Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 748
1.
Front Cell Infect Microbiol ; 14: 1356542, 2024.
Article En | MEDLINE | ID: mdl-38741892

Background and objectives: This study aimed to investigate the possible prognostic significance of interferon alpha-beta receptor subunit 2 (IFNAR2) and tyrosine kinase 2 (TYK2) expressions. Methods: We conducted a retrospective study including COVID-19 adult patients. All blood samples were collected before any interventions. The expressions of IFNAR2 and TYK2 were assessed using real-time PCR in venous blood samples of 54 cases and 56 controls. The transcript quantities of IFNAR2 and TYK2 genes were assessed using a Delta-Ct method. Results: Our findings show no significant differences in gene expression levels for IFNAR2 and TYK2 between patients who required oxygen (O2) therapy and those who did not (p-value = 0.732 and p-value = 0.629, respectively). Likewise, there were no significant differences in IFNAR2 and TYK2 expressions between patients hospitalized for less than 7 days and those hospitalized for 7 days or more (p-value = 0.455 and p-value = 0.626, respectively). We also observed a weak correlation between IFNAR2 expression and CRP (p-value = 0.045, r = 0.192). There was a negative correlation between the expression levels of IFNAR2 and TYK2 transcripts in COVID-19 patients (p-value = 0.044; partial correlation coefficient = -0.283). Additionally, IFNAR2 and TYK2 were significantly downregulated in the COVID-19 group compared to healthy subjects (p-value = 0.002 and p-value = 0.028, respectively). However, neither IFNAR2 nor TYK2 expression was significantly different between the case subgroups based on COVID-19 severity. The IFNAR2 ΔΔCt (B = -0.184, 95% CI: -0.524-0.157, p-value = 0.275) and the TYK2 ΔΔCt (B = 0.114, 95% CI: -0.268-0.496, p-value = 0.543) were not found to be significant predictors of hospitalization duration. The area under the curve (AUC) for IFNAR2 expression is 0.655 (p-value = 0.005, 95% CI: 0.554-0.757), suggesting its poor discriminative value. Conclusion: We were unable to comment definitively on the prognostic power of IFNAR2 and TYK2 expressions in COVID-19 patients, and larger-scale studies are needed. The principal limitations of this study included the lack of longitudinal analysis and limited sample size.


COVID-19 , Receptor, Interferon alpha-beta , SARS-CoV-2 , TYK2 Kinase , Humans , COVID-19/genetics , TYK2 Kinase/genetics , TYK2 Kinase/metabolism , Retrospective Studies , Male , Female , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Prognosis , Middle Aged , Adult , SARS-CoV-2/genetics , Aged
2.
Cell Rep Med ; 5(5): 101560, 2024 May 21.
Article En | MEDLINE | ID: mdl-38729159

Stimulator of IFN genes (STING) is a promising target for adjuvants utilized in in situ cancer vaccination approaches. However, key barriers remain for clinical translation, including low cellular uptake and accessibility, STING variability necessitating personalized STING agonists, and interferon (IFN)-independent signals that can promote tumor growth. Here, we identify C100, a highly deacetylated chitin-derived polymer (HDCP), as an attractive alternative to conventional STING agonists. C100 promotes potent anti-tumor immune responses, outperforming less deacetylated HDCPs, with therapeutic efficacy dependent on STING and IFN alpha/beta receptor (IFNAR) signaling and CD8+ T cell mediators. Additionally, C100 injection synergizes with systemic checkpoint blockade targeting PD-1. Mechanistically, C100 triggers mitochondrial stress and DNA damage to exclusively activate the IFN arm of the cGAS-STING signaling pathway and elicit sustained IFNAR signaling. Altogether, these results reveal an effective STING- and IFNAR-dependent adjuvant for in situ cancer vaccines with a defined mechanism and distinct properties that overcome common limitations of existing STING therapeutics.


Adjuvants, Immunologic , CD8-Positive T-Lymphocytes , Chitin , Membrane Proteins , Mice, Inbred C57BL , Receptor, Interferon alpha-beta , Signal Transduction , Animals , Membrane Proteins/metabolism , Membrane Proteins/immunology , Membrane Proteins/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Mice , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Signal Transduction/drug effects , Humans , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cell Line, Tumor , Female , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Neoplasms/immunology , Neoplasms/therapy
3.
AIDS Res Ther ; 21(1): 27, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698440

BACKGROUND: Human genetic contribution to HIV progression remains inadequately explained. The type 1 interferon (IFN) pathway is important for host control of HIV and variation in type 1 IFN genes may contribute to disease progression. This study assessed the impact of variations at the gene and pathway level of type 1 IFN on HIV-1 viral load (VL). METHODS: Two cohorts of antiretroviral (ART) naïve participants living with HIV (PLWH) with either early (START) or advanced infection (FIRST) were analysed separately. Type 1 IFN genes (n = 17) and receptor subunits (IFNAR1, IFNAR2) were examined for both cumulated type 1 IFN pathway analysis and individual gene analysis. SKAT-O was applied to detect associations between the genotype and HIV-1 study entry viral load (log10 transformed) as a proxy for set point VL; P-values were corrected using Bonferroni (P < 0.0025). RESULTS: The analyses among those with early infection included 2429 individuals from five continents. The median study entry HIV VL was 14,623 (IQR 3460-45100) copies/mL. Across 673 SNPs within 19 type 1 IFN genes, no significant association with study entry VL was detected. Conversely, examining individual genes in START showed a borderline significant association between IFNW1, and study entry VL (P = 0.0025). This significance remained after separate adjustments for age, CD4+ T-cell count, CD4+/CD8+ T-cell ratio and recent infection. When controlling for population structure using linear mixed effects models (LME), in addition to principal components used in the main model, this was no longer significant (p = 0.0244). In subgroup analyses stratified by geographical region, the association between IFNW1 and study entry VL was only observed among African participants, although, the association was not significant when controlling for population structure using LME. Of the 17 SNPs within the IFNW1 region, only rs79876898 (A > G) was associated with study entry VL (p = 0.0020, beta = 0.32; G associated with higher study entry VL than A) in single SNP association analyses. The findings were not reproduced in FIRST participants. CONCLUSION: Across 19 type 1 IFN genes, only IFNW1 was associated with HIV-1 study entry VL in a cohort of ART-naïve individuals in early stages of their infection, however, this was no longer significant in sensitivity analyses that controlled for population structures using LME.


HIV Infections , HIV-1 , Interferon Type I , Polymorphism, Single Nucleotide , Viral Load , Humans , HIV Infections/virology , HIV Infections/genetics , HIV Infections/immunology , HIV-1/genetics , Interferon Type I/genetics , Male , Female , Adult , Genotype , Middle Aged , Receptor, Interferon alpha-beta/genetics , Cohort Studies , Disease Progression , CD4 Lymphocyte Count
4.
Int J Immunopathol Pharmacol ; 38: 3946320241257241, 2024.
Article En | MEDLINE | ID: mdl-38760017

OBJECTIVES: This study aimed to explore the potential correlation between specific single nucleotide polymorphisms (TYK2, IFITM3, IFNAR2, and OAS3 variants) and the severity of COVID-19 in Moroccan patients. METHODS: A genetic analysis was conducted on 109 patients with PCR-confirmed SARS-CoV-2 infection in Morocco. Among these patients, 46% were hospitalized in the intensive care unit, while 59% were not hospitalized. Importantly, all patients lacked known risk factors associated with COVID-19 severity. Genotyping was performed to identify variations in TYK2 rs74956615, IFITM3 rs12252, IFNAR2 rs2236757, and OAS3 rs10735079. Statistical analysis was applied using codominant, dominant and recessive logistic regression models to assess correlations with COVID-19 severity. RESULTS: Our findings revealed no significant correlation between TYK2 rs74956615, IFITM3 rs12252, IFNAR2 rs2236757, and OAS3 rs10735079 with COVID-19 severity in Moroccan patients, as indicated in logistic regression models (p > .05). Interestingly, these results may offer insights into the mitigated impact of the COVID-19 pandemic and the reduced severity observed in SARS-CoV-2 infected patients in Morocco. Age, however, exhibited a significant correlation with severity (p < .001), with a trend towards increased likelihood of ICU admission with advancing age. Additionally, In the severe group, a higher proportion of patients were females (54%), indicating a statistically significant correlation with disease severity (p = .04). Nevertheless, female ICU patients aged above 60 years accounted for 37%, compared to 17% for males. CONCLUSION: This study underscores the absence of a genetic association between the selected polymorphisms and COVID-19 severity in Moroccan patients. Advanced age emerges as the primary factor influencing the severity of COVID-19 patients without comorbidities. We recommend setting the threshold for advanced age at 60 years as a risk factor for severe forms of COVID-19.


COVID-19 , Intensive Care Units , Membrane Proteins , Polymorphism, Single Nucleotide , RNA-Binding Proteins , Receptor, Interferon alpha-beta , Severity of Illness Index , TYK2 Kinase , Humans , Female , Male , COVID-19/genetics , COVID-19/epidemiology , Morocco/epidemiology , Middle Aged , Membrane Proteins/genetics , Adult , RNA-Binding Proteins/genetics , TYK2 Kinase/genetics , Receptor, Interferon alpha-beta/genetics , Aged , 2',5'-Oligoadenylate Synthetase/genetics , SARS-CoV-2/genetics , Genetic Predisposition to Disease
5.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Article En | MEDLINE | ID: mdl-38593796

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Epigenesis, Genetic , Interferon Type I , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus , Memory B Cells , Animals , Interferon Type I/metabolism , Interferon Type I/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Mice , Lymphocytic choriomeningitis virus/immunology , Memory B Cells/immunology , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/genetics , Immunologic Memory/immunology , Chronic Disease , B-Lymphocyte Subsets/immunology , Single-Cell Analysis
6.
Curr Opin Immunol ; 86: 102413, 2024 Feb.
Article En | MEDLINE | ID: mdl-38608537

Type I and type III interferons (IFNs) are major components in activating the innate immune response. Common to both are two distinct receptor chains (IFNAR1/IFNAR2 and IFNLR1/IL10R2), which form ternary complexes upon binding their respective ligands. This results in close proximity of the intracellularly associated kinases JAK1 and TYK2, which cross phosphorylate each other, the associated receptor chains, and signal transducer and activator of transcriptions, with the latter activating IFN-stimulated genes. While there are clear similarities in the biological responses toward type I and type III IFNs, differences have been found in their tropism, tuning of activity, and induction of the immune response. Here, we focus on how these differences are embedded in the structure/function relations of these two systems in light of the recent progress that provides in-depth information on the structural assembly of these receptors and their functional implications and how these differ between the mouse and human systems.


Interferon Type I , Interferons , Humans , Animals , Mice , Receptors, Interferon/metabolism , Receptor, Interferon alpha-beta/genetics , Signal Transduction/genetics , Immunity, Innate , Interferon Type I/metabolism
7.
J Innate Immun ; 16(1): 226-247, 2024.
Article En | MEDLINE | ID: mdl-38527452

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Adenoviridae , Cytokines , Interferon Regulatory Factor-3 , Lipopolysaccharides , Macrophages , Mice, Knockout , Animals , Mice , Lipopolysaccharides/immunology , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Macrophages/immunology , Cytokines/metabolism , Mice, Inbred C57BL , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Genetic Vectors , Adenoviridae Infections/immunology , Interferon Type I/metabolism , Lipopolysaccharide Receptors/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Cells, Cultured , Dendritic Cells/immunology , Interferon-beta/metabolism
8.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L551-L561, 2024 May 01.
Article En | MEDLINE | ID: mdl-38375579

Excessive or persistent inflammation may have detrimental effects on lung structure and function. Currently, our understanding of conserved host mechanisms that control the inflammatory response remains incompletely understood. In this study, we investigated the role of type I interferon signaling in the inflammatory response against diverse clinically relevant stimuli. Using mice deficient in type I interferon signaling (IFNAR1-/-), we demonstrate that the absence of interferon signaling resulted in a robust and persistent inflammatory response against Pseudomonas aeruginosa, lipopolysaccharide, and chemotherapeutic agent bleomycin. The elevated inflammatory response in IFNAR1-/- mice was manifested as elevated myeloid cells, such as macrophages and neutrophils, in the bronchoalveolar lavage. The inflammatory cell response in the IFNAR1-/- mice persisted to 14 days and there is impaired recovery and fibrotic remodeling of the lung in IFNAR1-/- mice after bleomycin injury. In the Pseudomonas infection model, the elevated inflammatory cell response led to improved bacterial clearance in IFNAR1-/- mice, although there was similar lung injury and survival. We performed RNA sequencing of lung tissue in wild-type and IFNAR1-/- mice after LPS and bleomycin injury. Our unbiased analysis identified differentially expressed genes between IFNAR1-/- and wild-type mice, including previously unknown regulation of nucleotide-binding oligomerization domain (NOD)-like receptor signaling, retinoic acid-inducible gene-I (RIG-I) signaling, and necroptosis pathway by type I interferon signaling in both models. These data provide novel insights into the conserved anti-inflammatory mechanisms of the type I interferon signaling.NEW & NOTEWORTHY Type I interferons are known for their antiviral activities. In this study, we demonstrate a conserved anti-inflammatory role of type I interferon signaling against diverse stimuli in the lung. We show that exacerbated inflammatory response in the absence of type I interferon signaling has both acute and chronic consequences in the lung including structural changes.


Interferon Type I , Lung , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta , Signal Transduction , Animals , Interferon Type I/metabolism , Lung/metabolism , Lung/immunology , Lung/pathology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Mice , Bleomycin , Pseudomonas aeruginosa , Lipopolysaccharides/pharmacology , Pseudomonas Infections/immunology , Pseudomonas Infections/metabolism , Pseudomonas Infections/pathology , Pseudomonas Infections/microbiology , Inflammation/metabolism , Inflammation/pathology , Inflammation/immunology , Male
9.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article En | MEDLINE | ID: mdl-38396742

African horse sickness (AHS) is a highly severe disease caused by a viral etiological agent, African horse sickness virus (AHSV). It is endemic in sub-Saharan Africa, while sporadic outbreaks have occurred in North Africa, Asia, and Europe, with the most recent cases in Thailand. AHSV transmission between equines occurs primarily by biting midges of the genus Culicoides, especially C. imicola, with a wide distribution globally. As research in horses is highly restricted due to a variety of factors, small laboratory animal models that reproduce clinical signs and pathology observed in natural infection of AHSV are highly needed. Here, we investigated the expression profile of several pro-inflammatory cytokines in target organs and serum of IFNAR (-/-) mice, to continue characterizing this established animal model and to go deep into the innate immune responses that are still needed.


African Horse Sickness Virus , African Horse Sickness , Receptor, Interferon alpha-beta , Animals , Mice , Africa South of the Sahara , African Horse Sickness/genetics , African Horse Sickness Virus/metabolism , African Horse Sickness Virus/pathogenicity , Ceratopogonidae , Europe , Horses/genetics , RNA, Messenger/genetics , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology
10.
J Virol ; 98(1): e0078923, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38168677

Zika virus (ZIKV) infection caused neurological complications and male infertility, leading to the accumulation of antigen-specific immune cells in immune-privileged organs (IPOs). Thus, it is important to understand the immunological responses to ZIKV in IPOs. We extensively investigated the ZIKV-specific T cell immunity in IPOs in Ifnar1-/- mice, based on an immunodominant epitope E294-302 tetramer. The distinct kinetics and functions of virus-specific CD8+ T cells infiltrated into different IPOs were characterized, with late elevation in the brain and spinal cord. Single epitope E294-302-specific T cells can account for 20-60% of the total CD8+ T cells in the brain, spinal cord, and testicle and persist for at least 90 days in the brain and spinal cord. The E294-302-specific TCRαßs within the IPOs are featured with the majority of clonotypes utilizing TRAV9N-3 paired with diverse TRBV chains, but with distinct αß paired clonotypes in 7 and 30 days post-infection. Specific chemokine receptors, Ccr2 and Ccr5, were selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of virus-specific CD8+ T cells after infection. Overall, this study adds to the understanding of virus-specific CD8+ T cell responses for controlling and clearing ZIKV infection in IPOs.IMPORTANCEThe immune-privileged organs (IPOs), such as the central nervous system and testicles, presented pathogenicity and inflammation after Zika virus (ZIKV) infection with infiltrated CD8+ T cells. Our data show that CD8+ T cells keep up with virus increases and decreases in immune-privileged organs. Furthermore, our study provides the first ex vivo comparative analyses of the composition and diversity related to TCRα/ß clonotypes across anatomical sites and ZIKV infection phases. We show that the vast majority of TCRα/ß clonotypes in tissues utilize TRAV9N-3 with conservation. Specific chemokine expression, including Ccr2 and Ccr5, was found to be selectively expressed in the E294-302-specific CD8+ T cells within the brain and testicle, indicating an IPO-oriented migration of the virus-specific CD8+ T cells after the infection. Our study adds insights into the anti-viral immunological characterization and chemotaxis mechanism of virus-specific CD8+ T cells after ZIKV infection in different IPOs.


CD8-Positive T-Lymphocytes , Immune Privilege , Zika Virus Infection , Animals , Male , Mice , Brain/immunology , Brain/virology , CD8-Positive T-Lymphocytes/immunology , Receptor, Interferon alpha-beta/genetics , Zika Virus , Zika Virus Infection/immunology , Mice, Knockout , Testis/immunology , Testis/virology
11.
Virol Sin ; 39(2): 251-263, 2024 Apr.
Article En | MEDLINE | ID: mdl-38219860

Viral encephalitis continues to be a significant public health concern. In our previous study, we discovered a lower expression of antiviral factors, such as IFN-ß, STING and IFI16, in the brain tissues of patients with Rasmussen's encephalitis (RE), a rare chronic neurological disorder often occurred in children, characterized by unihemispheric brain atrophy. Furthermore, a higher cumulative viral score of human herpes viruses (HHVs) was also found to have a significant positive correlation with the unihemispheric atrophy in RE. Type I IFNs (IFN-I) signaling is essential for innate anti-infection response by binding to IFN-α/ß receptor (IFNAR). In this study, we infected WT mice and IFNAR-deficient A6 mice with herpes simplex virus 1 (HSV-1) via periocular injection to investigate the relationship between IFN-I signaling and HHVs-induced brain lesions. While all mice exhibited typical viral encephalitis lesions in their brains, HSV-induced epilepsy was only observed in A6 mice. The gene expression matrix, functional enrichment analysis and protein-protein interaction network revealed four gene models that were positively related with HSV-induced epilepsy. Additionally, ten key genes with the highest scores were identified. Taken together, these findings indicate that intact IFN-I signaling can effectively limit HHVs induced neural symptoms and brain lesions, thereby confirming the positive correlation between IFN-I signaling repression and brain atrophy in RE and other HHVs encephalitis.


Brain , Epilepsy , Herpesvirus 1, Human , Interferon Type I , Signal Transduction , Animals , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Mice , Brain/pathology , Brain/virology , Epilepsy/virology , Epilepsy/pathology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/deficiency , Disease Models, Animal , Mice, Knockout , Mice, Inbred C57BL , Female , Protein Interaction Maps , Herpes Simplex/virology , Herpes Simplex/pathology , Herpes Simplex/immunology , Encephalitis, Herpes Simplex/virology , Encephalitis, Herpes Simplex/immunology , Encephalitis, Herpes Simplex/pathology , Humans
12.
Pathology ; 56(1): 92-97, 2024 Feb.
Article En | MEDLINE | ID: mdl-37973454

Mutations of the human interferon alpha and beta receptor subunit 1 (IFNAR1) gene are associated with severe viral infections. Individuals homozygous for the Glu386∗ variant have impaired type I interferon signalling and can suffer severe illness when exposed to certain viruses and live attenuated virus vaccines. Glu386∗ heterozygotes are clinically unaffected, but can pass the variant allele to their descendants. We aimed to develop an assay that can identify IFNAR1 Glu386∗ homozygotes and heterozygotes to support urgent clinical diagnosis, and that can use dried blood spots (DBS) sent at ambient temperature to overcome geographical logistical challenges in the South Pacific region. The tri-allelic genotyping assay interrogates a single nucleotide polymorphism (rs201609461) located in IFNAR1. The reference allele G encodes for wild-type IFNAR1. Minor alleles A (c.1156G>A) and T (c.1156G>T) encode for Glu386Lys and a truncated IFNAR1 protein (p.Glu386∗), respectively. Synthetic oligonucleotides were mixed in equal molar ratio to create six different genotypes which were randomly assigned to 960 genotyping reactions by R software. Three different fluorescence probes were designed to discriminate the three alleles (G, T and A) within a pair of flanking primers in a single genotyping reaction. The assay discriminated all three alleles using DBS from Guthrie cards randomly spiked with synthetic oligonucleotides. We correctly identified all the different genotypes in 960 reactions in these blinded experiments. These findings validate the genotyping assay for rapidly identifying the IFNAR1 Glu386∗ variant from DBS.


Interferon-alpha , Receptor, Interferon alpha-beta , Humans , Interferon-alpha/genetics , Alleles , Genotype , Receptor, Interferon alpha-beta/genetics , Oligonucleotides
13.
J Antibiot (Tokyo) ; 77(2): 102-110, 2024 02.
Article En | MEDLINE | ID: mdl-38102186

We aimed to investigate the effects of tumor necrosis factor (TNF)-α on the expression of interferon α/ß receptor subunit 1 (IFNAR1) and cervical squamous cancer (CSCC) resistance to Cisplatin, as well as the underlying mechanisms. Kaplan-Meier analysis was used to plot the overall survival curves. SiHa cells were treated with 20 ng/ml TNF-α to determine cell proliferation in human CSCC cells and the expression of IFNAR1. The effects of TNF-α on the downstream signaling pathway, including casein kinase 1α (CK1α), were investigated using the caspase protease inhibitor FK009, the c-Jun kinase inhibitor SP600125, and the nuclear factor kappa-B inhibitor ammonium pyrrolidinedithiocarbamate (PDTC). TNF-α induced down-regulation of IFNAR1 in human CSCC cells and promoted proliferation of SiHa cells. SiHa cells were transfected with the catalytic inactive mutant CK1α K49A, and the ability of TNF-α to induce down-regulation of IFNAR1 expression was found to be significantly diminished in this context. FK009 and PDTC had no obvious effect on the expression of CK1α, however, SP600125 significantly reduced the expression of CK1α in the presence of TNF-α. SiHa cells treated with TNF-α showed reduced sensitivity to Cisplatin and exhibited higher cell viability, while the sensitivity of SiHa cells to Cisplatin was restored after treatment with CK1α inhibitor D4476. Additionally, we constructed a TNF-α overexpressing SiHa cell line and a transplanted tumor model. The results were similar to those of in vitro efficacy. We demonstrate that TNF-α-induced down-regulation of type I interferon receptor contributes to acquired resistance of cervical squamous cancer to Cisplatin.


Anthracenes , Carcinoma, Squamous Cell , Proline/analogs & derivatives , Thiocarbamates , Uterine Cervical Neoplasms , Female , Humans , Cisplatin/pharmacology , Cisplatin/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Down-Regulation , Uterine Cervical Neoplasms/drug therapy , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Apoptosis
14.
Virus Res ; 340: 199301, 2024 02.
Article En | MEDLINE | ID: mdl-38096954

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Bunyaviridae , Interferon Type I , Receptor, Interferon alpha-beta , Animals , Mice , Receptor, Interferon alpha-beta/genetics , Mice, Knockout , Interferons , Liver , Interleukin-12
15.
Immunity ; 57(1): 68-85.e11, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38141610

Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.


Signal Transduction , Thromboplastin , Animals , Mice , Inflammation , Interferon-alpha , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Thromboplastin/genetics
16.
Signal Transduct Target Ther ; 8(1): 374, 2023 09 25.
Article En | MEDLINE | ID: mdl-37743411

The crucial role of interferon (IFN) signaling is well known in the restriction or eradication of pathogen invasion. Viruses take a variety of ways to antagonize host defense through eliminating IFN-signaling intracellularly for decades. However, the way by viruses target IFN-signaling extracellularly has not been discovered. Infection by both coronavirus SARS-CoV-2 and enterovirus 71 (EV71 or EV-A71) can cause severe diseases such as neurological disorders and even death in children.1-3 Here, we show evidence that the protease of SARS-CoV-2 (3CLpro) and EV71 (2Apro) upregulates the expression and secretion of LDL-receptor-related protein-associated protein 1 (LRPAP1). As a ligand, the N-terminus of secreted LRPAP1 binds with the extracellular domain of IFNAR1 that triggers the receptor ubiquitination and degradation and promotes virus infection both in vitro, ex vivo in the mouse brain, and in vivo in newborn mice. A small peptide from the N-terminus of LRPAP1 effectively binds and causes IFNAR1 degradation that enhances both DNA and RNA viral infections, including herpesvirus HSV-1, hepatitis B virus (HBV), EV71, and beta-coronavirus HCoV-OC43; whereas α2M, a LRPAP1 inhibitor, arrests virus infections by stabilizing IFNAR1. Our study demonstrates a new mechanism used by viruses for evading host cell immunity, supporting a strategy for developing pan-antiviral drugs.


COVID-19 , Child , Humans , Animals , Mice , SARS-CoV-2 , Signal Transduction , Antiviral Agents , Immunity, Innate/genetics , Receptor, Interferon alpha-beta/genetics
17.
Front Immunol ; 14: 1194733, 2023.
Article En | MEDLINE | ID: mdl-37720217

Type I interferons (IFN) are pro-inflammatory cytokines which can also exert anti-inflammatory effects via the regulation of interleukin (IL)-1 family members. Several studies showed that interferon receptor (IFNAR)-deficient mice develop severe liver damage upon treatment with artificial agonists such as acetaminophen or polyinosinic:polycytidylic acid. In order to investigate if these mechanisms also play a role in an acute viral infection, experiments with the Bunyaviridae family member Rift Valley fever virus (RVFV) were performed. Upon RVFV clone (cl)13 infection, IFNAR-deficient mice develop a severe liver injury as indicated by high activity of serum alanine aminotransferase (ALT) and histological analyses. Infected IFNAR-/- mice expressed high amounts of IL-36γ within the liver, which was not observed in infected wildtype (WT) animals. In line with this, treatment of WT mice with recombinant IL-36γ induced ALT activity. Furthermore, administration of an IL-36 receptor antagonist prior to infection prevented the formation of liver injury in IFNAR-/- mice, indicating that IL-36γ is causative for the observed liver damage. Mice deficient for adaptor molecules of certain pattern recognition receptors indicated that IL-36γ induction was dependent on mitochondrial antiviral-signaling protein and the retinoic acid-inducible gene-I-like receptor. Consequently, cell type-specific IFNAR knockouts revealed that type I IFN signaling in myeloid cells is critical in order to prevent IL-36γ expression and liver injury upon viral infection. Our data demonstrate an anti-inflammatory role of type I IFN in a model for virus-induced hepatitis by preventing the expression of the novel IL-1 family member IL-36γ.


Interleukin-1 , Receptor, Interferon alpha-beta , Rift Valley Fever , Animals , Mice , Liver , Receptor, Interferon alpha-beta/genetics , Rift Valley fever virus/genetics , Rift Valley Fever/immunology
18.
J Infect Dis ; 228(Suppl 7): S548-S553, 2023 11 13.
Article En | MEDLINE | ID: mdl-37352146

Type I interferon receptor knockout (IFNAR-/-) mice are not able to generate a complete innate immune response; therefore, these mice are often considered to assess the pathogenicity of emerging viruses. We infected IFNAR-/- mice with a low or high dose of Lloviu virus (LLOV) or Bombali virus (BOMV) by the intranasal (IN) or intraperitoneal (IP) route and compared virus loads at early and late time points after infection. No signs of disease and no viral RNA were detected after IN infection regardless of LLOV dose. In contrast, IP infections resulted in increased viral loads in the high-dose LLOV and BOMV groups at the early time point. The low-dose LLOV and BOMV groups achieved higher viral loads at the late time point. However, there was 100% survival in all groups and no signs of disease. In conclusion, our results indicate a limited value of the IFNAR-/- mouse model for investigation of the pathogenicity of LLOV and BOMV.


Ebolavirus , Interferon Type I , Animals , Mice , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Virulence , Ebolavirus/genetics , Immunity, Innate
20.
Nat Commun ; 14(1): 2007, 2023 04 10.
Article En | MEDLINE | ID: mdl-37037810

Viral tropism within the brain and the role(s) of vertebrate immune response to neurotropic flaviviruses infection is largely understudied. We combine multimodal imaging (cm-nm scale) with single nuclei RNA-sequencing to study Langat virus in wildtype and interferon alpha/beta receptor knockout (Ifnar-/-) mice to visualize viral pathogenesis and define molecular mechanisms. Whole brain viral infection is imaged by Optical Projection Tomography coregistered to ex vivo MRI. Infection is limited to grey matter of sensory systems in wildtype mice, but extends into white matter, meninges and choroid plexus in Ifnar-/- mice. Cells in wildtype display strong type I and II IFN responses, likely due to Ifnb expressing astrocytes, infiltration of macrophages and Ifng-expressing CD8+ NK cells, whereas in Ifnar-/-, the absence of this response contributes to a shift in cellular tropism towards non-activated resident microglia. Multimodal imaging-transcriptomics exemplifies a powerful way to characterize mechanisms of viral pathogenesis and tropism.


Encephalitis Viruses, Tick-Borne , Interferon Type I , Ticks , Mice , Animals , Interferon Type I/metabolism , Neurons/metabolism , Mice, Knockout , Brain/diagnostic imaging , Brain/metabolism , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Tropism , Ticks/metabolism , Mice, Inbred C57BL
...