Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 209, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017528

RESUMEN

Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


Asunto(s)
Anticodón/química , Metiltransferasas/genética , Mitocondrias/genética , ARN Mitocondrial/química , ARN de Transferencia de Serina/química , ARN de Transferencia de Treonina/química , Anticodón/metabolismo , Emparejamiento Base , Citosina/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Metilación , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Transducción de Señal
2.
Nucleic Acids Res ; 47(4): 2056-2074, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30541130

RESUMEN

The tissue specificity of mitochondrial tRNA mutations remains largely elusive. In this study, we demonstrated the deleterious effects of tRNAThr 15927G>A mutation that contributed to pathogenesis of coronary artery disease. The m.15927G>A mutation abolished the highly conserved base-pairing (28C-42G) of anticodon stem of tRNAThr. Using molecular dynamics simulations, we showed that the m.15927G>A mutation caused unstable tRNAThr structure, supported by decreased melting temperature and slower electrophoretic mobility of mutated tRNA. Using cybrids constructed by transferring mitochondria from a Chinese family carrying the m.15927G>A mutation and a control into mitochondrial DNA (mtDNA)-less human umbilical vein endothelial cells, we demonstrated that the m.15927G>A mutation caused significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr. The aberrant tRNAThr metabolism yielded variable decreases in mtDNA-encoded polypeptides, respiratory deficiency, diminished membrane potential and increased the production of reactive oxygen species. The m.15927G>A mutation promoted the apoptosis, evidenced by elevated release of cytochrome c into cytosol and increased levels of apoptosis-activated proteins: caspases 3, 7, 9 and PARP. Moreover, the lower wound healing cells and perturbed tube formation were observed in mutant cybrids, indicating altered angiogenesis. Our findings provide new insights into the pathophysiology of coronary artery disease, which is manifested by tRNAThr mutation-induced alterations.


Asunto(s)
Mitocondrias/genética , Neovascularización Patológica/genética , ARN de Transferencia de Treonina/química , ARN de Transferencia/genética , Apoptosis/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , ADN Mitocondrial/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mitocondrias/patología , Mutación , Conformación de Ácido Nucleico , ARN de Transferencia de Treonina/genética , Especies Reactivas de Oxígeno/metabolismo
3.
Nucleic Acids Res ; 46(9): 4662-4676, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29648639

RESUMEN

Six pathogenic mutations have been reported in human mitochondrial tRNAThr (hmtRNAThr); however, the pathogenic molecular mechanism remains unclear. Previously, we established an activity assay system for human mitochondrial threonyl-tRNA synthetase (hmThrRS). In the present study, we surveyed the structural and enzymatic effects of pathogenic mutations in hmtRNAThr and then focused on m.15915 G > A (G30A) and m.15923A > G (A38G). The harmful evolutionary gain of non-Watson-Crick base pair A29/C41 caused hmtRNAThr to be highly susceptible to mutations disrupting the G30-C40 base pair in various ways; for example, structural integrity maintenance, modification and aminoacylation of tRNAThr, and editing mischarged tRNAThr. A similar phenomenon was observed for hmtRNATrp with an A29/C41 non-Watson-Crick base pair, but not in bovine mtRNAThr with a natural G29-C41 base pair. The A38G mutation caused a severe reduction in Thr-acceptance and editing of hmThrRS. Importantly, A38 is a nucleotide determinant for the t6A modification at A37, which is essential for the coding properties of hmtRNAThr. In summary, our results revealed the crucial role of the G30-C40 base pair in maintaining the proper structure and function of hmtRNAThr because of A29/C41 non-Watson-Crick base pair and explained the molecular outcome of pathogenic G30A and A38G mutations.


Asunto(s)
Mutación , ARN Mitocondrial/química , ARN de Transferencia de Treonina/química , Anticodón , Emparejamiento Base , Humanos , Mitocondrias/enzimología , Edición de ARN , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Treonina-ARNt Ligasa/metabolismo , Aminoacilación de ARN de Transferencia
4.
Nature ; 542(7642): 494-497, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28230119

RESUMEN

Nucleic acids undergo naturally occurring chemical modifications. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified. Despite recent progress, the mechanism for the biosynthesis of most modifications is not fully understood, owing, in part, to the difficulty associated with reconstituting enzyme activity in vitro. Whereas some modifications can be efficiently formed with purified components, others may require more intricate pathways. A model for modification interdependence, in which one modification is a prerequisite for another, potentially explains a major hindrance in reconstituting enzymatic activity in vitro. This model was prompted by the earlier discovery of tRNA cytosine-to-uridine editing in eukaryotes, a reaction that has not been recapitulated in vitro and the mechanism of which remains unknown. Here we show that cytosine 32 in the anticodon loop of Trypanosoma brucei tRNAThr is methylated to 3-methylcytosine (m3C) as a pre-requisite for C-to-U deamination. Formation of m3C in vitro requires the presence of both the T. brucei m3C methyltransferase TRM140 and the deaminase ADAT2/3. Once formed, m3C is deaminated to 3-methyluridine (m3U) by the same set of enzymes. ADAT2/3 is a highly mutagenic enzyme, but we also show that when co-expressed with the methyltransferase its mutagenicity is kept in check. This helps to explain how T. brucei escapes 'wholesale deamination' of its genome while harbouring both enzymes in the nucleus. This observation has implications for the control of another mutagenic deaminase, human AID, and provides a rationale for its regulation.


Asunto(s)
Metiltransferasas/metabolismo , Nucleósido Desaminasas/metabolismo , Edición de ARN , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Anticodón/metabolismo , Secuencia de Bases , Citosina/análogos & derivados , Citosina/metabolismo , Desaminación , Metilación , ARN de Transferencia de Treonina/genética , Uridina/metabolismo
5.
RNA ; 23(3): 406-419, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28003514

RESUMEN

The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.


Asunto(s)
Anticodón/química , Citidina/análogos & derivados , Proteínas de Microfilamentos/metabolismo , ARN de Transferencia de Serina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo , Anticodón/metabolismo , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Citidina/genética , Citidina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas de Microfilamentos/genética , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , ARNt Metiltransferasas/genética
6.
J Biol Chem ; 291(46): 24293-24303, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27703015

RESUMEN

Human NSun6 is an RNA methyltransferase that catalyzes the transfer of the methyl group from S-adenosyl-l-methionine (SAM) to C72 of tRNAThr and tRNACys In the current study, we used mass spectrometry to demonstrate that human NSun6 indeed introduces 5-methylcytosine (m5C) into tRNA, as expected. To further reveal the tRNA recognition mechanism of human NSun6, we measured the methylation activity of human NSun6 and its kinetic parameters for different tRNA substrates and their mutants. We showed that human NSun6 requires a well folded, full-length tRNA as its substrate. In the acceptor region, the CCA terminus, the target site C72, the discriminator base U73, and the second and third base pairs (2:71 and 3:70) of the acceptor stem are all important RNA recognition elements for human NSun6. In addition, two specific base pairs (11:24 and 12:23) in the D-stem of the tRNA substrate are involved in interacting with human NSun6. Together, our findings suggest that human NSun6 relies on a delicate network for RNA recognition, which involves both the primary sequence and tertiary structure of tRNA substrates.


Asunto(s)
Pliegue de Proteína , ARN de Transferencia de Treonina/química , ARNt Metiltransferasas/química , Humanos , Metilación , Dominios Proteicos , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
7.
Nucleic Acids Res ; 44(3): 1428-39, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26704982

RESUMEN

In mitochondria of Saccharomyces cerevisiae, a single aminoacyl-tRNA synthetase (aaRS), MST1, aminoacylates two isoacceptor tRNAs, tRNA1(Thr) and tRNA2(Thr), that harbor anticodon loops of different size and sequence. As a result of this promiscuity, reassignment of the CUN codon box from leucine to threonine is facilitated. However, the mechanism by which a single aaRS binds distinct anticodon loops with high specificity is not well understood. Herein, we present the crystal structure of MST1 in complex with the canonical tRNA2(Thr) and non-hydrolyzable analog of threonyl adenylate. Our structure reveals that the dimeric arrangement of MST1 is essential for binding the 5'-phosphate, the second base pair of the acceptor stem, the first two base pairs of the anticodon stem and the first nucleotide of the variable arm. Further, in contrast to the bacterial ortholog that 'reads' the entire anticodon sequence, MST1 recognizes bases in the second and third position and the nucleotide upstream of the anticodon sequence. We speculate that a flexible loop linking strands ß4 and ß5 may be allosteric regulator that establishes cross-subunit communication between the aminoacylation and tRNA-binding sites. We also propose that structural features of the anticodon-binding domain in MST1 permit binding of the enlarged anticodon loop of tRNA1(Thr).


Asunto(s)
Proteínas de Escherichia coli/metabolismo , ARN de Transferencia de Treonina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Treonina-ARNt Ligasa/metabolismo , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Treonina-ARNt Ligasa/química , Treonina-ARNt Ligasa/genética
8.
Nucleic Acids Res ; 44(3): 1342-53, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26657638

RESUMEN

Human polypyrimidine tract-binding protein PTB is a multifunctional RNA-binding protein with four RNA recognition motifs (RRM1 to RRM4). PTB is a nucleocytoplasmic shuttle protein that functions as a key regulator of alternative pre-mRNA splicing in the nucleoplasm and promotes internal ribosome entry site-mediated translation initiation of viral and cellular mRNAs in the cytoplasm. Here, we demonstrate that PTB and its paralogs, nPTB and ROD1, specifically interact with mitochondrial (mt) tRNA(Thr) both in human and mouse cells. In vivo and in vitro RNA-binding experiments demonstrate that PTB forms a direct interaction with the T-loop and the D-stem-loop of mt tRNA(Thr) using its N-terminal RRM1 and RRM2 motifs. RNA sequencing and cell fractionation experiments show that PTB associates with correctly processed and internally modified, mature mt tRNA(Thr) in the cytoplasm outside of mitochondria. Consistent with this, PTB activity is not required for mt tRNA(Thr) biogenesis or for correct mitochondrial protein synthesis. PTB association with mt tRNA(Thr) is largely increased upon induction of apoptosis, arguing for a potential role of the mt tRNA(Thr)/PTB complex in apoptosis. Our results lend strong support to the recently emerging conception that human mt tRNAs can participate in novel cytoplasmic processes independent from mitochondrial protein synthesis.


Asunto(s)
Citoplasma/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN de Transferencia de Treonina/metabolismo , Secuencias de Aminoácidos/genética , Animales , Apoptosis/genética , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , Células HEK293 , Células HeLa , Humanos , Ratones , Mitocondrias/genética , Datos de Secuencia Molecular , Células 3T3 NIH , Proteínas del Tejido Nervioso/genética , Conformación de Ácido Nucleico , Proteína de Unión al Tracto de Polipirimidina/genética , Unión Proteica , Interferencia de ARN , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-25186221

RESUMEN

Mutations in mitochondrial DNA (mtDNA) were the most important causes of Leber's hereditary optic neuropathy (LHON). To date, approximately 25 LHON-associated mtDNA mutations have been identified in various ethnic populations. Three primary mutations, the 3460G > A, 11778G > A and 14484T > C, in genes encoding the subunits of respiratory chain complex I, were the most common LHON-associated mtDNA mutations. Moreover, secondary mutations in mt-tRNA genes have been reported increasingly to be associated with LHON, simply due to the high mutation rates of mt-tRNAs. There is a lack of functional analysis and a poor genetic evaluation of a certain mt-tRNA mutation, which failed to meet the classic pathogenicity scoring system. As a result, how to classify a pathogenic mutation in mt-tRNA gene became important for both geneticist and clinician to diagnosis the LHON or the suspicious of LHON. In this study, we reassessed the role of a point mutation in mt-tRNA(Thr) gene which had been reported to be a mutation associated with LHON, the pathogenicity of this mutation has been discussed in this context.


Asunto(s)
ADN Mitocondrial/química , Mutación , Atrofia Óptica Hereditaria de Leber/genética , ARN de Transferencia de Treonina/química , Secuencia de Bases , China , Secuencia Conservada , Humanos , Conformación de Ácido Nucleico , ARN de Transferencia de Treonina/genética , Análisis de Secuencia de ADN
10.
Science ; 347(6217): 75-8, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25554787

RESUMEN

In Eukarya, stalled translation induces 40S dissociation and recruitment of the ribosome quality control complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here we report cryo-electron microscopy structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S subunit at sites exposed after 40S dissociation, placing the Ltn1p RING (Really Interesting New Gene) domain near the exit channel and Rqc2p over the P-site transfer RNA (tRNA). We further demonstrate that Rqc2p recruits alanine- and threonine-charged tRNA to the A site and directs the elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis, in which a protein--not an mRNA--determines tRNA recruitment and the tagging of nascent chains with carboxy-terminal Ala and Thr extensions ("CAT tails").


Asunto(s)
Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Microscopía por Crioelectrón , Conformación de Ácido Nucleico , Conformación Proteica , ARN Mensajero/metabolismo , ARN de Transferencia de Alanina/química , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/metabolismo , Proteínas de Unión al ARN , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Ubiquitina-Proteína Ligasas/ultraestructura
11.
J Biol Chem ; 290(9): 5912-25, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25593312

RESUMEN

TrmI generates N(1)-methyladenosine at position 58 (m(1)A58) in tRNA. The Thermus thermophilus tRNA(Phe) transcript was methylated efficiently by T. thermophilus TrmI, whereas the yeast tRNA(Phe) transcript was poorly methylated. Fourteen chimeric tRNA transcripts derived from these two tRNAs revealed that TrmI recognized the combination of aminoacyl stem, variable region, and T-loop. This was confirmed by 10 deletion tRNA variants: TrmI methylated transcripts containing the aminoacyl stem, variable region, and T-arm. The requirement for the T-stem itself was confirmed by disrupting the T-stem. Disrupting the interaction between T- and D-arms accelerated the methylation, suggesting that this disruption is included in part of the reaction. Experiments with 17 point mutant transcripts elucidated the positive sequence determinants C56, purine 57, A58, and U60. Replacing A58 with inosine and 2-aminopurine completely abrogated methylation, demonstrating that the 6-amino group in A58 is recognized by TrmI. T. thermophilus tRNAGGU(Thr)GGU(Thr) contains C60 instead of U60. The tRNAGGU(Thr) transcript was poorly methylated by TrmI, and replacing C60 with U increased the methylation, consistent with the point mutation experiments. A gel shift assay revealed that tRNAGGU(Thr) had a low affinity for TrmI than tRNA(Phe). Furthermore, analysis of tRNAGGU(Thr) purified from the trmI gene disruptant strain revealed that the other modifications in tRNA accelerated the formation of m(1)A58 by TrmI. Moreover, nucleoside analysis of tRNAGGU(Thr) from the wild-type strain indicated that less than 50% of tRNAGG(Thr) contained m(1)A58. Thus, the results from the in vitro experiments were confirmed by the in vivo methylation patterns.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Electroforesis en Gel de Poliacrilamida , Cinética , Metilación , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Thermus thermophilus/enzimología , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , ARNt Metiltransferasas/química , ARNt Metiltransferasas/genética
12.
Nucleic Acids Res ; 42(22): 13873-86, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25414329

RESUMEN

Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNA(Thr)2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNA(Thr)1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine. This raises interesting questions about the aminoacylation fidelity of such ThrRSs and the possible contribution of the two tRNA(Thr)s during editing. Here, we found that, despite the absence of the editing domain, S. cerevisiae mitochondrial ThrRS (ScmtThrRS) harbors a tRNA-dependent pre-transfer editing activity. Remarkably, only the usual tRNA(Thr)2 stimulated pre-transfer editing, thus, establishing the first example of a synthetase exhibiting tRNA-isoacceptor specificity during pre-transfer editing. We also showed that the failure of tRNA(Thr)1 to stimulate tRNA-dependent pre-transfer editing was due to the lack of an editing domain. Using assays of the complementation of a ScmtThrRS gene knockout strain, we showed that the catalytic core and tRNA binding domain of ScmtThrRS co-evolved to recognize the unusual tRNA(Thr)1. In combination, the results provide insights into the tRNA-dependent editing process and suggest that tRNA-dependent pre-transfer editing takes place in the aminoacylation catalytic core.


Asunto(s)
Mitocondrias/enzimología , ARN de Transferencia de Treonina/metabolismo , Treonina-ARNt Ligasa/metabolismo , Aminoacilación de ARN de Transferencia , Anticodón , Evolución Molecular , Eliminación de Gen , Estructura Terciaria de Proteína , ARN de Transferencia de Treonina/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Treonina-ARNt Ligasa/química , Treonina-ARNt Ligasa/genética
13.
Nucleic Acids Res ; 42(14): 9350-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063302

RESUMEN

Methylation is a versatile reaction involved in the synthesis and modification of biologically active molecules, including RNAs. N(6)-methyl-threonylcarbamoyl adenosine (m(6)t(6)A) is a post-transcriptional modification found at position 37 of tRNAs from bacteria, insect, plants, and mammals. Here, we report that in Escherichia coli, yaeB (renamed as trmO) encodes a tRNA methyltransferase responsible for the N(6)-methyl group of m(6)t(6)A in tRNA(Thr) specific for ACY codons. TrmO has a unique single-sheeted ß-barrel structure and does not belong to any known classes of methyltransferases. Recombinant TrmO employs S-adenosyl-L-methionine (AdoMet) as a methyl donor to methylate t(6)A to form m(6)t(6)A in tRNA(Thr). Therefore, TrmO/YaeB represents a novel category of AdoMet-dependent methyltransferase (Class VIII). In a ΔtrmO strain, m(6)t(6)A was converted to cyclic t(6)A (ct(6)A), suggesting that t(6)A is a common precursor for both m(6)t(6)A and ct(6)A. Furthermore, N(6)-methylation of t(6)A enhanced the attenuation activity of the thr operon, suggesting that TrmO ensures efficient decoding of ACY. We also identified a human homolog, TRMO, indicating that m(6)t(6)A plays a general role in fine-tuning of decoding in organisms from bacteria to mammals.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Escherichia coli/metabolismo , ARN de Transferencia de Treonina/metabolismo , ARNt Metiltransferasas/metabolismo , Adenosina/química , Adenosina/metabolismo , Sitios de Unión , Codón , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Metilación , Proteínas/metabolismo , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/química , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato , ARNt Metiltransferasas/genética
14.
Structure ; 20(10): 1769-77, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22940585

RESUMEN

Ribonuclease (RNase) Z is involved in the maturation of the 3' ends of transfer RNAs (tRNAs) in all three kingdoms of life. To prevent futile cycles of CCA addition and removal, eukaryotic RNase Z discriminates against mature tRNAs bearing a CCA motif, with the first cytosine residue (C74) being the key antideterminant. Here, we show that, remarkably, the B. subtilis enzyme does not discriminate against cytosine in position 74, but rather is highly stimulated by uracil in this location. Consistent with this observation, the vast majority of B. subtilis tRNA precursor substrates of RNase Z naturally contain U74. Those tRNA precursors with a uracil further downstream are also substrates for RNase Z, but are matured in a two-step endo/exonuclease reaction. We solved the first crystal structure of B. subtilis RNase Z bound to a tRNA(Thr) precursor with U74 and show that the enzyme has a specific binding pocket for this nucleotide.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Endorribonucleasas/química , ARN Bacteriano/química , ARN de Transferencia de Treonina/química , Secuencias de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Secuencia de Consenso , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Cuaternaria de Proteína , División del ARN , Uracilo/química
15.
Nucleic Acids Res ; 39(21): 9376-89, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21846775

RESUMEN

In Crenarchaea, several tRNA genes are predicted to express precursor-tRNAs (pre-tRNAs) with canonical or non-canonical introns at various positions. We initially focused on the tRNA(Thr) species of hyperthermophilic crenarchaeon, Aeropyrum pernix (APE) and found that in the living APE cells three tRNA(Thr) species were transcribed and subsequently matured to functional tRNAs. During maturation, introns in two of them were cleaved from standard and non-standard positions. Biochemical studies revealed that the APE splicing endonuclease (APE-EndA) removed both types of introns, including the non-canonical introns, without any nucleotide modification. To clarify the underlying reasons for broad substrate specificity of APE-EndA, we determined the crystal structure of wild-type APE-EndA and subsequently compared its structure with that of Archaeaoglobus fulgidus (AFU)-EndA, which has narrow substrate specificity. Remarkably, structural comparison revealed that APE-EndA possesses a Crenarchaea specific loop (CSL). Introduction of CSL into AFU-EndA enhanced its intron-cleaving activity irrespective of the position or motif of the intron. Thus, our biochemical and crystallographic analyses of the chimera-EndA demonstrated that the CSL is responsible for the broad substrate specificity of APE-EndA. Furthermore, mutagenesis studies revealed that Lys44 in CSL functions as the RNA recognition site.


Asunto(s)
Aeropyrum/enzimología , Proteínas Arqueales/química , Endorribonucleasas/química , Precursores del ARN/metabolismo , Empalme del ARN , ARN de Transferencia de Treonina/metabolismo , Aeropyrum/genética , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Genoma Arqueal , Intrones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Ingeniería de Proteínas , Precursores del ARN/química , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , Especificidad por Sustrato
16.
RNA ; 17(6): 1038-47, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21527672

RESUMEN

The binding affinities between Escherichia coli EF-Tu and 34 single and double base-pair changes in the T stem of E. coli tRNA(Thr)(UGU) were compared with similar data obtained previously for several aa-tRNAs binding to Thermus thermophilus EF-Tu. With a single exception, the two proteins bound to mutations in three T-stem base pairs in a quantitatively identical manner. However, tRNA(Thr) differs from other tRNAs by also using its rare A52-C62 pair as a negative specificity determinant. Using a plasmid-based tRNA gene replacement strategy, we show that many of the tRNA(Thr)(UGU) T-stem changes are either unable to support growth of E. coli or are less effective than the wild-type sequence. Since the inviable T-stem sequences are often present in other E. coli tRNAs, it appears that T-stem sequences in each tRNA body have evolved to optimize function in a different way. Although mutations of tRNA(Thr) can substantially increase or decrease its affinity to EF-Tu, the observed affinities do not correlate with the growth phenotype of the mutations in any simple way. This may either reflect the different conditions used in the two assays or indicate that the T-stem mutants affect another step in the translation mechanism.


Asunto(s)
Escherichia coli/genética , Mutación , Factor Tu de Elongación Peptídica/metabolismo , ARN Bacteriano/química , ARN de Transferencia de Treonina/química , Secuencia de Bases , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/química , ARN Bacteriano/metabolismo , ARN de Transferencia de Treonina/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
17.
Nucleic Acids Res ; 39(11): 4866-74, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21321019

RESUMEN

The standard genetic code is used by most living organisms, yet deviations have been observed in many genomes, suggesting that the genetic code has been evolving. In certain yeast mitochondria, CUN codons are reassigned from leucine to threonine, which requires an unusual tRNA(Thr) with an enlarged 8-nt anticodon loop ( ). To trace its evolutionary origin we performed a comprehensive phylogenetic analysis which revealed that evolved from yeast mitochondrial tRNA(His). To understand this tRNA identity change, we performed mutational and biochemical experiments. We show that Saccharomyces cerevisiae mitochondrial threonyl-tRNA synthetase (MST1) could attach threonine to both and the regular , but not to the wild-type tRNA(His). A loss of the first nucleotide (G(-1)) in tRNA(His) converts it to a substrate for MST1 with a K(m) value (0.7 µM) comparable to that of (0.3 µM), and addition of G(-1) to allows efficient histidylation by histidyl-tRNA synthetase. We also show that MST1 from Candida albicans, a yeast in which CUN codons remain assigned to leucine, could not threonylate , suggesting that MST1 has coevolved with . Our work provides the first clear example of a recent recoding event caused by alloacceptor tRNA gene recruitment.


Asunto(s)
ARN de Transferencia de Histidina/química , ARN de Transferencia de Treonina/química , ARN/química , Saccharomyces cerevisiae/genética , Treonina/metabolismo , Secuencia de Bases , Codón , Evolución Molecular , Histidina-ARNt Ligasa/metabolismo , Mitocondrias/enzimología , Datos de Secuencia Molecular , Filogenia , ARN/genética , ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Histidina/genética , ARN de Transferencia de Histidina/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Treonina-ARNt Ligasa/metabolismo
18.
Proc Biol Sci ; 277(1692): 2331-7, 2010 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-20356891

RESUMEN

During the Late Pleistocene, the woolly mammoth (Mammuthus primigenius) experienced a series of local extinctions generally attributed to human predation or environmental change. Some small and isolated populations did however survive far into the Holocene. Here, we investigated the genetic consequences of the isolation of the last remaining mammoth population on Wrangel Island. We analysed 741 bp of the mitochondrial DNA and found a loss of genetic variation in relation to the isolation event, probably caused by a demographic bottleneck or a founder event. However, in spite of ca 5000 years of isolation, we did not detect any further loss of genetic variation. Together with the relatively high number of mitochondrial haplotypes on Wrangel Island near the final disappearance, this suggests a sudden extinction of a rather stable population.


Asunto(s)
Extinción Biológica , Variación Genética/genética , Mamuts/genética , Animales , Simulación por Computador , Citocromos b/química , Citocromos b/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , Evolución Molecular , Geografía , Haplotipos/genética , Reacción en Cadena de la Polimerasa , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , Siberia
19.
Science ; 326(5953): 688-694, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19833920

RESUMEN

The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu.


Asunto(s)
Factor Tu de Elongación Peptídica/química , ARN Bacteriano/química , Aminoacil-ARN de Transferencia/química , Ribosomas/química , Cristalografía por Rayos X , Activación Enzimática , GTP Fosfohidrolasas/metabolismo , Código Genético , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Treonina/química , Thermus thermophilus
20.
Nucleic Acids Res ; 37(9): 2894-909, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19287007

RESUMEN

Threonylcarbamoyladenosine (t(6)A) is a universal modification found at position 37 of ANN decoding tRNAs, which imparts a unique structure to the anticodon loop enhancing its binding to ribosomes in vitro. Using a combination of bioinformatic, genetic, structural and biochemical approaches, the universal protein family YrdC/Sua5 (COG0009) was shown to be involved in the biosynthesis of this hypermodified base. Contradictory reports on the essentiality of both the yrdC wild-type gene of Escherichia coli and the SUA5 wild-type gene of Saccharomyces cerevisiae led us to reconstruct null alleles for both genes and prove that yrdC is essential in E. coli, whereas SUA5 is dispensable in yeast but results in severe growth phenotypes. Structural and biochemical analyses revealed that the E. coli YrdC protein binds ATP and preferentially binds RNA(Thr) lacking only the t(6)A modification. This work lays the foundation for elucidating the function of a protein family found in every sequenced genome to date and understanding the role of t(6)A in vivo.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , ARN de Transferencia/química , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina/biosíntesis , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Genes Esenciales , Genómica , Datos de Secuencia Molecular , ARN de Transferencia/metabolismo , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA