Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6586-6595, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38572748

RESUMEN

Ribosomal incorporation of ß-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved ß-amino acid incorporation. However, multiple/consecutive incorporations of ß-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of ß-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of ß-homophenylglycine (ßPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive ßPhg's. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for ß-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of ß-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple ß-amino acids.


Asunto(s)
Aminoácidos , Anticodón , Anticodón/genética , Anticodón/química , Aminoácidos/química , Aminoácidos/genética , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Mutación , Codón/genética , Ribosomas/metabolismo , Ribosomas/genética , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo , ARN de Transferencia de Prolina/química , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
2.
RNA Biol ; 15(4-5): 576-585, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28737471

RESUMEN

Accuracy in protein biosynthesis is maintained through multiple pathways, with a critical checkpoint occurring at the tRNA aminoacylation step catalyzed by aminoacyl-tRNA synthetases (ARSs). In addition to the editing functions inherent to some synthetases, single-domain trans-editing factors, which are structurally homologous to ARS editing domains, have evolved as alternative mechanisms to correct mistakes in aminoacyl-tRNA synthesis. To date, ARS-like trans-editing domains have been shown to act on specific tRNAs that are mischarged with genetically encoded amino acids. However, structurally related non-protein amino acids are ubiquitous in cells and threaten the proteome. Here, we show that a previously uncharacterized homolog of the bacterial prolyl-tRNA synthetase (ProRS) editing domain edits a known ProRS aminoacylation error, Ala-tRNAPro, but displays even more robust editing of tRNAs misaminoacylated with the non-protein amino acid α-aminobutyrate (2-aminobutyrate, Abu) in vitro and in vivo. Our results indicate that editing by trans-editing domains such as ProXp-x studied here may offer advantages to cells, especially under environmental conditions where concentrations of non-protein amino acids may challenge the substrate specificity of ARSs.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Aminobutiratos/metabolismo , Prolina/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Prolina/genética , Aminoacilación de ARN de Transferencia , Alanina/genética , Alanina/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Aminobutiratos/química , Anticodón/química , Anticodón/metabolismo , Sitios de Unión , Codón/química , Codón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Mutación , Conformación de Ácido Nucleico , Prolina/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/metabolismo , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo , Especificidad por Sustrato
3.
Nucleic Acids Res ; 45(22): 12601-12610, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29155943

RESUMEN

A bacterial translation factor EF-P alleviates ribosomal stalling caused by polyproline sequence by accelerating Pro-Pro formation. EF-P recognizes a specific D-arm motif found in tRNAPro isoacceptors, 9-nt D-loop closed by a stable D-stem sequence, for Pro-selective peptidyl-transfer acceleration. It is also known that the T-stem sequence on aminoacyl-tRNAs modulates strength of the interaction with EF-Tu, giving enhanced incorporation of non-proteinogenic amino acids such as some N-methyl amino acids. Based on the above knowledge, we logically engineered tRNA's D-arm and T-stem sequences to investigate a series of tRNAs for the improvement of consecutive incorporation of d-amino acids and an α, α-disubstituted amino acid. We have devised a chimera of tRNAPro1 and tRNAGluE2, referred to as tRNAPro1E2, in which T-stem of tRNAGluE2 was engineered into tRNAPro1. The combination of EF-P with tRNAPro1E2NNN pre-charged with d-Phe, d-Ser, d-Ala, and/or d-Cys has drastically enhanced expression level of not only linear peptides but also a thioether-macrocyclic peptide consisting of the four consecutive d-amino acids over the previous method using orthogonal tRNAs.


Asunto(s)
Aminoácidos/genética , ADN Recombinante/genética , Aminoacil-ARN de Transferencia/genética , ARN de Transferencia/genética , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Secuencia de Bases , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Ácido Glutámico/química , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(33): E6774-E6783, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768811

RESUMEN

Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Proteínas Bacterianas/genética , Caulobacter crescentus/genética , Biosíntesis de Proteínas/genética , ARN de Transferencia de Prolina/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Caulobacter crescentus/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Conformación Proteica , Edición de ARN , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/metabolismo , Especificidad por Sustrato
5.
Nucleic Acids Res ; 45(14): 8392-8402, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28637321

RESUMEN

Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline.


Asunto(s)
Aminoácidos/metabolismo , Lisina/análogos & derivados , Biosíntesis de Péptidos , Factores de Iniciación de Péptidos/metabolismo , Poliaminas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Lisina/metabolismo , Conformación de Ácido Nucleico , Factores de Iniciación de Péptidos/química , Péptidos/metabolismo , Prolina/análogos & derivados , Prolina/química , Prolina/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/metabolismo , Proteínas de Unión al ARN/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Factor 5A Eucariótico de Iniciación de Traducción
6.
Nat Commun ; 7: 11657, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216360

RESUMEN

The ribosome stalls on translation of polyproline sequences due to inefficient peptide bond formation between consecutive prolines. The translation factor EF-P is able to alleviate this stalling by accelerating Pro-Pro formation. However, the mechanism by which EF-P recognizes the stalled complexes and accelerates peptide bond formation is not known. Here, we use genetic code reprogramming through a flexible in-vitro translation (FIT) system to investigate how mutations in tRNA(Pro) affect EF-P function. We show that the 9-nt D-loop closed by the stable D-stem sequence in tRNA(Pro) is a crucial recognition determinant for EF-P. Such D-arm structures are shared only among the tRNA(Pro) isoacceptors and tRNA(fMet) in Escherichia coli, and the D-arm of tRNA(fMet) is essential for EF-P-induced acceleration of fMet-puromycin formation. Thus, the activity of EF-P is controlled by recognition elements in the tRNA D-arm.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/metabolismo , Sitios de Unión/genética , Proteínas de Escherichia coli/genética , Mutación , Motivos de Nucleótidos/genética , Factores de Elongación de Péptidos/genética , Péptidos/metabolismo , Unión Proteica/genética , Puromicina/química , Puromicina/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , Ribosomas/genética , Ribosomas/metabolismo
7.
Nucleic Acids Res ; 42(6): 3943-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24371276

RESUMEN

Errors in protein synthesis due to mispairing of amino acids with tRNAs jeopardize cell viability. Several checkpoints to prevent formation of Ala- and Cys-tRNA(Pro) have been described, including the Ala-specific editing domain (INS) of most bacterial prolyl-tRNA synthetases (ProRSs) and an autonomous single-domain INS homolog, YbaK, which clears Cys-tRNA(Pro) in trans. In many species where ProRS lacks an INS domain, ProXp-ala, another single-domain INS-like protein, is responsible for editing Ala-tRNA(Pro). Although the amino acid specificity of these editing domains has been established, the role of tRNA sequence elements in substrate selection has not been investigated in detail. Critical recognition elements for aminoacylation by bacterial ProRS include acceptor stem elements G72/A73 and anticodon bases G35/G36. Here, we show that ProXp-ala and INS require these same acceptor stem and anticodon elements, respectively, whereas YbaK lacks inherent tRNA specificity. Thus, these three related domains use divergent approaches to recognize tRNAs and prevent mistranslation. Whereas some editing domains have borrowed aspects of tRNA recognition from the parent aminoacyl-tRNA synthetase, relaxed tRNA specificity leading to semi-promiscuous editing may offer advantages to cells.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/metabolismo , Alanina/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/clasificación , Anticodón , Proteínas Portadoras/metabolismo , Cisteína/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Estructura Terciaria de Proteína , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Prolina/química
8.
Biochem J ; 450(1): 243-52, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23210460

RESUMEN

aaRSs (aminoacyl-tRNA synthetases) are responsible for ensuring the fidelity of the genetic code translation by accurately linking a particular amino acid to its cognate tRNA isoacceptor. To ensure accuracy of protein biosynthesis, some aaRSs have evolved an editing process to remove mischarged tRNA. The hydrolysis of the mischarged tRNA usually occurs in an editing domain, which is inserted into or appended to the main body of the aaRS. In addition, autonomous, editing domain-homologous proteins can also trans-edit mischarged tRNA in concert or in compensating for the editing function of its corresponding aaRS. The freestanding ProX is a homologue of the editing domain of bacterial ProRS (prolyl-tRNA synthetase). In the present study, we cloned for the first time a gene encoding HsProX (human cytoplasmic ProX) and purified the expressed recombinant protein. The catalytic specificity of HsProX for non-cognate amino acids and identity elements on tRNAPro for editing were also investigated. We found that HsProX could deacylate mischarged Ala-tRNAPro, but not Cys-HstRNA(UGGPro), and specifically targeted the alanine moiety of Ala-tRNAPro. The importance of the CCA76 end of the tRNA for deacylation activity and key amino acid residues in HsProX for its editing function were also identified.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Citoplasma/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia/química , Aminoácidos/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Sitios de Unión , Humanos , Hidrólisis , Edición de ARN , ARN de Transferencia/metabolismo , ARN de Transferencia de Prolina/metabolismo , Especificidad por Sustrato
9.
Proc Biol Sci ; 277(1692): 2331-7, 2010 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-20356891

RESUMEN

During the Late Pleistocene, the woolly mammoth (Mammuthus primigenius) experienced a series of local extinctions generally attributed to human predation or environmental change. Some small and isolated populations did however survive far into the Holocene. Here, we investigated the genetic consequences of the isolation of the last remaining mammoth population on Wrangel Island. We analysed 741 bp of the mitochondrial DNA and found a loss of genetic variation in relation to the isolation event, probably caused by a demographic bottleneck or a founder event. However, in spite of ca 5000 years of isolation, we did not detect any further loss of genetic variation. Together with the relatively high number of mitochondrial haplotypes on Wrangel Island near the final disappearance, this suggests a sudden extinction of a rather stable population.


Asunto(s)
Extinción Biológica , Variación Genética/genética , Mamuts/genética , Animales , Simulación por Computador , Citocromos b/química , Citocromos b/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , Evolución Molecular , Geografía , Haplotipos/genética , Reacción en Cadena de la Polimerasa , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , Siberia
10.
Biochim Biophys Acta ; 1784(9): 1222-5, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18513497

RESUMEN

Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to their cognate tRNAs. Specific aminoacylation is dictated by a set of recognition elements that mark tRNA molecules as substrates for particular synthetases. Escherichia coli prolyl-tRNA synthetase (ProRS) has previously been shown to recognize specific bases of tRNA(Pro) in both the anticodon domain, which mediate initial complex formation, and in the acceptor stem, which is proximal to the site of catalysis. In this work, we unambiguously define the molecular interaction between E. coli ProRS and the acceptor stem of cognate tRNA(Pro). Oxidative cross-linking studies using 2'-deoxy-8-oxo-7,8-dihydroguanosine-containing proline tRNAs identify a direct interaction between a critical arginine residue (R144) in the active site of E. coli ProRS and the G72 residue in the acceptor stem of tRNA(Pro). Assays conducted with motif 2 loop variants and tRNA mutants wherein specific atomic groups of G72 were deleted, are consistent with a functionally important hydrogen-bonding network between R144 and the major groove of G72. These results taken together with previous studies suggest that breaking this key contact uncouples the allosteric interaction between the anticodon domain and the aminoacylation active site, providing new insights into the communication network that governs the synthetase-tRNA interaction.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/metabolismo , Sustitución de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Arginina/química , Catálisis , Dominio Catalítico , Reactivos de Enlaces Cruzados , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanina/química , Enlace de Hidrógeno , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Prolina/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
11.
Nucleic Acids Res ; 36(8): 2514-21, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18310681

RESUMEN

Aminoacyl-tRNA synthetases (AARS) are an essential family of enzymes that catalyze the attachment of amino acids to specific tRNAs during translation. Previously, we showed that base-specific recognition of the tRNA(Pro) acceptor stem is critical for recognition by Escherichia coli prolyl-tRNA synthetase (ProRS), but not for human ProRS. To further delineate species-specific differences in acceptor stem recognition, atomic group mutagenesis was used to probe the role of sugar-phosphate backbone interactions in recognition of human tRNA(Pro). Incorporation of site-specific 2'-deoxynucleotides, as well as phosphorothioate and methylphosphonate modifications within the tRNA acceptor stem revealed an extensive network of interactions with specific functional groups proximal to the first base pair and the discriminator base. Backbone functional groups located at the base of the acceptor stem, especially the 2'-hydroxyl of A66, are also critical for aminoacylation catalytic efficiency by human ProRS. Therefore, in contrast to the bacterial system, backbone-specific interactions contribute significantly more to tRNA recognition by the human enzyme than base-specific interactions. Taken together with previous studies, these data show that ProRS-tRNA acceptor stem interactions have co-adapted through evolution from a mechanism involving 'direct readout' of nucleotide bases to one relying primarily on backbone-specific 'indirect readout'.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Evolución Molecular , ARN de Transferencia de Prolina/química , Aminoacilación de ARN de Transferencia , Secuencia de Bases , Desoxirribonucleótidos/química , Humanos , Datos de Secuencia Molecular , Mutagénesis , Compuestos Organofosforados/química , Oligonucleótidos Fosforotioatos/química , ARN de Transferencia de Prolina/genética , Especificidad de la Especie
12.
Yi Chuan ; 28(6): 672-6, 2006 Jun.
Artículo en Chino | MEDLINE | ID: mdl-16818428

RESUMEN

We report here the results of the sequence and structure analysis of mitochondrial tRNApro and tRNAthr genes in domestic goose breeds by sequencing the mitochondrial DNA from a total of 25 samples from 6 breeds of Chinese geese and 2 breeds of domestic Europe geese. Sequences and the cloverleaf structure of tRNApro (69 bp) and tRNAthr (68 bp) in domestic goose breeds were described and analysed They were compared amongst the three domestic goose breeds as well as between Anseriformes (Anser cygnoides) and Galliformes (Gallus gallus domesticus, Genbank accession number NC001323). Both goose tRNApro and tRNAthr genes have normal cloverleaf secondary structures. The amino acid arm and the anticodon loop of the cloverleaf structure of tRNApro and tRNAthr are very conservative among Anser albifrons, Anser anser and Anser cygnoides. The gene sequences in this study were deposited to GenBank under accession numbers AY427800-AY427805 and AY427812-AY427814.


Asunto(s)
ADN Mitocondrial/química , Gansos/genética , ARN de Transferencia de Prolina/química , ARN de Transferencia de Treonina/química , Animales , Animales Domésticos/genética , Secuencia de Bases , Cruzamiento , ADN Mitocondrial/genética , Gansos/fisiología , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Treonina/genética
13.
Proc Natl Acad Sci U S A ; 103(10): 3598-603, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16505360

RESUMEN

Studies in vitro have established that free tryptophan induces tna operon expression by binding to the ribosome that has just completed synthesis of TnaC-tRNA(Pro), the peptidyl-tRNA precursor of the leader peptide of this operon. Tryptophan acts by inhibiting Release Factor 2-mediated cleavage of this peptidyl-tRNA at the tnaC stop codon. Here we analyze the ribosomal location of free tryptophan, the changes it produces in the ribosome, and the role of the nascent TnaC-tRNA(Pro) peptide in facilitating tryptophan binding and induction. The positional changes of 23S rRNA nucleotides that occur during induction were detected by using methylation protection and binding/competition assays. The ribosome-TnaC-tRNA(Pro) complexes analyzed were formed in vitro; they contained either wild-type TnaC-tRNA(Pro) or its nonfunctional substitute, TnaC(W12R)-tRNA(Pro). Upon comparing these two peptidyl-tRNA-ribosome complexes, free tryptophan was found to block methylation of nucleotide A2572 of wild-type ribosome-TnaC-tRNA(Pro) complexes but not of ribosome-TnaC(W12R)-tRNA(Pro) complexes. Nucleotide A2572 is in the ribosomal peptidyl transferase center. Tryptophanol, a noninducing competitor of tryptophan, was ineffective in blocking A2572 methylation; however, it did reverse the protective effect of tryptophan. Free tryptophan inhibited puromycin cleavage of TnaC-tRNA(Pro); it also inhibited binding of the antibiotic sparsomycin. These effects were not observed with TnaC(W12R)-tRNA(Pro) mutant complexes. These findings establish that Trp-12 of TnaC-tRNA(Pro) is required for introducing specific changes in the peptidyl transferase center of the ribosome that activate free tryptophan binding, resulting in peptidyl transferase inhibition. Free tryptophan appears to act at or near the binding sites of several antibiotics in the peptidyl transferase center.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Ribosomas/enzimología , Triptófano/química , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Sustancias Macromoleculares , Metilación , Modelos Moleculares , Operón , Peptidil Transferasas/genética , Puromicina/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Biol Chem ; 280(28): 26099-104, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15917221

RESUMEN

Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been suggested in some Archaea. To investigate interactions involving aminoacyl-tRNA synthetases in Archaea, we undertook a yeast two-hybrid screen for interactions between Methanothermobacter thermautotrophicus proteins using prolyl-tRNA synthetase (ProRS) as the bait. Interacting proteins identified included components of methanogenesis, protein-modifying factors, and leucyl-tRNA synthetase (LeuRS). The association of ProRS with LeuRS was confirmed in vitro by native gel electrophoresis and size exclusion chromatography. Determination of the steady-state kinetics of tRNA(Pro) charging showed that the catalytic efficiency (k(cat)/K(m)) of ProRS increased 5-fold in the complex with LeuRS compared with the free enzyme, whereas the K(m) for proline was unchanged. No significant changes in the steady-state kinetics of LeuRS aminoacylation were observed upon the addition of ProRS. These findings indicate that ProRS and LeuRS associate in M. thermautotrophicus and suggest that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.


Asunto(s)
Aminoacil-ARNt Sintetasas/fisiología , Leucina-ARNt Ligasa/fisiología , ARN de Transferencia de Prolina/química , Aminoacil-ARNt Sintetasas/química , Cromatografía , Cromatografía en Gel , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Biblioteca de Genes , Histidina/química , Cinética , Leucina-ARNt Ligasa/química , Methanobacteriaceae/metabolismo , Fenotipo , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Temperatura , Técnicas del Sistema de Dos Híbridos
15.
RNA ; 10(10): 1662-73, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15383682

RESUMEN

In Salmonella enterica serovar Typhimurium five of the eight family codon boxes are decoded by a tRNA having the modified nucleoside uridine-5-oxyacetic acid (cmo5U) as a wobble nucleoside present in position 34 of the tRNA. In the proline family codon box, one (tRNAProcmo5UGG) of the three tRNAs that reads the four proline codons has cmo5U34. According to theoretical predictions and several results obtained in vitro, cmo5U34 should base pair with A, G, and U in the third position of the codon but not with C. To analyze the function of cmo5U34 in tRNAProcmo5UGG in vivo, we first identified two genes (cmoA and cmoB) involved in the synthesis of cmo5U34. The null mutation cmoB2 results in tRNA having 5-hydroxyuridine (ho5U34) instead of cmo5U34, whereas the null mutation cmoA1 results in the accumulation of 5-methoxyuridine (mo5U34) and ho5U34 in tRNA. The results suggest that the synthesis of cmo5U34 occurs as follows: U34 -->(?) ho5U -->(CmoB) mo5U -->(CmoA?) cmo5U. We introduced the cmoA1 or the cmoB2 null mutations into a strain that only had tRNAProcmo5UGG and thus lacked the other two proline-specific tRNAs normally present in the cell. From analysis of growth rates of various strains and of the frequency of +1 frameshifting at a CCC-U site we conclude: (1) unexpectedly, tRNAProcmo5UGG is able to read all four proline codons; (2) the presence of ho5U34 instead of cmo5U34 in this tRNA reduces the efficiency with which it reads all four codons; and (3) the fully modified nucleoside is especially important for reading proline codons ending with U or C.


Asunto(s)
Prolina/química , ARN Bacteriano/química , ARN Bacteriano/genética , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , Uridina/análogos & derivados , Uridina/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Codón/genética , Mutación del Sistema de Lectura , Operón Lac , Biosíntesis de Proteínas , Salmonella typhimurium/genética
16.
J Biol Chem ; 279(41): 42359-62, 2004 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-15322138

RESUMEN

Prolyl-tRNA synthetases (ProRSs) from all three domains of life have been shown to misactivate cysteine and to mischarge cysteine onto tRNAPro. Although most bacterial ProRSs possess an amino acid editing domain that deacylates mischarged Ala-tRNAPro, editing of Cys-tRNAPro has not been demonstrated and a double-sieve mechanism of editing does not appear to be sufficient to eliminate all misacylated tRNAPro species from the cell. It was recently shown that a ProRS paralog, the YbaK protein from Haemophilus influenzae, which is homologous to the ProRS editing domain, is capable of weakly deacylating Ala-tRNAPro. This function appears to be redundant with that of its corresponding ProRS, which contains a canonical bacterial editing domain. In the present study, we test the specificity of editing by H. influenzae YbaK and show that it efficiently edits Cys-tRNAPro and that a conserved Lys residue is essential for this activity. These findings represent the first example of an editing domain paralog possessing altered specificity and suggest that similar autonomous editing domains could act upon different mischarged tRNAs thus providing cells with enhanced proofreading potential. This work also suggests a novel mechanism of editing wherein a third sieve is used to clear Cys-tRNAPro in at least some organisms.


Asunto(s)
Proteínas Bacterianas/fisiología , Haemophilus influenzae/metabolismo , Edición de ARN , Aminoacil-ARN de Transferencia/química , ARN de Transferencia de Prolina/química , Aminoacil-ARNt Sintetasas/fisiología , Cisteína/química , Cistina/química , Lisina/química , Estructura Terciaria de Proteína , ARN de Transferencia/química , Factores de Tiempo
17.
Jpn J Vet Res ; 51(3-4): 135-42, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15070038

RESUMEN

Genetic relationship among Japanese sables, Martes zibellina and the introduced Japanese martens, Martes melampus in northern Japan was revealed by analyzing a 521-524bp DNA sequence from the cytochrome b (112bp)/transfer RNA-threonine (67bp)/tRNA-proline (65bp) and control region (277-280bp) of the mitochondrial genome. Intraspecific differences in sequences of M. zibellina and M. melampus (3.8-15.0% and 1.9-16.4%, respectively) were similar to interspecific differences between these two species (5.8-16.6%). Comparison of sequence data exhibited five haplotypes of M. melampus and four haplotypes of M. zibellina, which clustered into two groups (clusters-A and-B). Cluster-A included two haplotypes of M. melampus and two haplotypes of M. zibellina, whereas cluster-B included three haplotypes of M. melampus and two haplotypes of M. zibellina. Results of this study lead three possible explanations. Firstly, past hybridization between M. zibellina and M. melampus might have occurred. Secondary, these two species might have similar heteroplasmy of mtDNA. Thirdly, these haplotypes might have come from nuclear genome. Although further intensive studies are needed to make a conclusion, detection of hybridization with the Japanese marten are occurred or not is quite important to conserve the Japanese sable.


Asunto(s)
Carnívoros/genética , ADN Mitocondrial/genética , Animales , Secuencia de Bases , Análisis por Conglomerados , Citocromos b/química , Citocromos b/genética , ADN Mitocondrial/química , Evolución Molecular , Haplotipos , Japón , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , Alineación de Secuencia
18.
Mol Ecol ; 11(12): 2591-8, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12453242

RESUMEN

The genetic differences among three colour morphotypes of the black rockish, Sebastes inermis, were determined from mitochondrial DNA (mtDNA) and amplified fragment length polymorphisms (AFLP) analyses. In the AFLP analysis, each morphotype could be distinguished by the presence or absence matrix of five AFLP loci. These diagnostic loci indicated that the three morphotypes represented independent gene pools, indicating reproductive isolation. Furthermore, 14 significant frequency differences in AFLP fragments were observed between morphotypes A and B, 12 between morphotypes A and C and six between morphotypes B and C. These significant differences also supported the likelihood of reproductive isolation among the morphotypes. In the mtDNA analysis, variations in partial sequences of the control region failed to distinguish clearly between the three morphotypes, but restrictions of gene flow and genetic differentiation among the morphotypes were supported by significant FST estimates. The absence of diagnostic mtDNA differences in this study may have been due to introgressive hybridization among the morphotypes and/or incomplete lineage sorting, due to the recency of speciation.


Asunto(s)
ADN Mitocondrial/genética , Peces/genética , Pigmentación/genética , Animales , Secuencia de Bases , ADN Mitocondrial/sangre , Peces/anatomía & histología , Peces/clasificación , Variación Genética , Japón , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/veterinaria , Polimorfismo Genético , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
19.
J Mol Biol ; 317(4): 481-92, 2002 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-11955004

RESUMEN

Out of more than 500 sequenced cytosolic tRNAs, there is only one with an unmodified adenosine in the wobble position (position 34). The reason for this rare occurrence of A34 is that it is mostly deaminated to inosine-34 (I34). I34 is a common constituent in the wobble position of tRNAs and has a decoding capacity different from that of A34. We have isolated a mutant (proL207) of Salmonella typhimurium, in which the wobble nucleoside G34 has been replaced by an unmodified A in tRNA(Pro)(GGG), which is the only tRNA that normally reads the CCC codon. Thus, this mutant apparently has no tRNA that is considered cognate for the codon CCC. Despite this, the mutant grows normally. As expected, Pro-tRNA selection at the CCC codon in the A-site in a mutant deleted for the proL gene, which encodes the tRNA(Pro)(GGG), was severely reduced. However, in comparison this rate of selection was only slightly reduced in the proL207 mutant with its A34 containing tRNA(Pro)(AGG) suggesting that this tRNA reads CCC. Moreover, measurements of the interference by a tRNA residing in the P-site on the apparent termination efficiency at the A-site indicated that indeed the A34 containing tRNA reads the CCC codon. We conclude that A34 in a cytosolic tRNA is not detrimental to the cell and that the mutant tRNA(Pro)(AGG) is able to read the CCC codon like its wild-type counterpart tRNA(Pro)(GGG). We suggest that the decoding of the CCC codon by a 5'-AGG-3' anticodon occurs by a wobble base-pair between a protonated A34 and a C in the mRNA.


Asunto(s)
Adenosina/genética , Codón/genética , Citidina/genética , Citosol/metabolismo , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo , Salmonella typhimurium/genética , Emparejamiento Base , Secuencia de Bases , Codón de Terminación/genética , Genes Bacterianos/genética , Código Genético , Mutación/genética , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/química , Especificidad por Sustrato
20.
J Mol Biol ; 315(5): 943-9, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11827467

RESUMEN

Accurate aminoacylation of tRNAs by aminoacyl-tRNA synthetase is essential for the fidelity of protein synthesis. For Methanococcus jannaschii tRNA(Pro), accuracy is difficult because the cognate prolyl-tRNA synthetase also recognizes and aminoacylates tRNA(Cys) with cysteine. We show here that the unmodified transcript of M. jannaschii tRNA(Pro) is indeed mis-acylated with cysteine. However, the origin of mis-charging is not at the anticodon or acceptor stem, the two hotspots for tRNA(Pro) and tRNA(Cys) identity determinants. Instead, replacement of the D loop in the tRNA core with that of tRNA(Cys) suppresses mis-charging with cysteine without compromising the activity of aminoacylation with proline. The reduced level of cysteine activity of the chimera is not due an editing response of the synthetase and is consistent with a relaxed sensitivity of the tRNA to the analog thiaproline in aminoacylation with cysteine. We suggest that mis-acylation is not due to the presence of cysteine determinants, but to a mis-placed 3' end into the cysteine catalytic site that activates and transfers cysteine to the tRNA. Prevention of mis-placement by alteration of the core structure or by nucleotide modifications in the tRNA illustrates a novel strategy of the dual-specificity synthetase.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Cisteína/metabolismo , Methanococcus/enzimología , Methanococcus/genética , ARN de Transferencia de Cisteína/metabolismo , ARN de Transferencia de Prolina/metabolismo , Acilación , Adenosina Trifosfato/metabolismo , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Secuencia de Bases , Sitios de Unión , Cisteína/genética , Ingeniería Genética , Cinética , Datos de Secuencia Molecular , Mutación/genética , Conformación de Ácido Nucleico , Prolina/genética , Prolina/metabolismo , Edición de ARN , ARN de Transferencia de Cisteína/química , ARN de Transferencia de Cisteína/genética , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , Especificidad por Sustrato , Termodinámica , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA