Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338764

RESUMEN

The kallikrein-kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine neurotransmitter widely distributed in the CNS, plays a crucial role in diverse physiological functions including motricity, reward, anxiety, fear, feeding, sleep, and arousal. Notably, the potential physical interaction between bradykinin and dopaminergic receptors has been previously documented. In this study, we aimed to explore whether B2R modulation in catecholaminergic neurons influences the dopaminergic pathway, impacting behavioral, metabolic, and motor aspects in both male and female mice. B2R ablation in tyrosine hydroxylase cells reduced the body weight and lean mass without affecting body adiposity, substrate oxidation, locomotor activity, glucose tolerance, or insulin sensitivity in mice. Moreover, a B2R deficiency in TH cells did not alter anxiety levels, exercise performance, or motor coordination in female and male mice. The concentrations of monoamines and their metabolites in the substantia nigra and cortex region were not affected in knockout mice. In essence, B2R deletion in TH cells selectively influenced the body weight and composition, leaving the behavioral and motor aspects largely unaffected.


Asunto(s)
Receptor de Bradiquinina B2 , Tirosina 3-Monooxigenasa , Ratones , Masculino , Femenino , Animales , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B2/metabolismo , Tirosina 3-Monooxigenasa/genética , Bradiquinina/farmacología , Receptor de Bradiquinina B1/metabolismo , Peso Corporal , Ratones Noqueados
2.
Mol Neurobiol ; 61(3): 1627-1642, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37740866

RESUMEN

Anastrozole, an aromatase inhibitor, induces painful musculoskeletal symptoms, which affect patients' quality of life and lead to therapy discontinuation. Efforts have been made to understand the mechanisms involved in these painful symptoms to manage them better. In this context, we explored the role of the Transient Receptor Potential Vanilloid 4 (TRPV4), a potential transducer of several nociceptive mechanisms, in anastrozole-induced musculoskeletal pain in mice. Besides, we evaluated the possible sensibilization of TRPV4 by signalling pathways downstream, PLC, PKC and PKCε from kinin B2 (B2R) and B1 (B1R) receptors activation in anastrozole-induced pain. Anastrozole caused mechanical allodynia and muscle strength loss in mice. HC067047, TRPV4 antagonist, reduced the anastrozole-induced mechanical allodynia and muscle strength loss. In animals previously treated with anastrozole, the local administration of sub-nociceptive doses of the TRPV4 (4α-PDD or hypotonic solution), B2R (Bradykinin) or B1R (DABk) agonists enhanced the anastrozole-induced pain behaviours. The sensitizing effects induced by local injection of the TRPV4, B2R and B1R agonists in animals previously treated with anastrozole were reduced by pre-treatment with TRPV4 antagonist. Furthermore, inhibition of PLC, PKC or PKCε attenuated the mechanical allodynia and muscle strength loss induced by TRPV4, B2R and B1R agonists. The generation of painful conditions caused by anastrozole depends on direct TRPV4 activation or indirect, e.g., PLC, PKC and PKCε pathways downstream from B2R and B1R activation. Thus, the TRPV4 channels act as sensors of extracellular and intracellular changes, making them potential therapeutic targets for alleviating pain related to aromatase inhibitors use, such as anastrozole.


Asunto(s)
Antineoplásicos , Canales Catiónicos TRPV , Humanos , Ratones , Animales , Anastrozol , Hiperalgesia/inducido químicamente , Calidad de Vida , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Dolor/tratamiento farmacológico , Bradiquinina/farmacología
3.
Sci Rep ; 13(1): 4418, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932156

RESUMEN

Pain caused by the tumor or aromatase inhibitors (AIs) is a disabling symptom in breast cancer survivors. Their mechanisms are unclear, but pro-algesic and inflammatory mediators seem to be involved. Kinins are endogenous algogenic mediators associated with various painful conditions via B1 and B2 receptor activation, including chemotherapy-induced pain and breast cancer proliferation. We investigate the involvement of the kinin B1 and B2 receptors in metastatic breast tumor (4T1 breast cancer cells)-caused pain and in aromatase inhibitors (anastrozole or letrozole) therapy-associated pain. A protocol associating the tumor and antineoplastic therapy was also performed. Kinin receptors' role was investigated via pharmacological antagonism, receptors protein expression, and kinin levels. Mechanical and cold allodynia and muscle strength were evaluated. AIs and breast tumor increased kinin receptors expression, and tumor also increased kinin levels. AIs caused mechanical allodynia and reduced the muscle strength of mice. Kinin B1 (DALBk) and B2 (Icatibant) receptor antagonists attenuated these effects and reduced breast tumor-induced mechanical and cold allodynia. AIs or paclitaxel enhanced breast tumor-induced mechanical hypersensitivity, while DALBk and Icatibant prevented this increase. Antagonists did not interfere with paclitaxel's cytotoxic action in vitro. Thus, kinin B1 or B2 receptors can be a potential target for treating the pain caused by metastatic breast tumor and their antineoplastic therapy.


Asunto(s)
Antineoplásicos , Dolor en Cáncer , Neoplasias , Ratones , Animales , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Receptor de Bradiquinina B2/metabolismo , Receptor de Bradiquinina B1/metabolismo , Bradiquinina/farmacología , Dolor , Paclitaxel
4.
Life Sci ; 314: 121302, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535404

RESUMEN

Kinins are endogenous peptides that belong to the kallikrein-kinin system, which has been extensively studied for over a century. Their essential role in multiple physiological and pathological processes is demonstrated by activating two transmembrane G-protein-coupled receptors, the kinin B1 and B2 receptors. The attention is mainly given to the pathological role of kinins in pain transduction mechanisms. In the past years, a wide range of preclinical studies has amounted to the literature reinforcing the need for an updated review about the participation of kinins and their receptors in pain disorders. Here, we performed an extensive literature search since 2004, describing the historical progress and the current understanding of the kinin receptors' participation and its potential therapeutic in several acute and chronic painful conditions. These include inflammatory (mainly arthritis), neuropathic (caused by different aetiologies, such as cancer, multiple sclerosis, antineoplastic toxicity and diabetes) and nociplastic (mainly fibromyalgia) pain. Moreover, we highlighted the pharmacological actions and possible clinical applications of the kinin B1 and B2 receptor antagonists, kallikrein inhibitors or kallikrein-kinin system signalling pathways-target molecules in these different painful conditions. Notably, recent findings sought to elucidate mechanisms for guiding new and better drug design targeting kinin B1 and B2 receptors to treat a disease diversity. Since the kinin B2 receptor antagonist, Icatibant, is clinically used and well-tolerated by patients with hereditary angioedema gives us hope kinin receptors antagonists could be more robustly tested for a possible clinical application in the treatment of pathological pains, which present limited pharmacology management.


Asunto(s)
Fibromialgia , Receptor de Bradiquinina B2 , Humanos , Dolor/tratamiento farmacológico , Receptor de Bradiquinina B1 , Péptidos
5.
Endocrinology ; 163(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863039

RESUMEN

Sex differences in the control of prolactin secretion are well documented. Sex-related differences in intrapituitary factors regulating lactotroph function have recently attracted attention. Sex differences in prolactinoma development are well documented in clinic, prolactinomas being more frequent in women but more aggressive in men, for poorly understood reasons. Kallikrein, the enzyme releasing kinins has been found in the pituitary, but there is no information on pituitary kinin receptors and their function. In the present work, we characterized pituitary bradykinin receptors (BRs) at the messenger RNA and protein levels in 2 mouse models of prolactinoma, Drd2 receptor gene inactivation and hCGß gene overexpression, in both males and females, wild type or genomically altered. BR B2 (B2R) accounted for 97% or more of total pituitary BRs in both models, regardless of genotype, and was present in lactotrophs, somatotrophs, and gonadotrophs. Male pituitaries displayed higher level of B2R than females, regardless of genotype. Pituitary B2R gene expression was downregulated by estrogen in both males and females but only in females by dopamine. Activation of B1R or B2R by selective pharmacological agonists induced prolactin release in male pituitaries but inhibited prolactin secretion in female pituitaries. Increased B2R content was observed in pituitaries of mutated animals developing prolactinomas, compared to their respective wild-type controls. The present study documents a novel sex-related difference in the control of prolactin secretion and suggests that kinins are involved, through B2R activation, in lactotroph function and prolactinoma development.


Asunto(s)
Neoplasias Hipofisarias , Prolactinoma , Animales , Femenino , Humanos , Cininas , Masculino , Ratones , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Prolactina/metabolismo , Prolactinoma/genética , Prolactinoma/metabolismo , Receptor de Bradiquinina B2/agonistas , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B2/metabolismo , Receptores de Bradiquinina
6.
Br J Pharmacol ; 179(12): 3061-3077, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34978069

RESUMEN

BACKGROUND AND PURPOSE: Bradykinin (BK-(1-9)) is an endogenous nonapeptide involved in multiple physiological and pathological processes. Peptide fragments of bradykinin are believed to be biologically inactive. We have now tested the two major peptide fragments of bradykinin in human and animals. EXPERIMENTAL APPROACH: BK peptides were quantified by MS in male rats. NO release was quantified from human, mouse and rat cells loaded with DAF-FM. Rat aortic rings were used to measure vascular reactivity. Changes in BP and HR were measured in conscious male rats. To evaluate pro-inflammatory effects both vascular permeability and nociception were measured in adult mice. KEY RESULTS: BK-(1-7) and BK-(1-5) are produced in vivo from BK-(1-9). Both peptides induced NO production in all cell types tested. However, unlike BK-(1-9), NO production elicited by BK-(1-7) or BK-(1-5) was not inhibited by B1 or B2 receptor antagonists. BK-(1-7) and BK-(1-5) induced concentration-dependent vasorelaxation of aortic rings, without involvement of B1 or B2 receptors. Intravenous or intra-arterial administration of BK-(1-7) or BK-(1-5) induced similar hypotensive response in vivo. Nociceptive responses of BK-(1-7) and BK-(1-5) were reduced compared to BK-(1-9), and no increase in vascular permeability was observed for BK-(1-9) fragments. CONCLUSIONS AND IMPLICATIONS: BK-(1-7) and BK-(1-5) are endogenous peptides present in plasma. BK-related peptide fragments show biological activity, not mediated by B1 or B2 receptors. These BK fragments could constitute new, active components of the kallikrein-kinin system.


Asunto(s)
Bradiquinina , Receptores de Bradiquinina , Animales , Bradiquinina/farmacología , Masculino , Ratones , Fragmentos de Péptidos , Ratas , Receptor de Bradiquinina B1 , Receptor de Bradiquinina B2 , Receptores de Bradiquinina/fisiología
7.
Eur J Pharmacol ; 912: 174591, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34710369

RESUMEN

Dry cough has been reported in patients receiving statin therapy. However, the underlying mechanism or other possible alterations in the airways induced by statins remain unknown. Thus, the aim of this study was to evaluate whether simvastatin promotes alterations in airways, such as bronchoconstriction and plasma extravasation, as well as the mechanism involved in these events. Using methods to detect alterations in airway resistance and plasma extravasation, we demonstrated that simvastatin [20 mg/kg, intravenous (i.v.)] caused plasma extravasation in the trachea (79.8 + 14.8 µg/g/tissue) and bronchi (73.3 + 8.8 µg/g/tissue) of rats, compared to the vehicle (34.2 + 3.6 µg/g/tissue and 29.3 + 5.3 µg/g/tissue, respectively). NG-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg, intraperitoneal), a nitric oxide (NO) synthase inhibitor, Icatibant [HOE 140, 10 nmol/50 µl, intratracheal (i.t.)], a bradykinin B2 antagonist, and capsazepine (100 nmol/50 µl, i.t.), a TRPV1 antagonist, attenuated simvastatin-induced plasma extravasation. Simvastatin (5, 10 and 20 mg/kg) did not cause bronchoconstriction per se, but exacerbated the bronchoconstrictive response to bradykinin (30 nmol/kg, i.v.), a B2 agonist (0.7 + 0.1 ml/H2O), or capsaicin (30 nmol/kg, i.v.), a TRPV1 agonist (0.8 + 0.1 ml/H2O), compared to the vehicle (0.1 + 0.04 ml/H2O and 0.04 + 0.01 ml/H2O, respectively). The bronchoconstriction elicited by bradykinin (100 nmol/kg, i.v.) in simvastatin non-treated rats was inhibited by L-NAME. The exacerbation of bronchoconstriction induced by bradykinin or capsaicin in simvastatin-treated rats was inhibited by L-NAME, HOE 140 or capsazepine. These results suggest that treatment with simvastatin promotes the release of bradykinin, which, via B2 receptors, releases NO that can then activate the TRPV1 to promote plasma extravasation and bronchoconstriction.


Asunto(s)
Bronquios/efectos de los fármacos , Óxido Nítrico/metabolismo , Receptor de Bradiquinina B2/metabolismo , Simvastatina/efectos adversos , Canales Catiónicos TRPV/metabolismo , Tráquea/efectos de los fármacos , Administración Intravenosa , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Bradiquinina/administración & dosificación , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Antagonistas del Receptor de Bradiquinina B2/administración & dosificación , Antagonistas del Receptor de Bradiquinina B2/farmacología , Bronquios/metabolismo , Broncoconstricción/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Capsaicina/administración & dosificación , Capsaicina/análogos & derivados , Capsaicina/farmacología , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Inyecciones Intraperitoneales , Masculino , NG-Nitroarginina Metil Éster/administración & dosificación , NG-Nitroarginina Metil Éster/farmacología , Ratas Wistar , Simvastatina/administración & dosificación , Canales Catiónicos TRPV/antagonistas & inhibidores , Tráquea/metabolismo
8.
Peptides ; 146: 170646, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34500007

RESUMEN

Megalin-mediated albumin endocytosis plays a critical role in albumin reabsorption in proximal tubule (PT) epithelial cells (PTECs). Some studies have pointed out the modulatory effect of bradykinin (BK) on urinary protein excretion, but its role in PT protein endocytosis has not yet been determined. Here, we studied the possible correlation between BK and albumin endocytosis in PT. Using LLC-PK1 cells, a model of PTECs, we showed that BK specifically inhibited megalin-mediated albumin endocytosis. This inhibitory effect of BK was mediated by B2 receptor (B2R) because it was abolished by HOE140, an antagonist of B2R, but it was not affected by Lys-des-Arg9-BK, an antagonist of B1. BK induced the stall of megalin in EEA1+ endosomes, but not in LAMP1+ lysosomes, leading to a decrease in surface megalin expression. In addition, we showed that BK, through B2R, activated calphostin C-sensitive protein kinase C, which mediated its effect on the surface megalin expression and albumin endocytosis. These results reveal an important modulatory mechanism of PT albumin endocytosis by BK, which opens new possibilities to understanding the effect of BK on urinary albumin excretion.


Asunto(s)
Albúminas/metabolismo , Bradiquinina/farmacología , Endocitosis/efectos de los fármacos , Túbulos Renales Proximales/efectos de los fármacos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Animales , Línea Celular , Activación Enzimática , Túbulos Renales Proximales/metabolismo , Células LLC-PK1 , Proteína Quinasa C/metabolismo , Receptor de Bradiquinina B2/metabolismo , Porcinos
9.
Peptides ; 137: 170491, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33412234

RESUMEN

Previous reports reveal that +9/-9 polymorphism of the bradykinin B2 receptor (BDKRB2) is suggestive of cardiometabolic diseases. The aim of this study was to examine the impact of BDKRB2 + 9/-9 polymorphism genotypes on the blood pressure parameters and microvascular function in prepubescent children. We screened for BDKRB2 + 9/-9 polymorphism in the DNA of 145 children (86 boys and 59 girls), and its association with body composition, blood pressure levels, biochemical parameters, and endothelial function was determined. No significant association of the BDKRB2 genotypes with gender (P=0.377), race (P=0.949) or family history of cardiovascular disease (CVD) (P=0.858) was observed. Moreover, we did not identify any interaction between BDKRB2 genotypes with a phenotype of obesity (P=0.144). Children carrying the +9/+9 genotype exhibited a significant linear trend with higher levels of systolic blood pressure and pulse pressure (P<0.001). Moreover, the presence of +9 allele resulted in a decrease of reactive hyperemia index, showing a decreasing linear trend from -9/-9 to +9/+9, wherein this parameter of endothelial function was the lowest in the +9/+9 children, intermediate in the +9/-9 children, and the highest in the -9/-9 children (P<0.001). There was a significant inverse correlation between reactive hyperemia index and systolic blood pressure (r= - 0.348, P< 0.001) and pulse pressure (r= - 0.399, P< 0.001). Our findings indicate that the +9/+9 BDKRB2 genotype was associated with high blood pressure and microvascular dysfunction in prepubescent Brazilian children.


Asunto(s)
Presión Sanguínea/genética , Síndrome Metabólico/genética , Microcirculación/genética , Polimorfismo Genético , Receptor de Bradiquinina B2/genética , Población Negra/genética , Brasil/epidemiología , Niño , Femenino , Genotipo , Humanos , Hiperemia/genética , Hiperemia/fisiopatología , Hipertensión/genética , Hipertensión/fisiopatología , Masculino , Síndrome Metabólico/epidemiología , Síndrome Metabólico/fisiopatología , Grupos Raciales/genética , Población Blanca/genética
10.
Mol Cell Biochem ; 476(2): 1211-1219, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33190196

RESUMEN

Functional variants in genes of the renin-angiotensin (RAS) and kallikrein-kinin (KKS) systems have already been implicated in blood pressure (BP) modulation, but few studies have focused on a nutrigenetics approach. Thus, the aim of this study is to verify the effects of the interaction between genetic polymorphisms (rs4340-ACE, rs699-AGT, and rs1799722-BDKRB2) and micronutrient consumption (sodium, potassium, calcium, and magnesium) on BP values of normotensive adult individuals. The study included 335 adults, men and women, 25.5 (6.6) years old. Biochemical, anthropometric, BP measurements, and food intake data were assessed for all participants. Gene-nutrient interaction on BP outcome was tested by multiple linear regression with manual backward stepwise modeling. Our results indicated that individuals with G allele for rs699 polymorphism, in the increase of sodium and magnesium consumption, both in the genotypic model (sodium, p = 0.035; magnesium, p = 0.016) and in the dominant model (sodium, p = 0.009; magnesium, p = 0.006) had higher systolic BP (SBP) levels compared to AA homozygotes (sodium, p = 0.001; magnesium, p < 0.001). Also, individuals with the T allele for the rs1799722 polymorphism, with higher calcium intake, had significantly higher levels of SBP and diastolic BP (DBP) when compared to CC homozygotes (p = 0.037). In conclusion, our findings pointed for significant interactions between genetic polymorphisms (rs699-AGT and rs1799722-BDKRB2) and the consumption of micronutrients (sodium, magnesium, and calcium) on the BP variation. These findings contribute to the understanding of the complex mechanisms involved in BP regulation, which probable include several gene-nutrition interactions.


Asunto(s)
Angiotensinógeno/genética , Presión Sanguínea , Dieta , Hipertensión/fisiopatología , Peptidil-Dipeptidasa A/genética , Polimorfismo Genético , Receptor de Bradiquinina B2/genética , Adulto , Calcio/administración & dosificación , Estudios Transversales , Femenino , Humanos , Hipertensión/genética , Magnesio/administración & dosificación , Masculino , Potasio/administración & dosificación , Sodio/administración & dosificación
11.
Reprod Sci ; 27(8): 1648-1655, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32430711

RESUMEN

INTRODUCTION: The pleiotropic kininogen-kallikrein-kinin system is upregulated in pregnancy and localizes in the uteroplacental unit. To identify the systemic and local participation of the bradykinin type 2 receptor (B2R), this was antagonized by Bradyzide (BDZ) during 2 periods: from days 20 to 34 and from days 20 to 60 in pregnant guinea pigs. METHODS: Pregnant guinea pigs received subcutaneous infusions of saline or BDZ from gestational day 20 until sacrifice on day 34 (Short B2R Antagonism [SH-B2RA]) or on day 60 (Prolonged B2R Antagonism [PR-B2RA]). In SH-BDZA, systolic blood pressure was determined on day 34, while in PR-BDZA it was measured preconceptionally, at days 40 and 60. On gestational day 60, plasma creatinine, uricemia, proteinuria, fetal, placental and maternal kidney weight, and the extent of trophoblast invasion were evaluated. RESULTS: The SH-B2RA increased systolic blood pressure on day 34 and reduced trophoblast myometrial invasion, spiral artery remodeling, and placental sufficiency. The PR-B2RA suppressed the normal blood pressure fall observed on days 40 and 60; vascular transformation, placental efficiency, urinary protein, serum creatinine, and uric acid did not differ between the groups. The proportion of all studied mothers with lost fetuses was greater under BDZ infusion than in controls. CONCLUSION: The increased systolic blood pressure and transient reduction in trophoblast invasion and fetal/placental weight in the SH-B2R blockade and the isolated impact on blood pressure in the PR-B2R blockade indicate that bradykinin independently modulates systemic hemodynamics and the uteroplacental unit through cognate vascular and local B2R receptors.


Asunto(s)
Presión Sanguínea/fisiología , Antagonistas de los Receptores de Bradiquinina/farmacología , Bradiquinina/metabolismo , Receptor de Bradiquinina B2/metabolismo , Trofoblastos/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Bradiquinina/antagonistas & inhibidores , Femenino , Cobayas , Placenta/efectos de los fármacos , Placenta/metabolismo , Embarazo , Pirrolidinas/farmacología , Tiosemicarbazonas/farmacología , Trofoblastos/efectos de los fármacos
12.
Br J Pharmacol ; 177(15): 3535-3551, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32335893

RESUMEN

BACKGROUND AND PURPOSE: The entire kallikrein-kinin system is present in the skin, and it is thought to exert a relevant role in cutaneous diseases, including psoriasis. The present study was designed to evaluate the relevance of kinin receptors in the development and progression of a model of psoriasis in mice. EXPERIMENTAL APPROACH: The effects of kinin B1 and B2 receptor knockout and of kinin receptor antagonists (SSR240612C or FR173657) were assessed in a model of psoriasis induced by imiquimod in C57BL/6 mice. Severity of psoriasis was assessed by histological and immunohistochemical assays of skin, along with objective scores based on the clinical psoriasis area and severity index. KEY RESULTS: Both kinin receptors were up-regulated following 6 days of imiquimod treatment. Kinin B1 and B2 receptor deficiency and the use of selective antagonists show morphological and histological improvement of the psoriasis hallmarks. This protective effect was associated with a decrease in undifferentiated and proliferating keratinocytes, decreased cellularity (neutrophils, macrophages, and CD4+ T lymphocytes), reduced γδ T cells, and lower accumulation of IL-17. The lack of B2 receptors resulted in reduced CD8+ T cells in the psoriatic skin. Relevantly, blocking kinin receptors reflected the improvement of psoriasis disease in the well-being behaviour of the mice. CONCLUSIONS AND IMPLICATIONS: Kinins exerted critical roles in imiquimod-induced psoriasis. Both B1 and B2 kinin receptors exacerbated the disease, influencing keratinocyte proliferation and immunopathology. Antagonists of one or even both kinin receptors might constitute a new strategy for the clinical treatment of psoriasis.


Asunto(s)
Cininas , Psoriasis , Animales , Linfocitos T CD8-positivos , Ratones , Ratones Endogámicos C57BL , Psoriasis/tratamiento farmacológico , Receptor de Bradiquinina B1 , Receptor de Bradiquinina B2
13.
Pulm Pharmacol Ther ; 65: 102004, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33610768

RESUMEN

Angiotensin-converting enzyme inhibitors (ACEis) may cause adverse airway events, such as cough and angioedema, due to a reduction in bradykinin breakdown and consequent activation of bradykinin type 2 receptor (B2 receptor). Recent studies have shown that bradykinin can also sensitize pro-inflammatory receptors such as the transient receptor potential ankyrin 1 (TRPA1) and vanilloid 4 (TRPV4), which are implicated in several inflammatory airway diseases. Based on these considerations, the aim of this study was to understand the role of TRPA1 and TRPV4 channels in the bronchoconstrictive response and plasma extravasation in the trachea of rats pretreated with captopril. Using methods to detect alterations in airway resistance and plasma extravasation, we found that intravenous (i.v.) administration of bradykinin (0.03-0.3 µmol/kg, B2 receptor agonist), allyl isothiocyanate (100-1000 µmol/kg, TRPA1 agonist) or GSK1016790A (0.01-0.1 µmol/kg, TRPV4 agonist), but not des-arg9-bradykinin (DABK; 100-300 µmol/kg, B1 receptor agonist), induced bronchoconstriction in anaesthetized rats. In doses that did not cause significant bronchoconstriction, bradykinin (0.03 µmol/kg) or allyl isothiocyanate (100 µmol/kg), but not GSK1016790A (0.01 µmol/kg) or DABK (300 µmol/kg) induced an increased bronchoconstrictive response in rats pretreated with captopril (2.5 mg/kg, i.v.). On the other hand, in rats pretreated with captopril (5 mg/kg, i.v.), an increased bronchoconstrictive response to GSK1016790A (0.01 µmol/kg) was observed. The bronchoconstrictive response induced by bradykinin in captopril-pretreated rats was inhibited by intratracheal treatment (i.t.) with HC030031 (300 µg/50 µl; 36 ± 9%) or HC067047 (300 µg/50 µl; 35.1 ± 16%), for TRPA1 and TRPV4 antagonists, respectively. However, the co-administration of both antagonists did not increase this inhibition. The bronchoconstriction induced by allyl isothiocyanate in captopril-pretreated rats (2.5 mg/kg) was inhibited (58.3 ± 8%) by the B2 receptor antagonist HOE140 (10 nmol/50 µl, i.t.). Similarly, the bronchoconstriction induced by GSK1016790A in captopril-pretreated rats (5 mg/kg) was also inhibited (84.2 ± 4%) by HOE140 (10 nmol/50 µl, i.t.). Furthermore, the plasma extravasation induced by captopril on the trachea of rats was inhibited by pretreatment with HC030031 (47.2 ± 8%) or HC067047 (38.9 ± 8%). Collectively, these findings support the hypothesis that TRPA1 and TRPV4, via a B2 receptor activation-dependent pathway, are involved in the plasma extravasation and bronchoconstriction induced by captopril, making them possible pharmacological targets to prevent or remediate ACEi-induced adverse respiratory reactions.


Asunto(s)
Broncoconstricción , Captopril , Animales , Bradiquinina , Captopril/farmacología , Ratas , Receptor de Bradiquinina B2/metabolismo , Canal Catiónico TRPA1 , Canales Catiónicos TRPV , Tráquea/metabolismo
14.
Front Genet ; 10(984): 1-12, out., 2019. tab., graf.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1049930

RESUMEN

ABSTRACT: Muscle damage is one of the most important factors that affect muscle fatigue during endurance exercise. Recent evidence suggests that the renin-angiotensin system impacts on skeletal muscle wasting. The aim of this study was to determine association between the AGT Met235Thr, ACE I/D and BDKRB2 -9/+9 polymorphisms with inflammation, myocardial and muscle injury induced by endurance exercise. Eighty-one Brazilian male runners participated in this study and completed the International Marathon of Sao Paulo. Muscle and myocardial damage markers (alanine transaminase, ALT, aspartate transaminase, AST, lactic dehydrogenase, LDH, creatine kinase, CK, Troponin, pro BNP, myoglobin, and CK-MB) and inflammatory mediators (IL-6, IL-8, IL-10, IL12p70, IL1ß, and TNF-α) were determined one day before, immediately after, one day after, and three days after the event. Muscle damage was also determined fifteen days after race and angiotensinogen (AGT) Met235Thr, angiotensin-converting enzyme (ACE) I/D, and Bradykinin B2 receptor (BDKRB2) -9/+9 polymorphisms were determined. Marathon race participation induced an increase in all muscle damage and inflammatory markers evaluated (p < 0.0001). The muscle damage markers, troponin and pro BNP, CK and LDH and inflammatory markers, IL-6, IL-8, IL-1ß and IL-10 were also higher in ACE II genotype immediately after race, compared to DD genotype. The percentage of runners higher responders (>500U/I) to CK levels was higher for II genotypes (69%) compared to DD and ID genotypes (38% and 40%, respectively) immediately after. Troponin, pro BNP and IL-1ß, IL-8 levels were also elevated in AGT MM genotype compared to TT genotype athletes after and/or one day after race. BDKRB2 -9/-9 had pronounced response to LDH, CK, CK-MB and ALT and AST activities, myoglobin, troponin, IL-6, IL-8 levels immediately, one day and/or three days after race. The percentage of runners higher responders (>500U/I) to CK levels was greater for -9-9 and -9+9 genotypes (46 and 48%, respectively) compared to +9+9 genotypes (31%) immediately after. ACE II, AGT MM, and BDKRB2 -9-9 genotypes may increase the susceptibility to inflammation, muscle injury after endurance exercise and could be used to predict the development of clinical conditions associated with muscle damage and myocardial injury. (AU)


Asunto(s)
Variación Genética , Ejercicio Físico , Angiotensinógeno , Citocinas , Receptor de Bradiquinina B2
15.
Biochem Pharmacol ; 168: 119-132, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31254493

RESUMEN

Fibromyalgia is a disease characterised as generalised chronic primary pain that causes functional disability and a reduction in patients' quality of life, without specific pathophysiology or appropriate treatment. Previous studies have shown that kinins and their B1 and B2 receptors contribute to chronic painful conditions. Thus, we investigated the involvement of kinins and their B1 and B2 receptors in a fibromyalgia-like pain model induced by reserpine in mice. Nociceptive parameters (mechanical allodynia, cold sensitivity and overt nociception) and behaviours of burrowing, thigmotaxis, and forced swimming were evaluated after reserpine administration in mice. The role of kinin B1 and B2 receptors was investigated using knockout mice or pharmacological antagonism. The protein expression of kinin B1 and B2 receptors and the levels of bradykinin and monoamines were measured in the sciatic nerve, spinal cord and cerebral cortex of the animals. Knockout mice for the kinin B1 and B2 receptor reduced reserpine-induced mechanical allodynia. Antagonism of B1 and B2 receptors also reduced mechanical allodynia, cold sensitivity and overt nociception reserpine-induced. Reserpine altered thigmotaxis, forced swimming and burrowing behaviour in the animals; with the latter being reversed by antagonism of kinin B1 receptor. Moreover, reserpine increased the protein expression of kinin B1 and B2 receptors and levels of kinin, as well as reduced the levels of monoamines in peripheral and central structures. Kinins and its B1 and B2 receptors are involved in fibromyalgia-like pain symptoms. B1 or B2 receptors might represent a potential target for the relief of fibromyalgia-like pain symptoms.


Asunto(s)
Bradiquinina/metabolismo , Fibromialgia/metabolismo , Dolor/metabolismo , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Fibromialgia/inducido químicamente , Técnicas de Inactivación de Genes , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nocicepción/efectos de los fármacos , Dolor/inducido químicamente , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Reserpina/farmacología
16.
Malar J ; 18(1): 213, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234939

RESUMEN

BACKGROUND: Malaria represents a worldwide medical emergency affecting mainly poor areas. Plasmodium parasites during blood stages can release kinins to the extracellular space after internalization of host kininogen inside erythrocytes and these released peptides could represent an important mechanism in liver pathophysiology by activation of calcium signaling pathway in endothelial cells of vertebrate host. Receptors (B1 and B2) activated by kinins peptides are important elements for the control of haemodynamics in liver and its physiology. The aim of this study was to identify changes in the liver host responses (i.e. kinin receptors expression and localization) and the effect of ACE inhibition during malaria infection using a murine model. METHODS: Balb/C mice infected by Plasmodium chabaudi were treated with captopril, an angiotensin I-converting enzyme (ACE) inhibitor, used alone or in association with the anti-malarial chloroquine in order to study the effect of ACE inhibition on mice survival and the activation of liver responses involving B1R and B2R signaling pathways. The kinin receptors (B1R and B2R) expression and localization was analysed in liver by western blotting and immunolocalization in different conditions. RESULTS: It was verified that captopril treatment caused host death during the peak of malaria infection (parasitaemia about 45%). B1R expression was stimulated in endothelial cells of sinusoids and other blood vessels of mice liver infected by P. chabaudi. At the same time, it was also demonstrated that B1R knockout mice infected presented a significant reduction of survival. However, the infection did not alter the B2R levels and localization in liver blood vessels. CONCLUSIONS: Thus, it was observed through in vivo studies that the vasodilation induced by plasma ACE inhibition increases mice mortality during P. chabaudi infection. Besides, it was also seen that the anti-malarial chloroquine causes changes in B1R expression in liver, even after days of parasite clearance. The differential expression of B1R and B2R in liver during malaria infection may have an important role in the disease pathophysiology and represents an issue for clinical treatments.


Asunto(s)
Regulación de la Expresión Génica , Hígado/fisiopatología , Malaria/fisiopatología , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Captopril/farmacología , Cloroquina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Plasmodium chabaudi , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo
17.
Br J Pharmacol ; 176(14): 2608-2626, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30945263

RESUMEN

BACKGROUND AND PURPOSE: Bradykinin may induce vasoconstriction in selected vessels or under specific experimental conditions. We hypothesized that inflammatory stimuli, such as endotoxin challenge, may induce the dimerization of AT1 /B2 receptors, altering the vascular effects of bradykinin. EXPERIMENTAL APPROACH: Wistar rats received LPS (1 mg·kg-1 , i.p.) and were anaesthetized for assessment of BP. Mesenteric resistance arteries were used in organ baths and subjected to co-immunoprecipitation and Western blot analyses. KEY RESULTS: At 24 and 48 hr after LPS, bradykinin-induced hypotension was followed by a sustained increase in BP, which was not found in non-endotoxemic animals. The B2 receptor antagonist Hoe-140 fully blocked the responses to bradykinin. The pressor effect of bradykinin was not prevented by prazosin, an α1 -adrenoceptor antagonist, but it was inhibited by the AT1 receptor antagonist losartan or the Rho-kinase inhibitor Y-27632. Endotoxemic rats also displayed enhanced pressor responses to angiotensin II, which were blocked by Hoe-140. Co-immunoprecipitation isolated using anti-B2 or anti-AT1 receptor antibodies showed that resistance arteries presented augmented levels of the AT1 /B2 receptor complexes at 24 hr after LPS injection. The presence of AT1 /B2 receptor heterodimers did correlate with the development of losartan-sensitive contractile responses to bradykinin and potentiation of angiotensin II-induced contraction, which was prevented by Hoe-140. CONCLUSIONS AND IMPLICATIONS: Endotoxin challenge is a stimulus for AT1 /B2 receptor heterodimerization in native vessels and shifts the B2 receptor-dependent vascular effect of bradykinin to a more complex pathway, which also depends on AT1 receptors and their intracellular signalling pathways.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Bradiquinina/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Vasodilatadores/farmacología , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Bradiquinina/administración & dosificación , Dimerización , Femenino , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Masculino , Ratas , Ratas Wistar , Vasodilatadores/administración & dosificación
18.
Sci Rep ; 9(1): 2973, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814538

RESUMEN

The regulation of the kallikrein-kinin system is an important mechanism controlling vasodilation and promoting inflammation. We aimed to investigate the role of Toll-like receptor 2 (TLR2) in regulating kinin B1 and B2 receptor expression in human gingival fibroblasts and in mouse gingiva. Both P. gingivalis LPS and the synthetic TLR2 agonist Pam2CSK4 increased kinin receptor transcripts. Silencing of TLR2, but not of TLR4, inhibited the induction of kinin receptor transcripts by both P. gingivalis LPS and Pam2CSK4. Human gingival fibroblasts (HGF) exposed to Pam2CSK4 increased binding sites for bradykinin (BK, B2 receptor agonist) and des-Arg10-Lys-bradykinin (DALBK, B1 receptor agonist). Pre-treatment of HGF for 24 h with Pam2CSK4 resulted in increased PGE2 release in response to BK and DALBK. The increase of B1 and B2 receptor transcripts by P. gingivalis LPS was not blocked by IL-1ß neutralizing antibody; TNF-α blocking antibody did not affect B1 receptor up-regulation, but partially blocked increase of B2 receptor mRNA. Injection of P. gingivalis LPS in mouse gingiva induced an increase of B1 and B2 receptor mRNA. These data show that activation of TLR2 in human gingival fibroblasts as well as in mouse gingival tissue leads to increase of B1 and B2 receptor mRNA and protein.


Asunto(s)
Receptores de Bradiquinina/genética , Receptor Toll-Like 2/metabolismo , Adulto , Animales , Bradiquinina/metabolismo , Femenino , Fibroblastos/metabolismo , Encía/metabolismo , Humanos , Inflamación/metabolismo , Cininas/metabolismo , Lipopéptidos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Receptores de Bradiquinina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Inflammopharmacology ; 27(3): 573-586, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30820720

RESUMEN

Tumour necrosis factor (TNF) and kinins have been associated with neuropathic pain-like behaviour in numerous animal models. However, the way that they interact to cause neuron sensitisation remains unclear. This study assessed the interaction of kinin receptors and TNF receptor TNFR1/p55 in mechanical hypersensitivity induced by an intraneural (i.n.) injection of rm-TNF into the lower trunk of brachial plexus in mice. The i.n. injection of rm-TNF reduced the mechanical withdrawal threshold of the right forepaw from the 3rd to the 10th day after the injection, indicating that TNF1/p55 displays a critical role in the onset of TNF-elicited neuropathic pain. The connection between TNF1/p55 and kinin B1 and B2 receptors (B1R and B2R) was confirmed using both knockout mice and mRNAs quantification in the injected nerve, DRG and spinal cord. The treatment with the B2R antagonist HOE 140 or with B1R antagonist des-Arg9-Leu8-BK reduced both BK- and DABK-induced hypersensitivity. The experiments using kinin receptor antagonists and CPM inhibitor (thiorphan) suggest that BK does not only activate B2R as an orthosteric agonist, but also seems to be converted into DABK that consequently activates B1R. These results indicate a connection between TNF and the kinin system, suggesting a relevant role for B1R and B2R in the process of sensitisation of the central nervous systems by the cross talk between the receptor and CPM after i.n. injection of rm-TNF.


Asunto(s)
Plexo Braquial/metabolismo , Neuralgia/metabolismo , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Plexo Braquial/efectos de los fármacos , Antagonistas del Receptor de Bradiquinina B1/farmacología , Antagonistas del Receptor de Bradiquinina B2/farmacología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/tratamiento farmacológico
20.
J Cell Physiol ; 234(8): 13387-13402, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30624780

RESUMEN

We have previously demonstrated that kidney embryonic structures are present in rats, and are still developing until postnatal Day 20. Consequently, at postnatal Day 10, the rat renal papilla contains newly formed collecting duct (CD) cells and others in a more mature stage. Performing primary cultures, combined with immunocytochemical and time-lapse analysis, we investigate the cellular mechanisms that mediate the postnatal CD formation. CD cells acquired a greater degree of differentiation, as we observed that they gradually lose the ability to bind BSL-I lectin, and acquire the capacity to bind Dolichos biflorus. Because CD cells retain the same behavior in culture than in vivo, and by using DBA and BSL-I as markers of cellular lineage besides specific markers of epithelial/mesenchymal phenotype, the experimental results strongly suggest the existence of mesenchymal cell insertion into the epithelial CD sheet. We propose such a mechanism as an alternative strategy for CD growing and development.


Asunto(s)
Túbulos Renales Colectores/citología , Túbulos Renales Colectores/crecimiento & desarrollo , Animales , Acuaporina 2/metabolismo , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Glicoconjugados/metabolismo , Imagenología Tridimensional , Médula Renal/citología , Médula Renal/crecimiento & desarrollo , Médula Renal/metabolismo , Túbulos Renales Colectores/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Lectinas de Plantas/metabolismo , Ratas , Ratas Wistar , Receptor de Bradiquinina B2/metabolismo , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA