Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 522
Filtrar
1.
Nucleic Acids Res ; 52(15): 9230-9246, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38950903

RESUMEN

In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.


Asunto(s)
Encéfalo , Glutamina , Biosíntesis de Proteínas , ARNt Metiltransferasas , Animales , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Codón/genética , Glutamina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ribosomas/metabolismo , Ribosomas/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
2.
J Bacteriol ; 206(7): e0011924, 2024 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-38837341

RESUMEN

RsgA (small ribosomal subunit, 30S, GTPase), a late-stage biogenesis factor, releases RbfA from 30S-RbfA complex. Escherichia coli ΔrsgA (deleted for rsgA) shows a slow growth phenotype and an increased accumulation of 17S rRNA (precursor of 16S rRNA) and the ribosomal subunits. Here, we show that the rescue of the ΔrsgA strain by multicopy infB (IF2) is enhanced by simultaneous overexpression of initiator tRNA (i-tRNA), suggesting a role of initiation complex formation in growth rescue. The synergistic effect of IF2/i-tRNA is accompanied by increased processing of 17S rRNA (to 16S), and protection of the 16S rRNA 3'-minor domain. Importantly, we show that an IF2-binding anticonvulsant drug, lamotrigine (Ltg), also rescues the ΔrsgA strain growth. The rescue is accompanied by increased processing of 17S rRNA, protection of the 3'-minor domain of 16S rRNA, and increased 70S ribosomes in polysome profiles. However, Ltg becomes inhibitory to the ΔrsgA strain whose growth was already rescued by an L83R mutation in rbfA. Interestingly, like wild-type infB, overproduction of LtgRinfB alleles (having indel mutations in their domain II) also rescues the ΔrsgA strain (independent of Ltg). Our observations suggest the dual role of IF2 in rescuing the ΔrsgA strain. First, together with i-tRNA, IF2 facilitates the final steps of processing of 17S rRNA. Second, a conformer of IF2 functionally compensates for RsgA, albeit poorly, during 30S biogenesis. IMPORTANCE: RsgA is a late-stage ribosome biogenesis factor. Earlier, infB (IF2) was isolated as a multicopy suppressor of the Escherichia coli ΔrsgA strain. How IF2 rescued the strain growth remained unclear. This study reveals that (i) the multicopy infB-mediated growth rescue of E. coli ΔrsgA and the processing of 17S precursor to 16S rRNA in the strain are enhanced upon simultaneous overexpression of initiator tRNA and (ii) a conformer of IF2, whose occurrence increases when IF2 is overproduced or when E. coli ΔrsgA is treated with Ltg (an anticonvulsant drug that binds to domain II of IF2), compensates for the function of RsgA. Thus, this study reveals yet another role of IF2 in ribosome biogenesis.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Lamotrigina , Ribosomas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Lamotrigina/farmacología , Ribosomas/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/genética , ARN Ribosómico 16S/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/genética , Triazinas/farmacología , Triazinas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , GTP Fosfohidrolasas
3.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 464-473, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860981

RESUMEN

Eukaryotic and archaeal translation initiation factor 2 in complex with GTP delivers the initiator methionyl-tRNA to the small ribosomal subunit. Over the past 20 years, thanks to the efforts of various research groups, including ours, this factor from the archaeon Sulfolobus solfataricus and its individual subunits have been crystallized in ten different space groups. Analysis of the molecular packing in these crystals makes it possible to better understand the roles of functionally significant switches and other elements of the nucleotide-binding pocket during the function of the factor as well as the influence of external effects on its transition between active and inactive states.


Asunto(s)
Proteínas Arqueales , Sulfolobus solfataricus , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/metabolismo , Conformación Proteica , Sitios de Unión , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo
4.
Biosci Rep ; 44(7)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38873976

RESUMEN

The heterotrimeric eIF2 complex consists of a core eIF2γ subunit to which binds eIF2α and eIF2ß subunits and plays an important role in delivering the Met-tRNAiMet to the 40S ribosome and start codon selection. The intricacies of eIF2ß-γ interaction in promoting Met-tRNAiMet binding are not clearly understood. Previously, the zinc-binding domain (ZBD) eIF2ßS264Y mutation was reported to cause Met-tRNAiMet binding defect due to the intrinsic GTPase activity. We showed that the eIF2ßS264Y mutation has eIF2ß-γ interaction defect. Consistently, the eIF2ßT238A intragenic suppressor mutation restored the eIF2ß-γ and Met-tRNAiMet binding. The eIF2ß-ZBD residues Asn252Asp and Arg253Ala mutation caused Met-tRNAiMet binding defect that was partially rescued by the eIF2ßT238A mutation, suggesting the eIF2ß-ZBD modulates Met-tRNAiMet binding. The suppressor mutation rescued the translation initiation fidelity defect of the eIF2γN135D SW-I mutation and eIF2ßF217A/Q221A double mutation in the HTH domain. The eIF2ßT238A suppressor mutation could not rescue the eIF2ß binding defect of the eIF2γV281K mutation; however, combining the eIF2ßS264Y mutation with the eIF2γV281K mutation was lethal. In addition to the previously known interaction of eIF2ß with the eIF2γ subunit via its α1-helix, the eIF2ß-ZBD also interacts with the eIF2γ subunit via guanine nucleotide-binding interface; thus, the eIF2ß-γ interacts via two distinct binding sites.


Asunto(s)
Unión Proteica , Sitios de Unión , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/química , Mutación , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Zinc/metabolismo
5.
Biotechnol J ; 19(3): e2300579, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494424

RESUMEN

Fluorescent initiator tRNAs (tRNAi) play a crucial role in studying protein synthesis, yet generating highly fluorescent tRNAi complexes remains challenging. We present an optimized strategy to effectively generate highly fluorescent initiator-tRNA complexes in living cells. Our strategy allows the generation of Fluo-Met-tRNAiMet complexes. These complexes can have highly chromogenic N-terminal labeling. For generating such complexes, we use either purified fluorescent methionine (PFM) or non-purified fluorescently labeled methionine (NPFM). Furthermore, PFM promotes the active generation of endogenous tRNAi in cells, leading to highly efficient Fluo-Met-tRNAiMet complexes. Finally, PFM-tRNAiMet complexes also facilitate the visualization of native fluorescently labeled Tat binding to beads. This demonstrates the potential of our approach to advance precision protein engineering and biotechnology applications.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia de Metionina , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Metionina/genética , Metionina/metabolismo , Colorantes , Racemetionina/metabolismo
6.
Eur J Med Chem ; 268: 116303, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458107

RESUMEN

Methionyl-tRNA synthetase (MetRS) catalyzes the attachment of l-methionine (l-Met) to tRNAMet to generate methionyl-tRNAMet, an essential substrate for protein translation within ribosome. Owing to its indispensable biological function and the structural discrepancies with human counterpart, bacterial MetRS is considered an ideal target for developing antibacterials. Herein, chlorhexidine (CHX) was identified as a potent binder of Staphylococcus aureus MetRS (SaMetRS) through an ATP-aided affinity screening. The co-crystal structure showed that CHX simultaneously occupies the enlarged l-Met pocket (EMP) and the auxiliary pocket (AP) of SaMetRS with its two chlorophenyl groups, while its central hexyl linker swings upwards to interact with some conserved hydrophobic residues. ATP adopts alternative conformations in the active site cavity, and forms ionic bonds and water-mediated hydrogen bonds with CHX. Consistent with this synergistic binding mode, ATP concentration-dependently enhanced the binding affinity of CHX to SaMetRS from 10.2 µM (no ATP) to 0.45 µM (1 mM ATP). While it selectively inhibited two representative type 1 MetRSs from S. aureus and Enterococcus faecalis, CHX did not show significant interactions with three tested type 2 MetRSs, including human cytoplasmic MetRS, in the enzyme inhibition and biophysical binding assays, probably due to the conformational differences between two types of MetRSs at their EMP and AP. Our findings on CHX may inspire the design of MetRS-directed antimicrobials in future.


Asunto(s)
Metionina-ARNt Ligasa , Humanos , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Clorhexidina/farmacología , Staphylococcus aureus , ARN de Transferencia de Metionina/metabolismo , Bacterias Grampositivas/metabolismo , Adenosina Trifosfato/metabolismo
7.
Nucleic Acids Res ; 51(18): 9983-10000, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37602404

RESUMEN

eIF2A was the first eukaryotic initiator tRNA carrier discovered but its exact function has remained enigmatic. Uncharacteristic of translation initiation factors, eIF2A is reported to be non-cytosolic in multiple human cancer cell lines. Attempts to study eIF2A mechanistically have been limited by the inability to achieve high yield of soluble recombinant protein. Here, we developed a purification paradigm that yields ∼360-fold and ∼6000-fold more recombinant human eIF2A from Escherichia coli and insect cells, respectively, than previous reports. Using a mammalian in vitro translation system, we found that increased levels of recombinant human eIF2A inhibit translation of multiple reporter mRNAs, including those that are translated by cognate and near-cognate start codons, and does so prior to start codon recognition. eIF2A also inhibited translation directed by all four types of cap-independent viral IRESs, including the CrPV IGR IRES that does not require initiation factors or initiator tRNA, suggesting excess eIF2A sequesters 40S subunits. Supplementation with additional 40S subunits prevented eIF2A-mediated inhibition and pull-down assays demonstrated direct binding between recombinant eIF2A and purified 40S subunits. These data support a model that eIF2A must be kept away from the translation machinery to avoid sequestering 40S ribosomal subunits.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas de Eucariotas , Animales , Humanos , Codón Iniciador/metabolismo , Sitios Internos de Entrada al Ribosoma , Mamíferos/genética , Factores de Iniciación de Péptidos/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo
8.
Nucleic Acids Res ; 51(19): 10653-10667, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37650648

RESUMEN

As essential components of the protein synthesis machinery, tRNAs undergo a tightly controlled biogenesis process, which include the incorporation of numerous posttranscriptional modifications. Defects in these tRNA maturation steps may lead to the degradation of hypomodified tRNAs by the rapid tRNA decay (RTD) and nuclear surveillance pathways. We previously identified m1A58 as a late modification introduced after modifications Ψ55 and T54 in yeast elongator tRNAPhe. However, previous reports suggested that m1A58 is introduced early during the tRNA modification process, in particular on primary transcripts of initiator tRNAiMet, which prevents its degradation by RNA decay pathways. Here, aiming to reconcile this apparent inconsistency on the temporality of m1A58 incorporation, we examined its introduction into yeast elongator and initiator tRNAs. We used specifically modified tRNAs to report on the molecular aspects controlling the Ψ55 → T54 → m1A58 modification circuit in elongator tRNAs. We also show that m1A58 is efficiently introduced on unmodified tRNAiMet, and does not depend on prior modifications. Finally, we show that m1A58 has major effects on the structural properties of initiator tRNAiMet, so that the tRNA elbow structure is only properly assembled when this modification is present. This observation provides a structural explanation for the degradation of hypomodified tRNAiMet lacking m1A58 by the nuclear surveillance and RTD pathways.


Asunto(s)
ARN de Transferencia de Metionina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN
9.
Methods Mol Biol ; 2676: 101-116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37277627

RESUMEN

Multiple noncanonical amino acids can be installed into proteins in E. coli using mutually orthogonal aminoacyl-tRNA synthetase and tRNA pairs. Here we describe a protocol for simultaneously installing three distinct noncanonical amino acids into proteins for site-specific bioconjugation at three sites. This method relies on an engineered, UAU-suppressing, initiator tRNA, which is aminoacylated with a noncanonical amino acid by Methanocaldococcus jannaschii tyrosyl-tRNA synthetase. Using this initiator tRNA/aminoacyl-tRNA synthetase pair, together with the pyrrolysyl-tRNA synthetase/tRNAPyl pairs from Methanosarcina mazei and Ca. Methanomethylophilus alvus, three noncanonical amino acids can be installed into proteins in response to the UAU, UAG, and UAA codons.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/química , Codón sin Sentido , Escherichia coli/genética , Escherichia coli/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas/metabolismo , ARN de Transferencia/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo
10.
Nucleic Acids Res ; 51(5): 2377-2396, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36727459

RESUMEN

Translation is a key determinant of gene expression and an important biotechnological engineering target. In bacteria, 5'-untranslated region (5'-UTR) and coding sequence (CDS) are well-known mRNA parts controlling translation and thus cellular protein levels. However, the complex interaction of 5'-UTR and CDS has so far only been studied for few sequences leading to non-generalisable and partly contradictory conclusions. Herein, we systematically assess the dynamic translation from over 1.2 million 5'-UTR-CDS pairs in Escherichia coli to investigate their collective effect using a new method for ultradeep sequence-function mapping. This allows us to disentangle and precisely quantify effects of various sequence determinants of translation. We find that 5'-UTR and CDS individually account for 53% and 20% of variance in translation, respectively, and show conclusively that, contrary to a common hypothesis, tRNA abundance does not explain expression changes between CDSs with different synonymous codons. Moreover, the obtained large-scale data provide clear experimental evidence for a base-pairing interaction between initiator tRNA and mRNA beyond the anticodon-codon interaction, an effect that is often masked for individual sequences and therefore inaccessible to low-throughput approaches. Our study highlights the indispensability of ultradeep sequence-function mapping to accurately determine the contribution of parts and phenomena involved in gene regulation.


Asunto(s)
ARN de Transferencia de Metionina , ARN de Transferencia , Emparejamiento Base , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Codón/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón , Biosíntesis de Proteínas/genética
11.
Nucleic Acids Res ; 50(20): 11712-11726, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399509

RESUMEN

Initiation factor 3 (IF3) regulates the fidelity of bacterial translation initiation by debarring the use of non-canonical start codons or non-initiator tRNAs and prevents premature docking of the 50S ribosomal subunit to the 30S pre-initiation complex (PIC). The C-terminal domain (CTD) of IF3 can carry out most of the known functions of IF3 and sustain Escherichia coli growth. However, the roles of the N-terminal domain (NTD) have remained unclear. We hypothesized that the interaction between NTD and initiator tRNAfMet (i-tRNA) is essential to coordinate the movement of the two domains during the initiation pathway to ensure fidelity of the process. Here, using atomistic molecular dynamics (MD) simulation, we show that R25A/Q33A/R66A mutations do not impact NTD structure but disrupt its interaction with i-tRNA. These NTD residues modulate the fidelity of translation initiation and are crucial for bacterial growth. Our observations also implicate the role of these interactions in the subunit dissociation activity of CTD of IF3. Overall, the study shows that the interactions between NTD of IF3 and i-tRNA are crucial for coupling the movements of NTD and CTD of IF3 during the initiation pathway and in imparting growth fitness to E. coli.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , ARN de Transferencia de Metionina , Codo , Escherichia coli/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo
12.
PLoS Genet ; 18(7): e1010215, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35901126

RESUMEN

All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5'-3' exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3'-5' exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Adenosina/análogos & derivados , Exonucleasas/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Humanos , Filogenia , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
13.
Nat Commun ; 13(1): 3388, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697706

RESUMEN

During translation initiation, initiation factor 2 (IF2) holds initiator transfer RNA (fMet-tRNAifMet) in a specific orientation in the peptidyl (P) site of the ribosome. Upon subunit joining IF2 hydrolyzes GTP and, concomitant with inorganic phosphate (Pi) release, changes conformation facilitating fMet-tRNAifMet accommodation into the P site and transition of the 70 S ribosome initiation complex (70S-IC) to an elongation-competent ribosome. The mechanism by which IF2 separates from initiator tRNA at the end of translation initiation remains elusive. Here, we report cryo-electron microscopy (cryo-EM) structures of the 70S-IC from Pseudomonas aeruginosa bound to compact IF2-GDP and initiator tRNA. Relative to GTP-bound IF2, rotation of the switch 2 α-helix in the G-domain bound to GDP unlocks a cascade of large-domain movements in IF2 that propagate to the distal tRNA-binding domain C2. The C2-domain relocates 35 angstroms away from tRNA, explaining how IF2 makes way for fMet-tRNAifMet accommodation into the P site. Our findings provide the basis by which IF2 gates the ribosome to the elongation phase.


Asunto(s)
Factor 2 Procariótico de Iniciación , ARN de Transferencia de Metionina , Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Factor 2 Procariótico de Iniciación/química , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo
14.
Nature ; 607(7919): 593-603, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768510

RESUMEN

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Asunto(s)
5-Metilcitosina , Citosina/análogos & derivados , Glucólisis , Mitocondrias , Metástasis de la Neoplasia , Fosforilación Oxidativa , ARN Mitocondrial , 5-Metilcitosina/biosíntesis , 5-Metilcitosina/metabolismo , Antígenos CD36 , Supervivencia Celular , Citosina/metabolismo , Progresión de la Enfermedad , Glucólisis/efectos de los fármacos , Humanos , Metilación/efectos de los fármacos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Fosforilación Oxidativa/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo
15.
Nucleic Acids Res ; 50(11): 6532-6548, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35694843

RESUMEN

In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. In eukaryotes, the role of eIF5B in ribosomal subunit joining is established and structural data showing eIF5B bound to the full ribosome were obtained. To achieve its function, eIF5B collaborates with eIF1A. However, structural data illustrating how these two factors interact on the small ribosomal subunit have long been awaited. The role of the archaeal counterparts, aIF5B and aIF1A, remains to be extensively addressed. Here, we study the late steps of Pyrococcus abyssi translation initiation. Using in vitro reconstituted initiation complexes and light scattering, we show that aIF5B bound to GTP accelerates subunit joining without the need for GTP hydrolysis. We report the crystallographic structures of aIF5B bound to GDP and GTP and analyze domain movements associated to these two nucleotide states. Finally, we present the cryo-EM structure of an initiation complex containing 30S bound to mRNA, Met-tRNAiMet, aIF5B and aIF1A at 2.7 Å resolution. Structural data shows how archaeal 5B and 1A factors cooperate to induce a conformation of the initiator tRNA favorable to subunit joining. Archaeal and eukaryotic features of late steps of translation initiation are discussed.


Asunto(s)
Archaea , Factores Eucarióticos de Iniciación , Archaea/genética , Factores Eucarióticos de Iniciación/metabolismo , Guanosina Trifosfato/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo
16.
Nature ; 607(7917): 185-190, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732735

RESUMEN

Translation initiation defines the identity and quantity of a synthesized protein. The process is dysregulated in many human diseases1,2. A key commitment step is when the ribosomal subunits join at a translation start site on a messenger RNA to form a functional ribosome. Here, we combined single-molecule spectroscopy and structural methods using an in vitro reconstituted system to examine how the human ribosomal subunits join. Single-molecule fluorescence revealed when the universally conserved eukaryotic initiation factors eIF1A and eIF5B associate with and depart from initiation complexes. Guided by single-molecule dynamics, we visualized initiation complexes that contained both eIF1A and eIF5B using single-particle cryo-electron microscopy. The resulting structure revealed how eukaryote-specific contacts between the two proteins remodel the initiation complex to orient the initiator aminoacyl-tRNA in a conformation compatible with ribosomal subunit joining. Collectively, our findings provide a quantitative and architectural framework for the molecular choreography orchestrated by eIF1A and eIF5B during translation initiation in humans.


Asunto(s)
Factor 1 Eucariótico de Iniciación , Factores Eucarióticos de Iniciación , ARN de Transferencia de Metionina , Subunidades Ribosómicas , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/genética , Humanos , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Imagen Individual de Molécula
17.
J Mol Biol ; 434(12): 167588, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35439479

RESUMEN

The fidelity of initiator tRNA (i-tRNA) selection in the ribosomal P-site is a key step in translation initiation. The highly conserved three consecutive G:C base pairs (3GC pairs) in the i-tRNA anticodon stem play a crucial role in its selective binding in the P-site. Mutations in the 3GC pairs (3GC mutant) render the i-tRNA inactive in initiation. Here, we show that a mutation (E265K) in the unique C-terminal tail domain of RluD, a large ribosomal subunit pseudouridine synthase, results in compromised fidelity of initiation and allows initiation with the 3GC mutant i-tRNA. RluD modifies the uridine residues in H69 to pseudouridines. However, the role of its C-terminal tail domain remained unknown. The E265K mutation does not diminish the pseudouridine synthase activity of RluD, or the growth phenotype of Escherichia coli, or cause any detectable defects in the ribosomal assembly in our assays. However, in our in vivo analyses, we observed that the E265K mutation resulted in increased retention of the ribosome binding factor A (RbfA) on 30S suggesting a new role of RluD in contributing to RbfA release, a function which may be attributed to its (RluD) C-terminal tail domain. The studies also reveal that deficiency of RbfA release from 30S compromises the fidelity of i-tRNA selection in the ribosomal P-site.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Iniciación de la Cadena Peptídica Traduccional , Proteínas Ribosómicas , Anticodón/genética , Anticodón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliasas/química , Mutación , Seudouridina/biosíntesis , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
18.
Antimicrob Agents Chemother ; 66(5): e0189621, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35404073

RESUMEN

The Mycobacterium tuberculosis genome contains an abundance of toxin-antitoxin (TA) systems, 50 of which belong to the VapBC family. The activity of VapC toxins is controlled by dynamic association with their cognate antitoxins-the toxin is inactive when complexed with VapB antitoxin but active when freed. Here, we determined the cellular target of two phylogenetically related VapC toxins and demonstrate how their properties can be harnessed for drug development. First, we used a specialized RNA sequencing (RNA-seq) approach, 5' RNA-seq, to accurately identify the in vivo RNA target of M. tuberculosis VapC2 and VapC21 toxins. Both toxins exclusively disable initiator tRNAfMet through cleavage at a single, identical site within their anticodon loop. Consistent with the essential role and global requirement for initiator tRNAfMet in bacteria, expression of each VapC toxin resulted in potent translation inhibition followed by growth arrest and cell death. Guided by previous structural studies, we then mutated two conserved amino acids in the antitoxin (WR→AA) that resided in the toxin-antitoxin interface and were predicted to inhibit toxin activity. Both mutants were markedly less efficient in rescuing growth over time, suggesting that screens for high-affinity small-molecule inhibitors against this or other crucial VapB-VapC interaction sites could drive constitutive inactivation of tRNAfMet by these VapC toxins. Collectively, the properties of the VapBC2 and VapBC21 TA systems provide a framework for development of bactericidal antitubercular agents with high specificity for M. tuberculosis cells.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Tuberculosis , Antitoxinas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Sistemas Toxina-Antitoxina/genética
19.
Methods Mol Biol ; 2428: 89-99, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171475

RESUMEN

The translation initiation factor eIF2 is critical for protein synthesis initiation, and its regulation is central to the integrated stress response (ISR). eIF2 is a G protein, and the activity is regulated by its GDP or GTP-binding status, such that only GTP-bound eIF2 has high affinity for initiator methionyl tRNA. In the ISR, regulatory signaling reduces the availability of eIF2-GTP and so downregulates protein synthesis initiation in cells. Fluorescence spectroscopy can be used as an analytical tool to study protein-ligand interactions in vitro. Here we describe methods to purify eIF2 and assays of its activity, employing analogs of GDP, GTP, and methionyl initiator tRNA ligands to accurately measure their binding affinities.


Asunto(s)
Factor 2 Procariótico de Iniciación , ARN de Transferencia de Metionina , Factor 2 Eucariótico de Iniciación/metabolismo , Nucleótidos de Guanina , Ligandos , Factor 2 Procariótico de Iniciación/metabolismo , Unión Proteica , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo
20.
J Biol Chem ; 298(2): 101583, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35031321

RESUMEN

The eukaryotic translation initiation factor 2 (eIF2) has key functions in the initiation step of protein synthesis. eIF2 guides the initiator tRNA to the ribosome, participates in scanning of the mRNA molecule, supports selection of the start codon, and modulates the translation of mRNAs in response to stress. eIF2 comprises a heterotrimeric complex whose assembly depends on the ATP-grasp protein Cdc123. Mutations of the eIF2γ subunit that compromise eIF2 complex formation cause severe neurological disease in humans. To this date, however, details about the assembly mechanism, step order, and the individual functions of eIF2 subunits remain unclear. Here, we quantified assembly intermediates and studied the behavior of various binding site mutants in budding yeast. Based on these data, we present a model in which a Cdc123-mediated conformational change in eIF2γ exposes binding sites for eIF2α and eIF2ß subunits. Contrary to an earlier hypothesis, we found that the associations of eIF2α and eIF2ß with the γ-subunit are independent of each other, but the resulting heterodimers are nonfunctional and fail to bind the guanosine exchange factor eIF2B. In addition, levels of eIF2α influence the rate of eIF2 assembly. By binding to eIF2γ, eIF2α displaces Cdc123 and thereby completes the assembly process. Experiments in human cell culture indicate that the mechanism of eIF2 assembly is conserved between yeast and humans. This study sheds light on an essential step in eukaryotic translation initiation, the dysfunction of which is linked to human disease.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Factor 2 Procariótico de Iniciación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , Humanos , Factor 2 Procariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA