Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.232
1.
Curr Biol ; 34(3): 473-488.e6, 2024 02 05.
Article En | MEDLINE | ID: mdl-38181792

Complex behaviors depend on the precise developmental specification of neuronal circuits, but the relationship between genetic programs for neural development, circuit structure, and behavioral output is often unclear. The central complex (CX) is a conserved sensory-motor integration center in insects, which governs many higher-order behaviors and largely derives from a small number of type II neural stem cells (NSCs). Here, we show that Imp, a conserved IGF-II mRNA-binding protein expressed in type II NSCs, plays a role in specifying essential components of CX olfactory navigation circuitry. We show the following: (1) that multiple components of olfactory navigation circuitry arise from type II NSCs. (2) Manipulating Imp expression in type II NSCs alters the number and morphology of many of these circuit elements, with the most potent effects on neurons targeting the ventral layers of the fan-shaped body (FB). (3) Imp regulates the specification of Tachykinin-expressing ventral FB input neurons. (4) Imp is required in type II NSCs for establishing proper morphology of the CX neuropil structures. (5) Loss of Imp in type II NSCs abolishes upwind orientation to attractive odor while leaving locomotion and odor-evoked regulation of movement intact. Taken together, our findings establish that a temporally expressed gene can regulate the expression of a complex behavior by developmentally regulating the specification of multiple circuit components and provides a first step toward a developmental dissection of the CX and its roles in behavior.


Drosophila Proteins , Drosophila melanogaster , Neural Stem Cells , RNA-Binding Proteins , Smell , Spatial Navigation , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Neural Stem Cells/metabolism , Neurons/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/physiology , Drosophila Proteins/genetics , Drosophila Proteins/physiology
2.
Int J Radiat Oncol Biol Phys ; 119(1): 219-233, 2024 May 01.
Article En | MEDLINE | ID: mdl-37914138

PURPOSE: Radiation therapy is a vital adjuvant treatment for liver cancer, although the challenge of radiation-induced liver diseases (RILDs) limits its implementation. Kupffer cells (KCs) are a crucial cell population of the hepatic immune system, and their biologic function can be modulated by multiple epigenetic RNA modifications, including N6-methyladenosine (m6A) methylation. However, the mechanism for m6A methylation in KC-induced inflammatory responses in RILD remains unclear. The present study investigated the function of m6A modification in KCs contributing to RILD. METHODS AND MATERIALS: Methylated RNA-immunoprecipitation sequencing and RNA transcriptome sequencing were used to explore the m6A methylation profile of primary KCs isolated from mice after irradiation with 3 × 8 Gy. Western blotting and quantitative real-time PCR were used to evaluate gene expression. DNA pulldown and chromatin immunoprecipitation assays were performed to verify target gene binding and identify binding sites. RESULTS: Methylated RNA-immunoprecipitation sequencing revealed significantly increased m6A modification levels in human KCs after irradiation, suggesting the potential role of upregulated m6A in RILD. In addition, the study results corroborated that methyltransferase-like 3 (METTL3) acts as a main modulator to promote the methylation and gene expression of TEAD1, leading to STING-NLRP3 signaling activation. Importantly, it was shown that IGF2BP2 functions as an m6A "reader" to recognize methylated TEAD1 mRNA and promote its stability. METTL3/TEAD1 knockdown abolished the activation of STING-NLRP3 signaling, protected against RILD, and suppressed inflammatory cytokines and hepatocyte apoptosis. Moreover, clinical human normal liver tissue samples collected after irradiation showed increased expression of STING and interleukin-1ß in KCs compared with nonirradiated samples. Notably, STING pharmacologic inhibition alleviated irradiation-induced liver injury in mice, indicating its potential therapeutic role in RILD. CONCLUSIONS: The results of our study reveal that TEAD1-STING-NLRP3 signaling activation contributes to RILD via METTL3-dependent m6A modification.


Kupffer Cells , Liver Neoplasms , Humans , Mice , Animals , Kupffer Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Up-Regulation , Pyroptosis , Liver Neoplasms/metabolism , RNA, Messenger/genetics , Methyltransferases/genetics , RNA-Binding Proteins/physiology
3.
Dis Markers ; 2022: 5791471, 2022.
Article En | MEDLINE | ID: mdl-35280441

Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, with high incidence and mortality rate. There is an urgent need to identify effective diagnostic and prognostic biomarkers for HCC. Members of the acidic leucine-rich nucleophosphoprotein 32 (ANP32) family, which mainly includes ANP32A, ANP32B, and ANP32E, are abnormally expressed and have prognostic value in certain cancers. However, the diagnostic, prognostic, and therapeutic value of ANP32 family members in HCC has not yet been fully studied. In this study, we identified the diagnostic and prognostic value of ANP32 family members in HCC. Transcriptome data from public databases, such as the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, suggested that ANP32A, ANP32B, and ANP32E were upregulated in HCC tissues, and high expression of ANP32 family members was associated with advanced pathologic stage and histologic grade. Our immunohistochemistry and western blot results further verified the differential expression of ANP32 family members. ANP32A, ANP32B, and ANP32E had an outstanding diagnostic potential. Survival analysis of HCC patients in TCGA databases demonstrated that ANP32A, ANP32B, and ANP32E were associated with poor overall survival (OS) and disease-specific survival (DSS). Univariate and multivariate Cox analyses suggested the capability of ANP32B and ANP32E to independently predict the OS and DSS of HCC patients. Gene set enrichment analysis (GSEA) showed that ANP32 family members were associated with immune response, epidermal cell differentiation, and stem cell proliferation. Expression of ANP32 family members was associated with immune cell infiltration and immune status in the tumor microenvironment of HCC, and patients with high ANP32 family expression had poor sensitivity to immunotherapy. Finally, we identified potential chemotherapy drugs for HCC patients with high ANP32 family expression by CellMiner database. This study suggested the diagnostic, prognostic, and therapeutic roles of the ANP32 family in HCC patients, providing potential therapeutic targets for HCC.


Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/diagnosis , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Nuclear Proteins/physiology , RNA-Binding Proteins/physiology , Biomarkers, Tumor , Carcinoma, Hepatocellular/mortality , Female , Humans , Liver Neoplasms/mortality , Male , Middle Aged , Prognosis , Survival Rate
4.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article En | MEDLINE | ID: mdl-35163207

The eukaryotic translation initiation factor 5A (eIF5A) is an evolutionarily conserved protein that binds ribosomes to facilitate the translation of peptide motifs with consecutive prolines or combinations of prolines with glycine and charged amino acids. It has also been linked to other molecular functions and cellular processes, such as nuclear mRNA export and mRNA decay, proliferation, differentiation, autophagy, and apoptosis. The growing interest in eIF5A relates to its association with the pathogenesis of several diseases, including cancer, viral infection, and diabetes. It has also been proposed as an anti-aging factor: its levels decay in aged cells, whereas increasing levels of active eIF5A result in the rejuvenation of the immune and vascular systems and improved brain cognition. Recent data have linked the role of eIF5A in some pathologies with its function in maintaining healthy mitochondria. The eukaryotic translation initiation factor 5A is upregulated under respiratory metabolism and its deficiency reduces oxygen consumption, ATP production, and the levels of several mitochondrial metabolic enzymes, as well as altering mitochondria dynamics. However, although all the accumulated data strongly link eIF5A to mitochondrial function, the precise molecular role and mechanisms involved are still unknown. In this review, we discuss the findings linking eIF5A and mitochondria, speculate about its role in regulating mitochondrial homeostasis, and highlight its potential as a target in diseases related to energy metabolism.


Mitochondria/physiology , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/physiology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/physiology , Energy Metabolism/physiology , Humans , Mitochondria/genetics , Mitochondria/metabolism , Peptide Initiation Factors/genetics , Peptides/metabolism , RNA-Binding Proteins/genetics , Ribosomes/metabolism , Eukaryotic Translation Initiation Factor 5A
5.
Cell Rep ; 38(2): 110211, 2022 01 11.
Article En | MEDLINE | ID: mdl-35021076

Oncogene-induced senescence (OIS) is a form of stable cell-cycle arrest arising in response to oncogenic stimulation. OIS must be bypassed for transformation, but the mechanisms of OIS establishment and bypass remain poorly understood, especially at the post-transcriptional level. Here, we show that the RNA-binding protein UNR/CSDE1 enables OIS in primary mouse keratinocytes. Depletion of CSDE1 leads to senescence bypass, cell immortalization, and tumor formation, indicating that CSDE1 behaves as a tumor suppressor. Unbiased high-throughput analyses uncovered that CSDE1 promotes OIS by two independent molecular mechanisms: enhancement of the stability of senescence-associated secretory phenotype (SASP) factor mRNAs and repression of Ybx1 mRNA translation. Importantly, depletion of YBX1 from immortal keratinocytes rescues senescence and uncouples proliferation arrest from the SASP, revealing multilayered mechanisms exerted by CSDE1 to coordinate senescence. Our data highlight the relevance of post-transcriptional control in the regulation of senescence.


Cellular Senescence/physiology , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/physiology , Cell Line , Cell Proliferation/physiology , Cellular Senescence/genetics , DNA-Binding Proteins/physiology , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Keratinocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Oncogenes/genetics , Primary Cell Culture , RNA Processing, Post-Transcriptional/physiology , RNA-Binding Proteins/physiology , Senescence-Associated Secretory Phenotype/genetics , Senescence-Associated Secretory Phenotype/physiology , Signal Transduction/physiology , Y-Box-Binding Protein 1/metabolism
6.
Leukemia ; 36(1): 68-79, 2022 01.
Article En | MEDLINE | ID: mdl-34321607

Despite recent advances in therapeutic approaches, patients with MLL-rearranged leukemia still have poor outcomes. Here, we find that the RNA-binding protein IGF2BP3, which is overexpressed in MLL-translocated leukemia, strongly amplifies MLL-Af4-mediated leukemogenesis. Deletion of Igf2bp3 significantly increases the survival of mice with MLL-Af4-driven leukemia and greatly attenuates disease, with a minimal impact on baseline hematopoiesis. At the cellular level, MLL-Af4 leukemia-initiating cells require Igf2bp3 for their function in leukemogenesis. At the molecular level, IGF2BP3 regulates a complex posttranscriptional operon governing leukemia cell survival and proliferation. IGF2BP3-targeted mRNA transcripts include important MLL-Af4-induced genes, such as those in the Hoxa locus, and the Ras signaling pathway. Targeting of transcripts by IGF2BP3 regulates both steady-state mRNA levels and, unexpectedly, pre-mRNA splicing. Together, our findings show that IGF2BP3 represents an attractive therapeutic target in this disease, providing important insights into mechanisms of posttranscriptional regulation in leukemia.


Carcinogenesis/pathology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Leukemic , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Experimental/pathology , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , RNA-Binding Proteins/physiology , Animals , Apoptosis , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Proliferation , Female , Leukemia, Experimental/etiology , Leukemia, Experimental/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
7.
Exp Eye Res ; 214: 108889, 2022 01.
Article En | MEDLINE | ID: mdl-34906599

Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.


Cataract/metabolism , Cell Cycle/physiology , Cytoskeleton/metabolism , Lens, Crystalline/metabolism , Protein Processing, Post-Translational/physiology , RNA-Binding Proteins/physiology , Transcription Factors/genetics , Aging/physiology , CELF1 Protein/metabolism , Cataract/pathology , Humans , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism
8.
Shock ; 57(2): 246-255, 2022 02 01.
Article En | MEDLINE | ID: mdl-34864782

INTRODUCTION: Triggering receptor expressed on myeloid cells-1 (TREM-1) has important implications in sepsis and inflammation and is a novel receptor for extracellular cold-inducible RNA-binding protein (eCIRP). We hypothesize that the inhibition of TREM-1 via its interaction with eCIRP by novel peptide inhibitor M3 or knockout gene will attenuate the inflammation and injury associated with severe hepatic ischemia/reperfusion (I/R). METHODS: Wild-type (WT) C57BL/6 and TREM-1-/- mice underwent 60 min of 70% hepatic ischemia, with 24 h of reperfusion. Additionally, WT mice underwent hepatic I/R and were treated with M3 (10 mg/kg body weight) or vehicle (normal saline) at the start of reperfusion. Blood and ischemic liver tissues were collected, and analysis was performed using enzymatic assays, enzyme-linked immunosorbent assay, reverse-transcription quantitative polymerase chain reaction, and pathohistology techniques. For survival surgery, mice additionally underwent resection of non-ischemic lobes of the liver and survival was monitored for 10 days. RESULTS: There was an increase in serum levels of tissue markers including aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase as well as cytokine levels (IL-6) and histological scoring of hematoxylin and eosin sections in WT I/R mice. These markers decreased substantially in TREM-1-/- mice. Additionally, neutrophil infiltration markers and markers of local inflammation (myeloperoxidase, macrophage inflammatory protein-2, cyclooxygenase-2) were attenuated in TREM-1-/- mice. Similarly, we show a significant decrease in injury and inflammation markers with M3 treatment. Additionally, we demonstrate decreased apoptosis with TREM-1 inhibition. Finally, M3 treatment improved the survival rate from 42% to 75% after hepatic I/R. CONCLUSION: TREM-1 is an important eCIRP receptor in the inflammatory response of hepatic I/R, and deficiency of TREM-1 via knockout gene or peptide inhibition attenuated liver injury and inflammation, and improved survival. Inhibition of the TREM-1 and eCIRP interaction in hepatic I/R may have important therapeutic potential.


Inflammation/etiology , Liver/blood supply , RNA-Binding Proteins/physiology , Reperfusion Injury/mortality , Triggering Receptor Expressed on Myeloid Cells-1/physiology , Animals , Mice , Mice, Inbred C57BL , Survival Rate
9.
PLoS One ; 16(12): e0260981, 2021.
Article En | MEDLINE | ID: mdl-34898610

Carbon Storage Regulator A (CsrA) is a well-characterized post-transcriptional global regulator that plays a critical role in response to environmental changes in many bacteria. CsrA has been reported to regulate several metabolic pathways, motility, biofilm formation, and virulence-associated genes. The role of csrA in Leptospira spp., which are able to survive in different environmental niches and infect a wide variety of reservoir hosts, has not been characterized. To investigate the role of csrA as a gene regulator in Leptospira, we generated a L. biflexa csrA deletion mutant (ΔcsrA) and csrA overexpressing Leptospira strains. The ΔcsrA L. biflexa displayed poor growth under starvation conditions. RNA sequencing revealed that in rich medium only a few genes, including the gene encoding the flagellar filament protein FlaB3, were differentially expressed in the ΔcsrA mutant. In contrast, 575 transcripts were differentially expressed when csrA was overexpressed in L. biflexa. Electrophoretic mobility shift assay (EMSA) confirmed the RNA-seq data in the ΔcsrA mutant, showing direct binding of recombinant CsrA to flaB3 mRNA. In the pathogen L. interrogans, we were not able to generate a csrA mutant. We therefore decided to overexpress csrA in L. interrogans. In contrast to the overexpressing strain of L. biflexa, the overexpressing L. interrogans strain had poor motility on soft agar. The overexpressing strain of L. interrogans also showed significant upregulation of the flagellin flaB1, flaB2, and flaB4. The interaction of L. interrogans rCsrA and flaB4 was confirmed by EMSA. Our results demonstrated that CsrA may function as a global regulator in Leptospira spp. under certain conditions that cause csrA overexpression. Interestingly, the mechanisms of action and gene targets of CsrA may be different between non-pathogenic and pathogenic Leptospira strains.


Bacterial Proteins/physiology , Carbon/metabolism , Leptospira/physiology , RNA-Binding Proteins/physiology , Alleles , Bacterial Proteins/genetics , Gene Deletion , Genes, Bacterial , Leptospira/genetics , Phenotype , RNA-Binding Proteins/genetics
10.
Front Immunol ; 12: 763760, 2021.
Article En | MEDLINE | ID: mdl-34917083

Cardiomyocyte apoptosis in response to inflammation is a primary cause of myocardial ischemia-reperfusion injury (IRI). Nuclear factor erythroid 2 like 2 (Nrf2) reportedly plays an important role in myocardial IRI, but the underlying mechanism remains obscure. Expression data from the normal heart tissues of mice or heart tissues treated with reperfusion for 6 h after ischemia (IR6h) were acquired from the GEO database; changes in biological function and infiltrating immune cells were analyzed. The binding between the molecules was verified by chromatin immunoprecipitation sequencing. Based on confirmation that early myocardial ischemia-reperfusion (myocardial ischemia/reperfusion for 6 hours, IR6h) promoted myocardial apoptosis and inflammatory response, we found that Nrf2, cooperating with Programmed Cell Death 4, promoted transcription initiation of C-C Motif Chemokine Ligand 3 (Ccl3) in myocardial tissues of mice treated with IR6h. Moreover, Ccl3 contributed to the high signature score of C-C motif chemokine receptor 1 (Ccr1)-positive macrophages. The high signature score of Ccr1-positive macrophages leads to the release of pro-inflammatory factors interleukin 1 beta and interleukin 6. This study is the first to elucidate the damaging effect of Nrf2 via remodeling of the immune microenvironment in early myocardial ischemia-reperfusion, which provides us with new perspectives and treatment strategies for myocardial ischemia-reperfusion.


Inflammation/etiology , Macrophages/physiology , Myocardial Reperfusion Injury/complications , NF-E2-Related Factor 2/physiology , Animals , Apoptosis , Apoptosis Regulatory Proteins/physiology , Chemokines/genetics , Macrophage Activation , Mice , Mice, Inbred C57BL , RNA-Binding Proteins/physiology
11.
Nat Med ; 27(12): 2165-2175, 2021 12.
Article En | MEDLINE | ID: mdl-34887573

Intracranial aneurysm (IA) rupture leads to subarachnoid hemorrhage, a sudden-onset disease that often causes death or severe disability. Although genome-wide association studies have identified common genetic variants that increase IA risk moderately, the contribution of variants with large effect remains poorly defined. Using whole-exome sequencing, we identified significant enrichment of rare, deleterious mutations in PPIL4, encoding peptidyl-prolyl cis-trans isomerase-like 4, in both familial and index IA cases. Ppil4 depletion in vertebrate models causes intracerebral hemorrhage, defects in cerebrovascular morphology and impaired Wnt signaling. Wild-type, but not IA-mutant, PPIL4 potentiates Wnt signaling by binding JMJD6, a known angiogenesis regulator and Wnt activator. These findings identify a novel PPIL4-dependent Wnt signaling mechanism involved in brain-specific angiogenesis and maintenance of cerebrovascular integrity and implicate PPIL4 gene mutations in the pathogenesis of IA.


Brain/blood supply , Cyclophilins/genetics , Intracranial Aneurysm/genetics , Neovascularization, Pathologic/genetics , RNA-Binding Proteins/genetics , Cyclophilins/physiology , Humans , Mutation , RNA-Binding Proteins/physiology , Exome Sequencing , Wnt Signaling Pathway/physiology
12.
Front Immunol ; 12: 768435, 2021.
Article En | MEDLINE | ID: mdl-34925338

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a condition with an imbalanced inflammatory response and delayed resolution of inflammation. Macrophage polarization plays an important role in inflammation and resolution. However, the mechanism of macrophage polarization in ALI/ARDS is not fully understood. We found that mice with lipopolysaccharide administration developed lung injury with the accumulation of extracellular cold-inducible RNA-binding protein (eCIRP) in the lungs. eCIRP, as a damage-associated molecular pattern (DAMP), inhibited M2 macrophage polarization, thereby tipping the balance toward inflammation rather than resolution. Anti-CIRP antibodies reversed such phenotypes. The levels of macrophage erythropoietin (EPO) receptor (EPOR) were reduced after eCIRP treatment. Myeloid-specific EPOR-deficient mice displayed restrained M2 macrophage polarization and impaired inflammation resolution. Mechanistically, eCIRP impaired Rab26, a member of Ras superfamilies of small G proteins, and reduced the transportation of surface EPOR, which resulted in macrophage polarization toward the M1 phenotype. Moreover, EPO treatment hardly promotes M2 polarization in Rab26 knockout (KO) macrophages through EPOR. Collectively, macrophage EPOR signaling is impaired by eCIRP through Rab26 during ALI/ARDS, leading to the restrained M2 macrophage polarization and delayed inflammation resolution. These findings identify a mechanism of persistent inflammation and a potential therapy during ALI/ARDS.


Acute Lung Injury/immunology , Macrophages/physiology , RNA-Binding Proteins/physiology , Receptors, Erythropoietin/physiology , rab GTP-Binding Proteins/physiology , Animals , Cell Polarity , Cells, Cultured , Inflammation/etiology , Mice , Mice, Inbred C57BL , PPAR gamma/physiology
13.
Genes (Basel) ; 12(12)2021 12 16.
Article En | MEDLINE | ID: mdl-34946947

Chromatin is a highly dynamic biological entity that allows for both the control of gene expression and the stabilization of chromosomal domains. Given the high degree of plasticity observed in model and non-model organisms, it is not surprising that new chromatin components are frequently described. In this work, we tested the hypothesis that the remnants of the Doc5 transposable element, which retains a heterochromatin insertion pattern in the melanogaster species complex, can be bound by chromatin proteins, and thus be involved in the organization of heterochromatic domains. Using the Yeast One Hybrid approach, we found Rpl22 as a potential interacting protein of Doc5. We further tested in vitro the observed interaction through Electrophoretic Mobility Shift Assay, uncovering that the N-terminal portion of the protein is sufficient to interact with Doc5. However, in situ localization of the native protein failed to detect Rpl22 association with chromatin. The results obtained are discussed in the light of the current knowledge on the extra-ribosomal role of ribosomal protein in eukaryotes, which suggests a possible role of Rpl22 in the determination of the heterochromatin in Drosophila.


DNA Transposable Elements/genetics , Drosophila Proteins/genetics , Heterochromatin/genetics , RNA-Binding Proteins/genetics , Ribosomal Proteins/genetics , Animals , Chromatin/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Gene Expression/genetics , Gene Expression Regulation/genetics , RNA-Binding Proteins/physiology , Ribosomal Proteins/physiology , Ribosomes/metabolism
14.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article En | MEDLINE | ID: mdl-34884485

Inhibition of the 14q32 microRNAs, miR-329-3p and miR-495-3p, improves post-ischemic neovascularization. Cold-inducible RNA-binding protein (CIRBP) facilitates maturation of these microRNAs. We hypothesized that CIRBP deficiency improves post-ischemic angiogenesis via downregulation of 14q32 microRNA expression. We investigated these regulatory mechanisms both in vitro and in vivo. We induced hindlimb ischemia in Cirp-/- and C57Bl/6-J mice, monitored blood flow recovery with laser Doppler perfusion imaging, and assessed neovascularization via immunohistochemistry. Post-ischemic angiogenesis was enhanced in Cirp-/- mice by 34.3% with no effects on arteriogenesis. In vivo at day 7, miR-329-3p and miR-495-3p expression were downregulated in Cirp-/- mice by 40.6% and 36.2%. In HUVECs, CIRBP expression was upregulated under hypothermia, while miR-329-3p and miR-495-3p expression remained unaffected. siRNA-mediated CIRBP knockdown led to the downregulation of CIRBP-splice-variant-1 (CIRBP-SV1), CIRBP antisense long noncoding RNA (lncRNA-CIRBP-AS1), and miR-495-3p with no effects on the expression of CIRBP-SV2-4 or miR-329-3p. siRNA-mediated CIRBP knockdown improved HUVEC migration and tube formation. SiRNA-mediated lncRNA-CIRBP-AS1 knockdown had similar long-term effects. After short incubation times, however, only CIRBP knockdown affected angiogenesis, indicating that the effects of lncRNA-CIRBP-AS1 knockdown were secondary to CIRBP-SV1 downregulation. CIRBP is a negative regulator of angiogenesis in vitro and in vivo and acts, at least in part, through the regulation of miR-329-3p and miR-495-3p.


Ischemia/pathology , MicroRNAs/genetics , Neovascularization, Pathologic/pathology , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/physiology , Animals , Chromosomes , Hindlimb/blood supply , Ischemia/etiology , Ischemia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
15.
J Clin Invest ; 131(22)2021 11 15.
Article En | MEDLINE | ID: mdl-34779407

High expression of LIN28B is associated with aggressive malignancy and poor survival. Here, probing MYCN-amplified neuroblastoma as a model system, we showed that LIN28B expression was associated with enhanced cell migration in vitro and invasive and metastatic behavior in murine xenografts. Sequence analysis of the polyribosome fraction of LIN28B-expressing neuroblastoma cells revealed let-7-independent enrichment of transcripts encoding components of the translational and ribosomal apparatus and depletion of transcripts of neuronal developmental programs. We further observed that LIN28B utilizes both its cold shock and zinc finger RNA binding domains to preferentially interact with MYCN-induced transcripts of the ribosomal complex, enhancing their translation. These data demonstrated that LIN28B couples the MYCN-driven transcriptional program to enhanced ribosomal translation, thereby implicating LIN28B as a posttranscriptional driver of the metastatic phenotype.


N-Myc Proto-Oncogene Protein/physiology , Neoplasm Metastasis , Neuroblastoma/pathology , RNA-Binding Proteins/physiology , Ribosomes/physiology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Neuroblastoma/etiology
16.
Int J Mol Sci ; 22(21)2021 Oct 23.
Article En | MEDLINE | ID: mdl-34768866

Adenosine deaminase acting on RNA 1 (ADAR1) is an enzyme responsible for double-stranded RNA (dsRNA)-specific adenosine-to-inosine RNA editing, which is estimated to occur at over 100 million sites in humans. ADAR1 is composed of two isoforms transcribed from different promoters: p150 and N-terminal truncated p110. Deletion of ADAR1 p150 in mice activates melanoma differentiation-associated protein 5 (MDA5)-sensing pathway, which recognizes endogenous unedited RNA as non-self. In contrast, we have recently demonstrated that ADAR1 p110-mediated RNA editing does not contribute to this function, implying that a unique Z-DNA/RNA-binding domain α (Zα) in the N terminus of ADAR1 p150 provides specific RNA editing, which is critical for preventing MDA5 activation. In addition, a mutation in the Zα domain is identified in patients with Aicardi-Goutières syndrome (AGS), an inherited encephalopathy characterized by overproduction of type I interferon. Accordingly, we and other groups have recently demonstrated that Adar1 Zα-mutated mice show MDA5-dependent type I interferon responses. Furthermore, one such mutant mouse carrying a W197A point mutation in the Zα domain, which inhibits Z-RNA binding, manifests AGS-like encephalopathy. These findings collectively suggest that Z-RNA binding by ADAR1 p150 is essential for proper RNA editing at certain sites, preventing aberrant MDA5 activation.


Adenosine Deaminase/metabolism , Adenosine Deaminase/physiology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/physiology , Adenosine , Animals , DNA, Z-Form/metabolism , DNA, Z-Form/physiology , Humans , Inosine , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Mice , Protein Isoforms/metabolism , RNA Editing/physiology , RNA, Double-Stranded
17.
Asian Pac J Cancer Prev ; 22(11): 3671-3678, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34837926

BACKGROUND: LIN28B is functionally driving malignant transformation and relevance to the worse disease outcomes by promoting cancer aggressiveness. However, a typical role of LIN28B in cholangiocarcinoma (CCA) is primarily unknown. In this study, the tumorigenic potential of LIN28B in the cholangiocyte context was investigated. METHODS: Stable LIN28B expression in MMNK-1 cells was generated by infecting with retrovirus-containing LIN28B gene. LIN28B-overexpressing cells were further validated the amount of released cytokines by using human cytokine arrays. After treatment of chemo-drugs, cell viability was subsequently measured using MTT assay. Aldehyde dehydrogenase (ALDH) activity was determined using ALDEFLUOR assay Kit and analyzed by flow cytometry. The mRNA and protein expression levels were respectively assayed by RT-qPCR and western blot. RESULTS: Cytokine release results showed that numerous inflammatory cytokines-chemokines related to cancer initiation and development, such as IL-8, IL-6, VEGF, MCP1, TNF-α were significantly increased in LIN28B-overexpressing MMNK-1 cells. Drug sensitivity test showed that LIN28B-overexpressing MMNK-1 treated cells had a high percentage of cell viability compared to MMNK-1-control treated cells. Activity and expression level of a cancer stem cell marker, ALDH was significantly elevated in LIN28B-overexpressing MMNK-1 cells. Moreover, the activation of an oncogenic signaling pathway, signal transducer and activator of transcription 3 (STAT3) was enhanced in LIN28B-overexpressing MMNK-1 cells. Whereas, growth capacity of LIN28B-overexpressing MMNK-1 cells was found to be reduced in STAT3 inhibition. CONCLUSION: LIN28B can regulate the inflammatory response and resistance to chemotherapy of cholangiocytes through modulation of STAT3 signaling pathway.A recent study suggests that activated cholangiocytes can be induced by regulation of LIN28B/STAT3 pathway and this may partially contribute to the initiating CCA. Here, LIN28B and its downstream signaling could be considered as an attractive therapeutic target in patients with CCA.


Bile Duct Neoplasms/genetics , Cholangiocarcinoma/genetics , Drug Resistance, Neoplasm/genetics , RNA-Binding Proteins/physiology , STAT3 Transcription Factor/metabolism , Bile Ducts/cytology , Cell Line, Tumor , Cell Survival/genetics , Cytokines/metabolism , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/genetics , Humans , Oncogenes/genetics , Signal Transduction/genetics
18.
Cell Rep ; 37(8): 110038, 2021 11 23.
Article En | MEDLINE | ID: mdl-34818543

Cellular senescence is associated with pleiotropic physiopathological processes, including aging and age-related diseases. The persistent DNA damage is a major stress leading to senescence, but the underlying molecular link remains elusive. Here, we identify La Ribonucleoprotein 7 (LARP7), a 7SK RNA binding protein, as an aging antagonist. DNA damage-mediated Ataxia Telangiectasia Mutated (ATM) activation triggers the extracellular shuttling and downregulation of LARP7, which dampens SIRT1 deacetylase activity, enhances p53 and NF-κB (p65) transcriptional activity by augmenting their acetylation, and thereby accelerates cellular senescence. Deletion of LARP7 leads to senescent cell accumulation and premature aging in rodent model. Furthermore, we show this ATM-LARP7-SIRT1-p53/p65 senescence axis is active in vascular senescence and atherogenesis, and preventing its activation substantially alleviates senescence and atherogenesis. Together, this study identifies LARP7 as a gatekeeper of senescence, and the altered ATM-LARP7-SIRT1-p53/p65 pathway plays an important role in DNA damage response (DDR)-mediated cellular senescence and atherosclerosis.


Cellular Senescence/physiology , Ribonucleoproteins/metabolism , Sirtuin 1/metabolism , Acetylation , Aging/metabolism , Aging/physiology , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , DNA Damage , Female , Humans , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/physiology , Ribonucleoproteins/physiology , Signal Transduction , Sirtuin 1/physiology , Transcription Factor RelA/metabolism , Tumor Suppressor Protein p53/metabolism
19.
Sci Rep ; 11(1): 22505, 2021 11 18.
Article En | MEDLINE | ID: mdl-34795329

FRG1 has a role in tumorigenesis and angiogenesis. Our preliminary analysis showed that FRG1 mRNA expression is associated with overall survival (OS) in certain cancers, but the effect varies. In cervix and gastric cancers, we found a clear difference in the OS between the low and high FRG1 mRNA expression groups, but the difference was not prominent in breast, lung, and liver cancers. We hypothesized that FRG1 expression level could affect the functionality of the correlated genes or vice versa, which might mask the effect of a single gene on the OS analysis in cancer patients. We used the multivariate Cox regression, risk score, and Kaplan Meier analyses to determine OS in a multigene model. STRING, Cytoscape, HIPPIE, Gene Ontology, and DAVID (KEGG) were used to deduce FRG1 associated pathways. In breast, lung, and liver cancers, we found a distinct difference in the OS between the low and high FRG1 mRNA expression groups in the multigene model, suggesting an independent role of FRG1 in survival. Risk scores were calculated based upon regression coefficients in the multigene model. Low and high-risk score groups showed a significant difference in the FRG1 mRNA expression level and OS. HPF1, RPL34, and EXOSC9 were the most common genes present in FRG1 associated pathways across the cancer types. Validation of the effect of FRG1 mRNA expression level on these genes by qRT-PCR supports that FRG1 might be an upstream regulator of their expression. These genes may have multiple regulators, which also affect their expression, leading to the masking effect in the survival analysis. In conclusion, our study highlights the role of FRG1 in the survivability of cancer patients in tissue-specific manner and the use of multigene models in prognosis.


Biomarkers, Tumor/biosynthesis , Breast Neoplasms/metabolism , Gastrointestinal Neoplasms/metabolism , Gene Expression Profiling , Lung Neoplasms/metabolism , Microfilament Proteins/physiology , Neoplasms/metabolism , RNA-Binding Proteins/physiology , Breast Neoplasms/mortality , Gastrointestinal Neoplasms/mortality , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Microfilament Proteins/biosynthesis , Multivariate Analysis , Prognosis , Proportional Hazards Models , Protein Interaction Mapping , RNA, Messenger/metabolism , RNA-Binding Proteins/biosynthesis , ROC Curve , Risk Assessment , Treatment Outcome
20.
Cell Mol Life Sci ; 78(23): 7635-7648, 2021 Dec.
Article En | MEDLINE | ID: mdl-34693458

Sam68 is an RNA-binding protein with an adaptor role in signal transduction. Our previous work identified critical proinflammatory and apoptotic functions for Sam68, downstream of the TNF/TNFR1 and TLR2/3/4 pathways. Recent studies have shown elevated Sam68 in inflamed tissues from rheumatoid arthritis and ulcerative colitis (UC) patients, suggesting that Sam68 contributes to chronic inflammatory diseases. Here, we hypothesized that deletion of Sam68 is protective against experimental colitis in vivo, via reductions in TNF-associated inflammatory signaling. We used Sam68 knockout (KO) mice to study the role of Sam68 in experimental colitis, including its contributions to TNF-induced inflammatory gene expression in three-dimensional intestinal organoid cultures. We also studied the expression of Sam68 and inflammatory genes in colon tissues of UC patients. Sam68 KO mice treated with an acute course of DSS exhibited significantly less weight loss and histopathological inflammation compared to wild-type controls, suggesting that Sam68 contributes to experimental colitis. Bone marrow transplants showed no pathologic role for hematopoietic cell-specific Sam68, suggesting that non-hematopoietic Sam68 drives intestinal inflammation. Gene expression analyses showed that Sam68 deficiency reduced the expression of proinflammatory genes in colon tissues from DSS-treated mice, as well as TNF-treated three-dimensional colonic organoids. We also found that inflammatory genes, such as TNF, CCR2, CSF2, IL33 and CXCL10, as well as Sam68 protein, were upregulated in inflamed colon tissues of UC patients. This report identifies Sam68 as an important inflammatory driver in response to intestinal epithelial damage, suggesting that targeting Sam68 may hold promise to treat UC patients.


Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/physiology , Colitis, Ulcerative/pathology , Colitis/pathology , DNA-Binding Proteins/metabolism , Inflammation/pathology , Intestinal Mucosa/pathology , NF-kappa B/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Case-Control Studies , Colitis/chemically induced , Colitis/metabolism , Colitis, Ulcerative/etiology , Colitis, Ulcerative/metabolism , DNA-Binding Proteins/genetics , Dextran Sulfate/toxicity , Female , Humans , Inflammation/etiology , Inflammation/metabolism , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , RNA-Binding Proteins/genetics , Signal Transduction
...