Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 270
1.
Nat Commun ; 15(1): 4485, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802355

Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.


Breast Neoplasms , Drug Resistance, Neoplasm , Poly(ADP-ribose) Polymerase Inhibitors , Receptor, Anaphylatoxin C5a , Tumor-Associated Macrophages , Animals , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Humans , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects
2.
Mol Ther ; 32(5): 1540-1560, 2024 May 01.
Article En | MEDLINE | ID: mdl-38449312

Podocytes are essential to maintaining the integrity of the glomerular filtration barrier, but they are frequently affected in lupus nephritis (LN). Here, we show that the significant upregulation of Drp1S616 phosphorylation in podocytes promotes mitochondrial fission, leading to mitochondrial dysfunction and podocyte injury in LN. Inhibition or knockdown of Drp1 promotes mitochondrial fusion and protects podocytes from injury induced by LN serum. In vivo, pharmacological inhibition of Drp1 reduces the phosphorylation of Drp1S616 in podocytes in lupus-prone mice. Podocyte injury is reversed when Drp1 is inhibited, resulting in the alleviation of proteinuria. Mechanistically, complement component C5a (C5a) upregulates the phosphorylation of Drp1S616 and promotes mitochondrial fission in podocytes. Moreover, the expression of C5a receptor 1 (C5aR1) is notably upregulated in podocytes in LN. C5a-C5aR1 axis-controlled phosphorylation of Drp1S616 and mitochondrial fission are substantially suppressed when C5aR1 is knocked down by siRNA. Moreover, lupus-prone mice treated with C5aR inhibitor show reduced phosphorylation of Drp1S616 in podocytes, resulting in significantly less podocyte damage. Together, this study uncovers a novel mechanism by which the C5a-C5aR1 axis promotes podocyte injury by enhancing Drp1-mediated mitochondrial fission, which could have significant implications for the treatment of LN.


Complement C5a , Dynamins , Lupus Nephritis , Mitochondrial Dynamics , Podocytes , Receptor, Anaphylatoxin C5a , Podocytes/metabolism , Podocytes/pathology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lupus Nephritis/etiology , Animals , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Mice , Dynamins/metabolism , Dynamins/genetics , Complement C5a/metabolism , Humans , Phosphorylation , Disease Models, Animal , Mitochondria/metabolism , Signal Transduction , Female
3.
Sci Rep ; 14(1): 3105, 2024 02 07.
Article En | MEDLINE | ID: mdl-38326494

Recent studies have indicated the involvement of neutrophil-mediated inflammatory responses in the process leading to intracranial aneurysm (IA) rupture. Receptors mediating neutrophil recruitment could thus be therapeutic targets of unruptured IAs. In this study, complement C5a receptor 1 (C5AR1) was picked up as a candidate that may cause neutrophil-dependent inflammation in IA lesions from comprehensive gene expression profile data acquired from rat and human samples. The induction of C5AR1 in IA lesions was confirmed by immunohistochemistry; the up-regulations of C5AR1/C5ar1 stemmed from infiltrated neutrophils, which physiologically express C5AR1/C5ar1, and adventitial fibroblasts that induce C5AR1/C5ar1 in human/rat IA lesions. In in vitro experiments using NIH/3T3, a mouse fibroblast-like cell line, induction of C5ar1 was demonstrated by starvation or pharmacological inhibition of mTOR signaling by Torin1. Immunohistochemistry and an experiment in a cell-free system using recombinant C5 protein and recombinant Plasmin indicated that the ligand of C5AR1, C5a, could be produced through the enzymatic digestion by Plasmin in IA lesions. In conclusion, we have identified a potential contribution of the C5a-C5AR1 axis to neutrophil infiltration as well as inflammatory responses in inflammatory cells and fibroblasts of IA lesions. This cascade may become a therapeutic target to prevent the rupture of IAs.


Aneurysm, Ruptured , Intracranial Aneurysm , Animals , Humans , Mice , Rats , Complement C5a/metabolism , Fibrinolysin/metabolism , Inflammation , Receptor, Anaphylatoxin C5a/genetics , Signal Transduction
4.
Hypertension ; 81(1): 138-150, 2024 Jan.
Article En | MEDLINE | ID: mdl-37909169

BACKGROUND: Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS: Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS: We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS: Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.


Complement C3a , Hypertension , Animals , Humans , Mice , Anaphylatoxins , Angiotensin II , Complement C3a/metabolism , Complement C5a/metabolism , Forkhead Transcription Factors , Hypertension/genetics , Mice, Knockout , Receptor, Anaphylatoxin C5a/genetics , Receptors, Complement/genetics , Receptors, Complement/metabolism
5.
Mol Ther ; 32(2): 469-489, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38098230

Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.


CD8-Positive T-Lymphocytes , Neoplasms , Humans , Chemokine CXCL9/genetics , Immunity , Neoplasms/pathology , Receptor, Anaphylatoxin C5a/genetics , Tumor Microenvironment , Tumor-Associated Macrophages/metabolism , Female
6.
Front Immunol ; 14: 1197709, 2023.
Article En | MEDLINE | ID: mdl-37275893

Introduction: The function of the second receptor for the complement cleavage product C5a, C5aR2, is poorly understood and often neglected in the immunological context. Using mice with a global deficiency of C5aR2, we have previously reported an important role of this receptor in the pathogenesis of the neutrophil-driven autoimmune disease epidermolysis bullosa acquisita (EBA). Based on in vitro analyses, we hypothesized that the absence of C5aR2 specifically on neutrophils is the cause of the observed differences. Here, we report the generation of a new mouse line with a LysM-specific deficiency of C5aR2. Methods: LysM-specific deletion of C5aR2 was achieved by crossing LysMcre mice with tdTomato-C5ar2fl/fl mice in which the tdTomato-C5ar2 gene is flanked by loxP sites. Passive EBA was induced by subcutaneous injection of rabbit anti-mouse collagen type VII IgG. The effects of targeted deletion of C5ar2 on C5a-induced effector functions of neutrophils were examined in in vitro assays. Results: We confirm the successful deletion of C5aR2 at both the genetic and protein levels in neutrophils. The mice appeared healthy and the expression of C5aR1 in bone marrow and blood neutrophils was not negatively affected by LysM-specific deletion of C5aR2. Using the antibody transfer mouse model of EBA, we found that the absence of C5aR2 in LysM-positive cells resulted in an overall amelioration of disease progression, similar to what we had previously found in mice with global deficiency of C5aR2. Neutrophils lacking C5aR2 showed decreased activation after C5a stimulation and increased expression of the inhibitory Fcγ receptor FcγRIIb. Discussion: Overall, with the data presented here, we confirm and extend our previous findings and show that C5aR2 in neutrophils regulates their activation and function in response to C5a by potentially affecting the expression of Fcγ receptors and CD11b. Thus, C5aR2 regulates the finely tuned interaction network between immune complexes, Fcγ receptors, CD11b, and C5aR1 that is important for neutrophil recruitment and sustained activation. This underscores the importance of C5aR2 in the pathogenesis of neutrophil-mediated autoimmune diseases.


Autoimmune Diseases , Epidermolysis Bullosa Acquisita , Animals , Mice , Complement C5a/metabolism , Neutrophil Activation , Neutrophils , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Complement/metabolism , Receptors, IgG/metabolism
7.
Clin. transl. oncol. (Print) ; 25(2): 440-446, feb. 2023.
Article En | IBECS | ID: ibc-215943

Background Colorectal cancer (CRC) is one of the most common malignant cancers in human, and its incidence increases gradually every year. Metastasis is an important factor leading to tumor development. The epithelial–mesenchymal transition (EMT) has been proved to be closely related to tumor metastasis, yet its related mechanism in CRC remains to be explored. Methods We obtained the differentially expressed gene C5aR1 with SETDB1 stable overexpression and knockdown cells by RNA-seq. Cell proliferation was tested by CCK8 and colony formation assay. Migration and invasion of CRC cells were determined by the wound healing and transwell invasion assay. The potential pathway of C5aR1 in CRC was preliminarily studied by western blotting. Results Sequencing results showed that C5aR1 was the most differentially expressed gene. By changing the expression of C5aR1 in CRC cells, this study found that C5aR1 promoted the proliferation, colony formation, migration and invasion of CRC cells in vitro. C5aR1 accelerated the EMT process and the expression of C5aR1 altered the molecular expression of key proteins in the Wnt/β-catenin pathway. Conclusion C5aR1 promotes the development of CRC and accelerates the EMT process. Furthermore, C5aR1 may involve in the regulation of Wnt/β-catenin pathway in CRC (AU)


Humans , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Receptor, Anaphylatoxin C5a/genetics , Wnt Signaling Pathway , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation , Cell Movement , beta Catenin
8.
Sci Rep ; 13(1): 74, 2023 01 02.
Article En | MEDLINE | ID: mdl-36593314

Tissue injury affects nerve fibers and triggers an immune response, leading to inflammation. The complement system gets activated during inflammatory conditions and has been reported to be involved in the regeneration process. We have demonstrated that the C5a receptor (C5aR) has crucial roles in regeneration and healing processes including nerve sprouting and hard tissue formation. Another C5a-like 2 receptor (C5AR2; C5L2) has been cloned which is still considered controversial due to limited studies. We previously established that C5L2 regulates brain-derived neurotrophic factor (BDNF) secretion in pulp fibroblasts. However, there is no study available on human dental pulp stem cells (DPSCs), especially in the inflammatory context. Stem cell therapy is an emerging technique to treat and prevent several diseases. DPSCs are a great option to be considered due to their great ability to differentiate into a variety of cells and secrete nerve regeneration factors. Here, we demonstrated that C5L2 modulates BDNF secretion in DPSCs. Our results stated that C5L2 silencing through siRNA could increase BDNF production, which could accelerate the nerve regeneration process. Moreover, stimulation with lipopolysaccharide (LPS) enhanced BDNF production in C5L2 silenced DPSCs. Finally, we quantified BDNF secretion in supernatant and cell lysates using ELISA. Our results showed enhanced BDNF production in C5L2 silenced DPSCs and hampered by the p38MAPKα inhibitor. Taken together, our data reveal that C5L2 modulates BDNF production in DPSCs via the p38MAPKα pathway.


Brain-Derived Neurotrophic Factor , Dental Pulp , Receptor, Anaphylatoxin C5a , Humans , Brain-Derived Neurotrophic Factor/metabolism , Dental Pulp/metabolism , Nerve Fibers/metabolism , Nerve Regeneration/physiology , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Stem Cells/metabolism , Mitogen-Activated Protein Kinase 14/metabolism
9.
Biomol Biomed ; 23(3): 392-404, 2023 May 01.
Article En | MEDLINE | ID: mdl-36508191

C5a receptor 1 (C5aR1) is associated with various inflammatory processes, the pathogenesis of immune diseases, and tumor growth. However, its role in the tumor microenvironment of gastric cancer (GC) remains unclear. In this study, the expression of C5aR1 in GC and normal gastric mucosa tissues was compared using data retrieved from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, and the results were validated by in vitro qRT-PCR and immunohistochemical analyses. The relationship between C5aR1 expression and the overall survival of patients with GC was analyzed using the Kaplan-Meier method. Subsequently, enrichment analysis was performed, and the signaling pathways were screened. C5aR1 expression was also correlated with genes related to the immune checkpoint and immune cell infiltration. The results revealed that C5aR1 expression was enhanced in GC tissues compared to normal gastric tissues, and that patients with high expression of C5aR1 had a worse 10-year overall survival compared to those showing low expression of C5aR1. Functional analysis revealed that C5aR1 is a gene related to theimmune system and may play a crucial role in inflammatory and tumor immune responses. Additionally, C5aR1 showed a positive correlation with most immune checkpoint-related genes and a negative correlation with natural killer cells, dendritic cells, and CD8+ T cells. Immune evasion risk was observed to be significantly greater in patients with higher expression of C5aR1 than in those with lower expression. The results of this study reveal that C5aR1 shapes a non-inflammatory tumor microenvironment in GC and mediates immune evasion.


Stomach Neoplasms , Humans , CD8-Positive T-Lymphocytes , Immune Evasion , Receptor, Anaphylatoxin C5a/genetics , Stomach Neoplasms/genetics , Tumor Microenvironment/genetics
10.
Clin Transl Oncol ; 25(2): 440-446, 2023 Feb.
Article En | MEDLINE | ID: mdl-36192575

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignant cancers in human, and its incidence increases gradually every year. Metastasis is an important factor leading to tumor development. The epithelial-mesenchymal transition (EMT) has been proved to be closely related to tumor metastasis, yet its related mechanism in CRC remains to be explored. METHODS: We obtained the differentially expressed gene C5aR1 with SETDB1 stable overexpression and knockdown cells by RNA-seq. Cell proliferation was tested by CCK8 and colony formation assay. Migration and invasion of CRC cells were determined by the wound healing and transwell invasion assay. The potential pathway of C5aR1 in CRC was preliminarily studied by western blotting. RESULTS: Sequencing results showed that C5aR1 was the most differentially expressed gene. By changing the expression of C5aR1 in CRC cells, this study found that C5aR1 promoted the proliferation, colony formation, migration and invasion of CRC cells in vitro. C5aR1 accelerated the EMT process and the expression of C5aR1 altered the molecular expression of key proteins in the Wnt/ß-catenin pathway. CONCLUSION: C5aR1 promotes the development of CRC and accelerates the EMT process. Furthermore, C5aR1 may involve in the regulation of Wnt/ß-catenin pathway in CRC.


Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Receptor, Anaphylatoxin C5a , Wnt Signaling Pathway , Humans , beta Catenin/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Receptor, Anaphylatoxin C5a/genetics
11.
Sci Rep ; 12(1): 20278, 2022 11 24.
Article En | MEDLINE | ID: mdl-36434087

Despite increasing knowledge about the factors involved in the progression of diabetic complications, diabetic kidney disease (DKD) continues to be a major health burden. Current therapies only slow but do not prevent the progression of DKD. Thus, there is an urgent need to develop novel therapy to halt the progression of DKD and improve disease prognosis. In our preclinical study where we administered a histone deacetylase (HDAC) inhibitor, valproic acid, to streptozotocin-induced diabetic mice, albuminuria and glomerulosclerosis were attenuated. Furthermore, we discovered that valproic acid attenuated diabetes-induced upregulation of complement C5a receptors, with a concomitant reduction in markers of cellular senescence and senescence-associated secretory phenotype. Interestingly, further examination of mice lacking the C5a receptor 1 (C5aR1) gene revealed that cellular senescence was attenuated in diabetes. Similar results were observed in diabetic mice treated with a C5aR1 inhibitor, PMX53. RNA-sequencing analyses showed that PMX53 significantly regulated genes associated with cell cycle pathways leading to cellular senescence. Collectively, these results for the first time demonstrated that complement C5a mediates cellular senescence in diabetic kidney disease. Cellular senescence has been implicated in the pathogenesis of diabetic kidney disease, thus therapies to inhibit cellular senescence such as complement inhibitors present as a novel therapeutic option to treat diabetic kidney disease.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/pathology , Valproic Acid/pharmacology , Receptor, Anaphylatoxin C5a/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Cellular Senescence , Complement C5a , Histone Deacetylase Inhibitors
12.
Front Endocrinol (Lausanne) ; 13: 1016057, 2022.
Article En | MEDLINE | ID: mdl-36246887

In recent years, evidence has accumulated that the complement system, an integral part of innate immunity, may be involved in the regulation of bone homeostasis as well as inflammatory bone loss, for example, in rheumatoid arthritis and periodontitis. Complement may also contribute to osteoporosis development, but investigation of the mechanism is limited. Using mice with a conditional deletion of the complement anaphylatoxin receptor C5aR1, we here demonstrated that C5aR1 in osteoblasts (C5aR1 Runx2-Cre mice) or osteoclasts (C5aR1 LysM-Cre mice) did not affect physiological bone turnover or age-related bone loss in either sex, as confirmed by micro-computed tomography, histomorphometry, and biomechanical analyses of the bone and by the measurement of bone turnover markers in the blood serum. When female mice were subjected to ovariectomy (OVX), a common model for postmenopausal osteoporosis, significant bone loss was induced in C5aR1 fl/fl and C5aR1 LysM-Cre mice, as demonstrated by a significantly reduced bone volume fraction, trabecular number and thickness as well as an increased trabecular separation in the trabecular bone compartment. Confirming this, the osteoclast number and the receptor activator of nuclear factor k-B (RANK) ligand (RANKL) serum level were significantly elevated in these mouse lines. By contrast, C5aR1 Runx2-Cre mice were protected from bone loss after OVX and the serum RANKL concentration was not increased after OVX. These data suggested that bone cell-specific C5aR1 may be redundant in bone homeostasis regulation under physiological conditions. However, C5aR1 on osteoblasts was crucial for the induction of bone resorption under osteoporotic conditions by stimulating RANKL release, whereas C5aR1 on osteoclasts did not regulate OVX-induced bone loss. Therefore, our results implicate C5aR1 on osteoblasts as a potential target for treating postmenopausal osteoporosis.


Osteoporosis, Postmenopausal , Osteoporosis , Animals , Female , Mice , Anaphylatoxins , Core Binding Factor Alpha 1 Subunit , Ligands , Osteoblasts , Osteogenesis , Osteoporosis/genetics , Osteoporosis, Postmenopausal/genetics , Receptor, Anaphylatoxin C5a/genetics , Receptors, Complement , X-Ray Microtomography
13.
Front Immunol ; 13: 947071, 2022.
Article En | MEDLINE | ID: mdl-36091045

Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain causing either familial or sporadic dementia. We have previously administered the modified C5a receptor agonist (EP67) for a short period to a transgenic mouse model of AD (5XFAD) and have observed not only reduction in ß-amyloid deposition and gliosis but also improvement in cognitive impairment. Inquiring, however, on the effects of EP67 in an already heavily burdened animal, thus representing a more realistic scenario, we treated 6-month-old 5XFAD mice for a period of 14 weeks. We recorded a significant decrease in both fibrillar and pre-fibrillar ß-amyloid as well as remarkable amelioration of cognitive impairment. Following proteomic analysis and pathway association, we postulate that these events are triggered through the upregulation of ß-adrenergic and GABAergic signaling. In summary, our results reveal how inflammatory responses can be employed in inducing tangible phenotype improvements even in advanced stages of AD.


Alzheimer Disease , Cognitive Dysfunction , Oligopeptides , Receptor, Anaphylatoxin C5a , Receptors, Adrenergic, beta , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Proteomics , Receptor, Anaphylatoxin C5a/agonists , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Adrenergic, beta/genetics , Receptors, Adrenergic, beta/metabolism
14.
Acta Neuropathol Commun ; 10(1): 116, 2022 08 17.
Article En | MEDLINE | ID: mdl-35978440

Multiple studies have recognized the involvement of the complement cascade during Alzheimer's disease pathogenesis. However, the specific role of C5a-C5aR1 signaling in the progression of this neurodegenerative disease is still not clear. Furthermore, its potential as a therapeutic target to treat AD still remains to be elucidated. Canonically, generation of the anaphylatoxin C5a as the result of complement activation and interaction with its receptor C5aR1 triggers a potent inflammatory response. Previously, genetic ablation of C5aR1 in a mouse model of Alzheimer's disease exerted a protective effect by preventing cognitive deficits. Here, using PMX205, a potent, specific C5aR1 antagonist, in the Tg2576 mouse model of Alzheimer's disease we show a striking reduction in dystrophic neurites in parallel with the reduced amyloid load, rescue of the excessive pre-synaptic loss associated with AD cognitive impairment and the polarization of microglial gene expression towards a DAM-like phenotype that are consistent with the neuroprotective effects seen. These data support the beneficial effect of a pharmacological inhibition of C5aR1 as a promising therapeutic approach to treat Alzheimer's disease. Supportive of the safety of this treatment is the recent FDA-approval of another other C5a receptor 1 antagonist, Avacopan, as a treatment for autoimmune inflammatory diseases.


Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Disease Progression , Mice , Microglia/pathology , Neurodegenerative Diseases/metabolism , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism
15.
J Cell Biochem ; 123(11): 1841-1856, 2022 11.
Article En | MEDLINE | ID: mdl-35977039

The complement fragment C5a is one of the most potent proinflammatory glycoproteins liberated by the activation of the biochemical cascade of the complement system. C5a is established to interact with a set of genomically related transmembrane receptors, like C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2) with comparable affinity. The C5aR1 is a classical G-protein-coupled receptor (GPCR), whereas C5aR2 is a nonclassical GPCR that tailors immune cell activity potentially through ß-arrestins rather than G-proteins. Currently, the exact function of the C5aR2 is actively debated in the context of C5aR1, even though both C5aR1 and C5aR2 are coexpressed on myriads of tissues. The functional relevance of C5aR2 appears to be context-dependent compared to the C5aR1, which has received enormous attention for its role in both acute and chronic inflammatory diseases. In addition, the structure of C5aR2 and its interaction specificity toward C5a is not structurally elucidated in the literature so far. The current study has attempted to close the gap by generating highly refined model structures of C5aR2, respectively in free (inactive), complexed to C-terminal peptide of C5a (meta-active) and the C5a (active), embedded to a model palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer. The computational modeling and the 1.5-µs molecular dynamics data presented in the current study are expected to further enrich the understanding of C5a-C5aR2 interaction compared to C5a-C5aR1, which will surely help in elaborating the currently debated biological function of C5aR2 better in the foreseeable future.


Complement C5a , Genomics , Complement C5a/genetics , Complement C5a/metabolism , beta-Arrestins , Receptor, Anaphylatoxin C5a/genetics
16.
J Neuroinflammation ; 19(1): 178, 2022 Jul 11.
Article En | MEDLINE | ID: mdl-35820938

BACKGROUND: The complement system is part of the innate immune system that clears pathogens and cellular debris. In the healthy brain, complement influences neurodevelopment and neurogenesis, synaptic pruning, clearance of neuronal blebs, recruitment of phagocytes, and protects from pathogens. However, excessive downstream complement activation that leads to generation of C5a, and C5a engagement with its receptor C5aR1, instigates a feed-forward loop of inflammation, injury, and neuronal death, making C5aR1 a potential therapeutic target for neuroinflammatory disorders. C5aR1 ablation in the Arctic (Arc) model of Alzheimer's disease protects against cognitive decline and neuronal injury without altering amyloid plaque accumulation. METHODS: To elucidate the effects of C5a-C5aR1 signaling on AD pathology, we crossed Arc mice with a C5a-overexpressing mouse (ArcC5a+) and tested hippocampal memory. RNA-seq was performed on hippocampus and cortex from Arc, ArcC5aR1KO, and ArcC5a+ mice at 2.7-10 months and age-matched controls to assess mechanisms involved in each system. Immunohistochemistry was used to probe for protein markers of microglia and astrocytes activation states. RESULTS: ArcC5a+ mice had accelerated cognitive decline compared to Arc. Deletion of C5ar1 delayed or prevented the expression of some, but not all, AD-associated genes in the hippocampus and a subset of pan-reactive and A1 reactive astrocyte genes, indicating a separation between genes induced by amyloid plaques alone and those influenced by C5a-C5aR1 signaling. Biological processes associated with AD and AD mouse models, including inflammatory signaling, microglial cell activation, and astrocyte migration, were delayed in the ArcC5aR1KO hippocampus. Interestingly, C5a overexpression also delayed the increase of some AD-, complement-, and astrocyte-associated genes, suggesting the possible involvement of neuroprotective C5aR2. However, these pathways were enhanced in older ArcC5a+ mice compared to Arc. Immunohistochemistry confirmed that C5a-C5aR1 modulation in Arc mice delayed the increase in CD11c-positive microglia, while not affecting other pan-reactive microglial or astrocyte markers. CONCLUSION: C5a-C5aR1 signaling in AD largely exerts its effects by enhancing microglial activation pathways that accelerate disease progression. While C5a may have neuroprotective effects via C5aR2, engagement of C5a with C5aR1 is detrimental in AD models. These data support specific pharmacological inhibition of C5aR1 as a potential therapeutic strategy to treat AD.


Alzheimer Disease , Biological Phenomena , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Mice , Microglia/metabolism , Plaque, Amyloid/metabolism , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Signal Transduction
17.
Comput Math Methods Med ; 2022: 4997393, 2022.
Article En | MEDLINE | ID: mdl-35509858

Objective: To analyze the role of C5a, C5a receptor (CD88), glutamic acid, and N-methyl-D-aspartic acid receptors (NMDAR1 and NMDAR2B) in the onset of neuromyelitis optica (NMO) disease in mice. Method: To select C57BL/6 wild-type (WT) mice and C5a receptor gene knockout (C5aR-/-) mice, use NMO-IgG and hemolytic complement to intervene in spinal cord tissue sections and optic nerves to establish an NMO model in vitro. The experiment was carried out with five groups (control group, WT group, C5aR-/- group, C5a group, and C5a+C5aRA group), with six mice in each group. The differences of American spinal cord injury (ASIA) motor scores were compared among all groups. The expressions of aquaporin (AQP4), glial fibrillary acidic protein (GFAP), NMDAR1, and NMDAR2B in spinal cord and optic nerve tissues were detected. The difference of glutamic acid (Glu) concentrations in culture solutions of the spinal cord and optic nerves was compared. Result: The ASIA motor score of the control group was significantly lower than that of the other four groups. The C5a-/- group was significantly higher than the WT group. The C5a+C5aRA group was significantly higher than the C5a group in terms of ASIA motor score. In the control group, AQP4 and GFAP showed expression loss. The C5aR-/- group's loss rate was significantly higher than that of the WT group. The loss rate of the C5a+C5aRA group was significantly higher than that of the C5a group. In the control group, the protein expressions of NMDAR1 and NMDAR2B were significantly lower than that of the other four groups. The C5aR-/- group was significantly higher than the WT group. The C5a+C5aRA group was significantly higher than the C5a group in protein expression. In the control group, the concentration of Glu in the C5aR-/- group was significantly higher than that in the WT group, and the C5a group was significantly lower than the C5a+C5aRA group. Conclusion: The deletion of the C5a receptor promotes NMDAR activity, which affects the toxic excitatory effect of NMDAR in NMO and regulates the neurotoxic effect of glutamic acid, thus participating in the pathogenesis of NMO.


Neuromyelitis Optica , Spinal Cord Injuries , Animals , Disease Models, Animal , Glutamic Acid , Humans , Mice , Mice, Inbred C57BL , N-Methylaspartate , Neuromyelitis Optica/genetics , Neuromyelitis Optica/metabolism , Receptor, Anaphylatoxin C5a/genetics
18.
Front Cell Infect Microbiol ; 12: 824505, 2022.
Article En | MEDLINE | ID: mdl-35433513

Our previous work using a murine model of pyelonephritis demonstrated that the C5a/C5aR1 axis plays a pathogenic role in acute kidney infection. In this study, we report that the C5a/C5aR1 axis also plays a pathogenic role in acute bladder infection. C5aR1-deficient mice had reduced bladder bacterial load and attenuated bladder tissue injury, which is associated with reduced expression of terminal α-mannosyl residues (Man) (a potential ligand for type 1 fimbriae of E. coli) at the luminal surface of the bladder epithelium and reduced early bacterial colonization of the bladder. In vitro, C5a stimulation enhanced mannose expression in and facilitated bacterial adhesion/colonization to human bladder epithelial cells. C5a stimulation also upregulated the activation of ERK1/2 and NF-κB signaling and gene expression of proinflammatory cytokines (i.e., Il6, Il1b, Cxcl1, Ccl2) in the epithelial cells, which could drive pro-inflammatory responses leading to tissue injury. Administration of the C5aR1 antagonist effectively reduced bladder bacterial load and tissue injury. Thus, our findings demonstrate a previously unknown pathogenic role for the C5a/C5aR1 axis in bladder infection and suggest that the C5a/C5aR1 axis-mediated upregulation of Man expression, enhancement of bacterial adhesion/colonization, and excessive inflammatory responses contribute to acute bladder infection. These findings improve our understanding of the pathogenesis of bladder infection with therapeutic implications for UTI.


Cystitis , Pyelonephritis , Uropathogenic Escherichia coli , Acute Disease , Animals , Complement C5a , Cytokines/metabolism , Female , Humans , Mice , Receptor, Anaphylatoxin C5a/genetics , Uropathogenic Escherichia coli/metabolism
19.
Am J Physiol Renal Physiol ; 322(6): F597-F610, 2022 06 01.
Article En | MEDLINE | ID: mdl-35379003

We have previously reported that increased expression and activation of kidney cell complement components play an important role in the pathogenesis of renal scarring. Here, we used floxed green fluorescent protein (GFP)-C5a receptor 1 (C5aR1) knockin mice (GFP-C5ar1fl/fl) and the model of folic acid (FA)-induced kidney injury to define the cell types and potential mechanisms by which increased C5aR1 activation leads to fibrosis. Using flow cytometry and confocal microscopy, we identified macrophages as the major interstitial cell type showing increased expression of C5aR1 in FA-treated mice. C5ar1fl/fl.Lyz2Cre+/- mice, in which C5aR1 has been specifically deleted in lysozyme M-expressing myeloid cells, experienced reduced fibrosis compared with control C5ar1fl/fl mice. Examination of C5aR1-expressing macrophage transcriptomes by gene set enrichment analysis demonstrated that these cells were enriched in pathways corresponding to the complement cascade, collagen formation, and the NABA matrisome, strongly pointing to their critical roles in tissue repair/scarring. Since C5aR1 was also detected in a small population of platelet-derived growth factor receptor-ß+ GFP+ cells, we developed C5ar1fl/fl.Foxd1Cre+/- mice, in which C5aR1 is deleted specifically in pericytes, and found reduced FA-induced fibrosis. Primary cell cultures of platelet-derived growth factor receptor-ß+ pericytes isolated from FA-treated C5ar1fl/fl.Foxd1Cre+/- mice showed reduced secretion of several cytokines, including IL-6 and macrophage inflammatory protein-2, compared with pericytes isolated from FA-treated control GFP-C5ar1fl/fl mice. Collectively, these data imply that C5a/C5aR1 axis activation primarily in interstitial cells contributes to the development of renal fibrosis.NEW & NOTEWORTHY This study used novel green fluorescent protein C5a receptor 1 floxed mice and the model of folic acid-mediated kidney fibrosis to demonstrate the pathogenic role of increased expression of this complement receptor on macrophages.


Folic Acid , Receptor, Anaphylatoxin C5a , Animals , Cicatrix , Fibrosis , Folic Acid/pharmacology , Green Fluorescent Proteins , Kidney/pathology , Mice , Mice, Knockout , Myeloid Cells/pathology , Receptor, Anaphylatoxin C5a/genetics , Receptors, Platelet-Derived Growth Factor
20.
Am J Pathol ; 192(2): 361-378, 2022 02.
Article En | MEDLINE | ID: mdl-35144762

As per the classical view of the coagulation system, it functions solely in plasma to maintain hemostasis. An experimental approach modeling vascular reconstitution was used to show that vascular endothelial cells (ECs) endogenously synthesize coagulation factors during angiogenesis. Intracellular thrombin generated from this synthesis promotes the mitotic function of vascular endothelial cell growth factor A (VEGF-A). The thrombin concurrently cleaves C5a from EC-synthesized complement component C5 and unmasks the tethered ligand for EC-expressed protease-activated receptor 4 (PAR4). The two ligands jointly trigger EC C5a receptor-1 (C5ar1) and PAR4 signaling, which together promote VEGF receptor 2 growth signaling. C5ar1 is functionally associated with PAR4, enabling C5a or thrombin to elicit Gαi and/or Gαq signaling. EC coagulation factor and EC complement component synthesis concurrently down-regulate with contact inhibition. The connection of these processes with VEGF receptor 2 signaling provides new insights into mechanisms underlying angiogenesis. Knowledge of endogenous coagulation factor/complement component synthesis and joint PAR4/C5ar1 signaling could be applied to other cell types.


Blood Coagulation Factors/biosynthesis , Endothelial Cells/metabolism , Neovascularization, Physiologic , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Proteinase-Activated/metabolism , Signal Transduction , Animals , Blood Coagulation Factors/genetics , Female , Male , Mice , Mice, Knockout , Receptor, Anaphylatoxin C5a/genetics , Receptors, Proteinase-Activated/genetics
...