Bacillus (fourteen species) and Paenibacillus (six) species. However, amplicon-16S rRNA gene analysis for taxonomic composition revealed a low presence of Paenibacillaceae with 0.3 to 16.2% of relative abundance in the commercial pollen samples analyzed. Within this family, P. larvae accounted for 0.01% of the bacterial species present in one sample. Our results indicate that the tRNACys-PCR, combined with other molecular tools, will be a useful approach for identifying P. larvae in pollen samples and will assist in controlling the spread of the pathogen.


Bees/microbiology , Paenibacillus larvae/genetics , Pollen/microbiology , RNA, Bacterial/genetics , RNA, Transfer, Cys/genetics , Animals , Bacillus/genetics , Nucleic Acid Amplification Techniques , Paenibacillus larvae/isolation & purification , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , United States
14.
Amino Acids ; 50(9): 1145-1167, 2018 Sep.
Article En | MEDLINE | ID: mdl-29948343

Selenium (Se) is an essential trace element for several organisms and is mostly present in proteins as L-selenocysteine (Sec or U). Sec is synthesized on its L-seryl-tRNASec to produce Sec-tRNASec molecules by a dedicated selenocysteine synthesis machinery and incorporated into selenoproteins at specified in-frame UGA codons. UGA-Sec insertion is signaled by an mRNA stem-loop structure called the SElenoCysteine Insertion Sequence (SECIS). tRNASec transcription regulation and folding have been described showing its importance to Sec biosynthesis. Here, we discuss structural aspects of Sec-tRNASec and its role in Sec biosynthesis as well as Sec incorporation into selenoproteins. Defects in the Sec biosynthesis or incorporation pathway have been correlated with pathological conditions.


RNA, Transfer, Cys/genetics , Selenocysteine/biosynthesis , Animals , Codon, Terminator/chemistry , Codon, Terminator/genetics , Codon, Terminator/metabolism , Humans , Protein Biosynthesis , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer, Cys/chemistry , RNA, Transfer, Cys/metabolism , Selenocysteine/genetics
15.
RNA Biol ; 15(4-5): 471-479, 2018.
Article En | MEDLINE | ID: mdl-29879865

In many organisms, the UGA stop codon is recoded to insert selenocysteine (Sec) into proteins. Sec incorporation in bacteria is directed by an mRNA element, known as the Sec-insertion sequence (SECIS), located downstream of the Sec codon. Unlike other aminoacyl-tRNAs, Sec-tRNASec is delivered to the ribosome by a dedicated elongation factor, SelB. We recently identified a series of tRNASec-like tRNA genes distributed across Bacteria that also encode a canonical tRNASec. These tRNAs contain sequence elements generally recognized by cysteinyl-tRNA synthetase (CysRS). While some of these tRNAs contain a UCA Sec anticodon, most have a GCA Cys anticodon. tRNASec with GCA anticodons are known to recode UGA codons. Here we investigate the clostridial Desulfotomaculum nigrificans tRNASec-like tRNACys, and show that this tRNA is acylated by CysRS, recognized by SelB, and capable of UGA recoding with Cys in Escherichia coli. We named this non-canonical group of tRNACys as 'tRNAReC' (Recoding with Cys). We performed a comprehensive survey of tRNAReC genes to establish their phylogenetic distribution, and found that, in a particular lineage of clostridial Pelotomaculum, the Cys identity elements of tRNAReC had mutated. This novel tRNA, which contains a UCA anticodon, is capable of Sec incorporation in E. coli, albeit with lower efficiency relative to Pelotomaculum tRNASec. We renamed this unusual tRNASec derived from tRNAReC as 'tRNAReU' (Recoding with Sec). Together, our results suggest that tRNAReC and tRNAReU may serve as safeguards in the production of selenoproteins and - to our knowledge - they provide the first example of programmed codon-anticodon mispairing in bacteria.


Amino Acyl-tRNA Synthetases/genetics , Bacterial Proteins/genetics , Cysteine/metabolism , Escherichia coli/genetics , RNA, Transfer, Cys/genetics , Selenocysteine/metabolism , Selenoproteins/genetics , Amino Acyl-tRNA Synthetases/metabolism , Anticodon/genetics , Anticodon/metabolism , Bacterial Proteins/metabolism , Codon, Terminator/chemistry , Codon, Terminator/metabolism , Desulfotomaculum/genetics , Desulfotomaculum/metabolism , Escherichia coli/metabolism , Genetic Code , Models, Molecular , Mutation , Nucleic Acid Conformation , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factor Tu/metabolism , Peptococcaceae/genetics , Peptococcaceae/metabolism , Protein Biosynthesis , RNA, Transfer, Cys/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Selenoproteins/biosynthesis
16.
Nat Commun ; 8(1): 1521, 2017 11 15.
Article En | MEDLINE | ID: mdl-29142195

Cysteine can be synthesized by tRNA-dependent mechanism using a two-step indirect pathway, where O-phosphoseryl-tRNA synthetase (SepRS) catalyzes the ligation of a mismatching O-phosphoserine (Sep) to tRNACys followed by the conversion of tRNA-bounded Sep into cysteine by Sep-tRNA:Cys-tRNA synthase (SepCysS). In ancestral methanogens, a third protein SepCysE forms a bridge between the two enzymes to create a ternary complex named the transsulfursome. By combination of X-ray crystallography, SAXS and EM, together with biochemical evidences, here we show that the three domains of SepCysE each bind SepRS, SepCysS, and tRNACys, respectively, which mediates the dynamic architecture of the transsulfursome and thus enables a global long-range channeling of tRNACys between SepRS and SepCysS distant active sites. This channeling mechanism could facilitate the consecutive reactions of the two-step indirect pathway of Cys-tRNACys synthesis (tRNA-dependent cysteine biosynthesis) to prevent challenge of translational fidelity, and may reflect the mechanism that cysteine was originally added into genetic code.


Amino Acyl-tRNA Synthetases/metabolism , Archaeal Proteins/metabolism , Cysteine/metabolism , RNA, Transfer, Cys/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/genetics , Genetic Code/genetics , Methanocaldococcus/genetics , Methanocaldococcus/metabolism , Microscopy, Electron , Models, Molecular , Mutation , Phosphoserine/chemistry , Phosphoserine/metabolism , Protein Binding , Protein Conformation , RNA, Transfer, Cys/chemistry , RNA, Transfer, Cys/genetics , Scattering, Small Angle
17.
J Biol Chem ; 292(34): 13904-13913, 2017 08 25.
Article En | MEDLINE | ID: mdl-28696260

RNase P is a universal enzyme that removes 5' leader sequences from tRNA precursors. The enzyme is therefore essential for maturation of functional tRNAs and mRNA translation. RNase P represents a unique example of an enzyme that can occur either as ribonucleoprotein or as protein alone. The latter form of the enzyme, called protein-only RNase P (PRORP), is widespread in eukaryotes in which it can provide organellar or nuclear RNase P activities. Here, we have focused on Arabidopsis nuclear PRORP2 and its interaction with tRNA substrates. Affinity measurements helped assess the respective importance of individual pentatricopeptide repeat motifs in PRORP2 for RNA binding. We characterized the PRORP2 structure by X-ray crystallography and by small-angle X-ray scattering in solution as well as that of its complex with a tRNA precursor by small-angle X-ray scattering. Of note, our study reports the first structural data of a PRORP-tRNA complex. Combined with complementary biochemical and biophysical analyses, our structural data suggest that PRORP2 undergoes conformational changes to accommodate its substrate. In particular, the catalytic domain and the RNA-binding domain can move around a central hinge. Altogether, this work provides a refined model of the PRORP-tRNA complex that illustrates how protein-only RNase P enzymes specifically bind tRNA and highlights the contribution of protein dynamics to achieve this specific interaction.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Models, Molecular , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA, Plant/metabolism , RNA, Transfer, Cys/metabolism , Ribonuclease P/metabolism , Amino Acid Motifs , Amino Acid Substitution , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Biophysical Phenomena , Catalytic Domain , Enzyme Stability , Mutation , Nucleic Acid Conformation , Nucleotide Motifs , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , RNA/chemistry , RNA/metabolism , RNA Precursors/chemistry , RNA, Plant/chemistry , RNA, Transfer, Cys/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Ribonuclease P/chemistry , Ribonuclease P/genetics , Solubility
18.
mBio ; 8(3)2017 05 09.
Article En | MEDLINE | ID: mdl-28487430

The diversity of the genetic code systems used by microbes on earth is yet to be elucidated. It is known that certain methanogenic archaea employ an alternative system for cysteine (Cys) biosynthesis and encoding; tRNACys is first acylated with phosphoserine (Sep) by O-phosphoseryl-tRNA synthetase (SepRS) and then converted to Cys-tRNACys by Sep-tRNA:Cys-tRNA synthase (SepCysS). In this study, we searched all genomic and metagenomic protein sequence data in the Integrated Microbial Genomes (IMG) system and at the NCBI to reveal new clades of SepRS and SepCysS proteins belonging to diverse archaea in the four major groups (DPANN, Euryarchaeota, TACK, and Asgard) and two groups of bacteria ("Candidatus Parcubacteria" and Chloroflexi). Bacterial SepRS and SepCysS charged bacterial tRNACys species with cysteine in vitro Homologs of SepCysE, a scaffold protein facilitating SepRS⋅SepCysS complex assembly in Euryarchaeota class I methanogens, are found in a few groups of TACK and Asgard archaea, whereas the C-terminally truncated homologs exist fused or genetically coupled with diverse SepCysS species. Investigation of the selenocysteine (Sec)- and pyrrolysine (Pyl)-utilizing traits in SepRS-utilizing archaea and bacteria revealed that the archaea carrying full-length SepCysE employ Sec and that SepRS is often found in Pyl-utilizing archaea and Chloroflexi bacteria. We discuss possible contributions of the SepRS-SepCysS system for sulfur assimilation, methanogenesis, and other metabolic processes requiring large amounts of iron-sulfur enzymes or Pyl-containing enzymes.IMPORTANCE Comprehensive analyses of all genomic and metagenomic protein sequence data in public databases revealed the distribution and evolution of an alternative cysteine-encoding system in diverse archaea and bacteria. The finding that the SepRS-SepCysS-SepCysE- and the selenocysteine-encoding systems are shared by the Euryarchaeota class I methanogens, the Crenarchaeota AK8/W8A-19 group, and an Asgard archaeon suggests that ancient archaea may have used both systems. In contrast, bacteria may have obtained the SepRS-SepCysS system from archaea. The SepRS-SepCysS system sometimes coexists with a pyrrolysine-encoding system in both archaea and bacteria. Our results provide additional bioinformatic evidence for the contribution of the SepRS-SepCysS system for sulfur assimilation and diverse metabolisms which require vast amounts of iron-sulfur enzymes and proteins. Among these biological activities, methanogenesis, methylamine metabolism, and organohalide respiration may have local and global effects on earth. Taken together, uncultured bacteria and archaea provide an expanded record of the evolution of the genetic code.


Archaea/genetics , Bacteria/genetics , Cysteine/biosynthesis , RNA, Archaeal/metabolism , RNA, Bacterial/metabolism , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Cys/metabolism , Amino Acyl-tRNA Synthetases/metabolism , Archaea/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/metabolism , Computational Biology , Crystallography, X-Ray , Genetic Code , Genome, Archaeal , Genome, Bacterial , Phosphoserine/metabolism , Protein Binding , Protein Biosynthesis , Sulfur/metabolism
19.
Biomolecules ; 7(1)2017 01 20.
Article En | MEDLINE | ID: mdl-28117687

Oxidative stress occurs when cells are exposed to elevated levels of reactive oxygen species that can damage biological molecules. One bacterial response to oxidative stress involves disulfide bond formation either between protein thiols or between protein thiols and low-molecular-weight (LMW) thiols. Bacillithiol was recently identified as a major low-molecular-weight thiol in Bacillus subtilis and related Firmicutes. Four genes (bshA, bshB1, bshB2, and bshC) are involved in bacillithiol biosynthesis. The bshA and bshB1 genes are part of a seven-gene operon (ypjD), which includes the essential gene cca, encoding CCA-tRNA nucleotidyltransferase. The inclusion of cca in the operon containing bacillithiol biosynthetic genes suggests that the integrity of the 3' terminus of tRNAs may also be important in oxidative stress. The addition of the 3' terminal CCA sequence by CCA-tRNA nucleotidyltransferase to give rise to a mature tRNA and functional molecules ready for aminoacylation plays an essential role during translation and expression of the genetic code. Any defects in these processes, such as the accumulation of shorter and defective tRNAs under oxidative stress, might exert a deleterious effect on cells. This review summarizes the physiological link between tRNACys regulation and oxidative stress in Bacillus.


Bacillus subtilis/genetics , RNA Nucleotidyltransferases/metabolism , RNA, Transfer, Cys/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cysteine/analogs & derivatives , Cysteine/biosynthesis , Disulfides/metabolism , Glucosamine/analogs & derivatives , Glucosamine/biosynthesis , Models, Molecular , Oxidative Stress , RNA, Bacterial/metabolism , RNA, Transfer, Cys/chemistry
20.
Nucleic Acids Res ; 45(5): 2776-2785, 2017 03 17.
Article En | MEDLINE | ID: mdl-28076288

We report the identification of novel tRNA species with 12-base pair amino-acid acceptor branches composed of longer acceptor stem and shorter T-stem. While canonical tRNAs have a 7/5 configuration of the branch, the novel tRNAs have either 8/4 or 9/3 structure. They were found during the search for selenocysteine tRNAs in terabytes of genome, metagenome and metatranscriptome sequences. Certain bacteria and their phages employ the 8/4 structure for serine and histidine tRNAs, while minor cysteine and selenocysteine tRNA species may have a modified 8/4 structure with one bulge nucleotide. In Acidobacteria, tRNAs with 8/4 and 9/3 structures may function as missense and nonsense suppressor tRNAs and/or regulatory noncoding RNAs. In δ-proteobacteria, an additional cysteine tRNA with an 8/4 structure mimics selenocysteine tRNA and may function as opal suppressor. We examined the potential translation function of suppressor tRNA species in Escherichia coli; tRNAs with 8/4 or 9/3 structures efficiently inserted serine, alanine and cysteine in response to stop and sense codons, depending on the identity element and anticodon sequence of the tRNA. These findings expand our view of how tRNA, and possibly the genetic code, is diversified in nature.


RNA, Bacterial/chemistry , RNA, Transfer/chemistry , Anticodon , Bacteria/genetics , Bacterial Toxins/genetics , Nucleic Acid Conformation , Protein Biosynthesis , RNA, Transfer, Amino Acid-Specific/chemistry , RNA, Transfer, Cys/chemistry , RNA, Transfer, Cys/metabolism
...