Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34.418
1.
Arch Dermatol Res ; 316(5): 162, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734848

Psoriasis is a chronic, immune-mediated, hyperproliferative skin disease. Etiopathogenesis of psoriasis is not well understood. Plexin B2 was found to have effects on CD100-mediated T-cell morphology and expressed in the immune system. It may play a role in the pathogenesis of psoriasis. To assess the tissue level of plexin-B2 and plexin B2 related gene polymorphism which is signal regulatory protein gamma (SIRPγ-rs71212732) in psoriatic patients before and after NB-UVB, acitretin therapy alone or in combination and to detect correlation between level of tissue plexin B2 and disease severity and improvement. This single blinded randomized controlled trial was carried on 50 psoriatic patients and 50 healthy controls. Psoriasis Area and Severity Index score (PASI) was used to evaluate the disease severity. Tissue plexin-b2 level was measured using ELISA and SIRPγ-rs71212732 (T\C) was assessed using TaqMan™ assays and real-time PCR. A significant lower tissue plexin-B2 level was observed in control group (2.9 ± 0.6 pg/g) than cases (25.8 ± 2.8, pg/g) (p < 0.001). Also, a significantly higher tissue plexin-B2 level was observed in sever psoriasis (32.7 ± 3.8 pg/ml) in than moderate psoriasis (13.6 ± 2.1 pg/ml, p = 0.001). Tissue plexin B2 was positively correlated with diseases severity. Significantly higher (TC& TT) genotypes and mutant (C) allele among patients compared to the controls, p < 0.001 for all. Tissue plexin-b2 level was high in psoriasis vulgaris with positive correlation with disease severity and decreased after treatment. This may indicate a role of plexin-b2 in psoriasis vulgaris pathogenesis.


Acitretin , Nerve Tissue Proteins , Psoriasis , Severity of Illness Index , Humans , Psoriasis/genetics , Psoriasis/drug therapy , Psoriasis/diagnosis , Male , Female , Adult , Nerve Tissue Proteins/genetics , Middle Aged , Acitretin/therapeutic use , Acitretin/administration & dosage , Ultraviolet Therapy/methods , Single-Blind Method , Polymorphism, Single Nucleotide , Young Adult , Skin/pathology , Skin/metabolism , Skin/drug effects , Receptors, Immunologic/genetics , Treatment Outcome , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Keratolytic Agents/therapeutic use , Keratolytic Agents/administration & dosage , Combined Modality Therapy
2.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732232

C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.


Aeromonas hydrophila , Bass , Cell Adhesion Molecules , Lectins, C-Type , Receptors, Cell Surface , Signal Transduction , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Aeromonas hydrophila/immunology , Bass/immunology , Bass/metabolism , Bass/microbiology , Bass/genetics , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/metabolism , Immunity, Innate , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/metabolism , Gram-Negative Bacterial Infections/microbiology , Fish Proteins/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology
3.
Breast Cancer Res ; 26(1): 75, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720366

BACKGROUND: Tumor-associated macrophages (TAMs) are a prominent immune subpopulation in the tumor microenvironment that could potentially serve as therapeutic targets for breast cancer. Thus, it is important to characterize this cell population across different tumor subtypes including patterns of association with demographic and prognostic factors, and breast cancer outcomes. METHODS: We investigated CD163+ macrophages in relation to clinicopathologic variables and breast cancer outcomes in the Women's Circle of Health Study and Women's Circle of Health Follow-up Study populations of predominantly Black women with breast cancer. We evaluated 611 invasive breast tumor samples (507 from Black women, 104 from White women) with immunohistochemical staining of tissue microarray slides followed by digital image analysis. Multivariable Cox proportional hazards models were used to estimate hazard ratios for overall survival (OS) and breast cancer-specific survival (BCSS) for 546 cases with available survival data (median follow-up time 9.68 years (IQR: 7.43-12.33). RESULTS: Women with triple-negative breast cancer showed significantly improved OS in relation to increased levels of tumor-infiltrating CD163+ macrophages in age-adjusted (Q3 vs. Q1: HR = 0.36; 95% CI 0.16-0.83) and fully adjusted models (Q3 vs. Q1: HR = 0.30; 95% CI 0.12-0.73). A similar, but non-statistically significant, association was observed for BCSS. Macrophage infiltration in luminal and HER2+ tumors was not associated with OS or BCSS. In a multivariate regression model that adjusted for age, subtype, grade, and tumor size, there was no significant difference in CD163+ macrophage density between Black and White women (RR = 0.88; 95% CI 0.71-1.10). CONCLUSIONS: In contrast to previous studies, we observed that higher densities of CD163+ macrophages are independently associated with improved OS and BCSS in women with invasive triple-negative breast cancer. Trial registration Not applicable.


Antigens, CD , Antigens, Differentiation, Myelomonocytic , Receptors, Cell Surface , Triple Negative Breast Neoplasms , Tumor Microenvironment , Humans , Female , Tumor Microenvironment/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Middle Aged , Receptors, Cell Surface/metabolism , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Follow-Up Studies , Prognosis , Adult , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Aged , Biomarkers, Tumor/metabolism , Proportional Hazards Models
4.
Invest Ophthalmol Vis Sci ; 65(5): 8, 2024 May 01.
Article En | MEDLINE | ID: mdl-38700874

Purpose: In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods: Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results: Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions: ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.


Cell Proliferation , Endoplasmic Reticulum Stress , Epithelium, Corneal , Nerve Regeneration , Receptors, Immunologic , Roundabout Proteins , Signal Transduction , Wound Healing , Animals , Humans , Mice , Blotting, Western , Cell Movement/physiology , Cells, Cultured , Endoplasmic Reticulum Stress/physiology , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/metabolism , Limbus Corneae/cytology , Nerve Regeneration/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/physiology , Wound Healing/physiology
5.
Development ; 151(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38738602

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Drosophila Proteins , Morphogenesis , Nerve Tissue Proteins , Neuropil , Optic Lobe, Nonmammalian , Receptors, Cell Surface , Semaphorins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Semaphorins/metabolism , Semaphorins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Morphogenesis/genetics , Neuropil/metabolism , Optic Lobe, Nonmammalian/metabolism , Optic Lobe, Nonmammalian/embryology , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Neurons/metabolism , Drosophila/metabolism , Drosophila/embryology , Mutation/genetics
6.
J Gen Virol ; 105(5)2024 May.
Article En | MEDLINE | ID: mdl-38776134

Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.


Polysaccharides , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/metabolism , Porcine respiratory and reproductive syndrome virus/genetics , Glycosylation , Animals , Swine , Polysaccharides/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Cell Line , Receptors, Cell Surface/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Viral Envelope/metabolism
7.
Malar J ; 23(1): 151, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755636

BACKGROUND: Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood. METHODS: To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites. RESULTS: A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes. CONCLUSION: Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.


Hepatocytes , Plasmodium falciparum , Protozoan Proteins , Sporozoites , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Hepatocytes/parasitology , Humans , Sporozoites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Host-Pathogen Interactions , Membrane Proteins/genetics , Membrane Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Host-Parasite Interactions , Protein Binding
8.
Arch Insect Biochem Physiol ; 116(1): e22120, 2024 May.
Article En | MEDLINE | ID: mdl-38739744

The vitellogenin receptor (VgR) is essential for the uptake and transport of the yolk precursor, vitellogenin (Vg). Vg is synthesized in the fat body, released in the hemolymph, and absorbed in the ovaries, via receptor-mediated endocytosis. Besides its important role in the reproductive pathway, Vg occurs in nonreproductive worker honey bee, suggesting its participation in other pathways. The objective was to verify if the VgR occurs in the hypopharyngeal glands of Apis mellifera workers and how Vg is internalized by these cells. VgR occurrence in the hypopharyngeal glands was evaluated by qPCR analyses of VgR and immunohistochemistry in workers with different tasks. The VgR gene is expressed in the hypopharyngeal glands of workers with higher transcript levels in nurse honey bees. VgR is more expressed in 11-day-old workers from queenright colonies, compared to orphan ones. Nurse workers with developed hypopharyngeal glands present higher VgR transcripts than those with poorly developed glands. The immunohistochemistry results showed the co-localization of Vg, VgR and clathrin (protein that plays a major role in the formation of coated vesicles in endocytosis) in the hypopharyngeal glands, suggesting receptor-mediated endocytosis. The results demonstrate that VgR performs the transport of Vg to the hypopharyngeal glands, supporting the Ovary Ground Plan Hypothesis and contributing to the understanding of the role of this gland in the social context of honey bees.


Egg Proteins , Hypopharynx , Insect Proteins , Receptors, Cell Surface , Animals , Bees/metabolism , Bees/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Egg Proteins/metabolism , Egg Proteins/genetics , Hypopharynx/metabolism , Female , Vitellogenins/metabolism , Vitellogenins/genetics , Clathrin/metabolism
9.
Med Oncol ; 41(6): 150, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740647

The impact of tumor microenvironment (TME) in influencing clinical response to first-line immune checkpoint inhibitor (ICI)-based treatment in advanced renal cell carcinoma (RCC) is unclear. Immunohistochemistry (IHC) could identify biomarkers related to immune checkpoints and immune cell population. This study retrospectively characterized TME from 28 RCC patients who received first line ICI-based therapy through IHC assessment of selected markers and explored preliminary evidence about their possible correlation with treatment efficacy. We found a significantly higher count of CD80+, CD163+ cells and their ratio in RCC with clear cell component compared to those without clear cell features; additionally, patients with metastatic disease at diagnosis were associated with higher expression of CD163+ cells, while higher count of CD4+ cells and CD4+/CD8+ ratio were found in RCC with sarcomatoid features. Patients achieving partial or complete response were associated with lower expression of CD163+ cells (median 28 vs 47; p = 0.049). Furthermore, lower expression of CD163+ was associated with better PFS (median PFS 20.0 vs 4.7 months; HR 0.22 p = 0.011) and OS (median OS NR vs 14.4 months; HR 0.28 p = 0.036). A longer OS was reported in PD-L1 CPS negative patients (median OS NR vs 11.8 months; HR 0.20 p = 0.024). High infiltration of CD163+ macrophages, who typically present "anti-inflammatory" M2-like phenotype, could identify a subgroup of patients with poor survival after receiving first-line ICI.


Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Tumor Microenvironment/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/immunology , Kidney Neoplasms/metabolism , Male , Female , Middle Aged , Aged , Retrospective Studies , Immune Checkpoint Inhibitors/therapeutic use , Adult , Immunotherapy/methods , Receptors, Cell Surface/metabolism , Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Aged, 80 and over , Treatment Outcome , Antigens, Differentiation, Myelomonocytic/metabolism
10.
Commun Biol ; 7(1): 599, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762541

Accumulating evidence suggests that endothelial cells can be useful therapeutic targets. One of the potential targets is an endothelial cell-specific protein, Roundabout4 (ROBO4). ROBO4 has been shown to ameliorate multiple diseases in mice, including infectious diseases and sepsis. However, its mechanisms are not fully understood. In this study, using RNA-seq analysis, we found that ROBO4 downregulates prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes cyclooxygenase-2. Mechanistic analysis reveals that ROBO4 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1) and TNF receptor-associated factor 7 (TRAF7), a ubiquitin E3 ligase. In this complex, ROBO4 enhances IQGAP1 ubiquitination through TRAF7, inhibits prolonged RAC1 activation, and decreases PTGS2 expression in inflammatory endothelial cells. In addition, Robo4-deficiency in mice exacerbates PTGS2-associated inflammatory diseases, including arthritis, edema, and pain. Thus, we reveal the molecular mechanism by which ROBO4 suppresses the inflammatory response and vascular hyperpermeability, highlighting its potential as a promising therapeutic target for inflammatory diseases.


Cyclooxygenase 2 , Inflammation , Receptors, Cell Surface , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Animals , Mice , Inflammation/metabolism , Inflammation/genetics , Humans , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mice, Knockout , Mice, Inbred C57BL , Male , Endothelial Cells/metabolism , Roundabout Proteins
11.
Front Immunol ; 15: 1380629, 2024.
Article En | MEDLINE | ID: mdl-38745664

Introduction: Postpartum preeclampsia (PPPE) is an under-diagnosed condition, developing within 48 hours to 6 weeks following an uncomplicated pregnancy. The etiology of PPPE is still unknown, leaving patients vulnerable and making the identification and treatment of patients requiring postpartum care an unmet need. We aimed to understand the immune contribution to PPPE at the time of diagnosis, as well as uncover the predictive potential of perinatal biomarkers for the early postnatal identification of high-risk patients. Methods: Placentas were collected at delivery from uncomplicated pregnancies (CTL) and PPPE patients for immunohistochemistry analysis. In this initial study, blood samples in PPPE patients were collected at the time of PPPE diagnosis (48h-25 days postpartum; mean 7.4 days) and compared to CTL blood samples taken 24h after delivery. Single-cell transcriptomics, flow cytometry, intracellular cytokine staining, and the circulating levels of inflammatory mediators were evaluated in the blood. Results: Placental CD163+ cells and 1st trimester blood pressures can be valuable non-invasive and predictive biomarkers of PPPE with strong clinical application prospects. Furthermore, changes in immune cell populations, as well as cytokine production by CD14+, CD4+, and CD8+ cells, suggested a dampened response with an exhausted phenotype including decreased IL1ß, IL12, and IFNγ as well as elevated IL10. Discussion: Understanding maternal immune changes at the time of diagnosis and prenatally within the placenta in our sizable cohort will serve as groundwork for pre-clinical and clinical research, as well as guiding clinical practice for example in the development of immune-targeted therapies, and early postnatal identification of patients who would benefit from more thorough follow-ups and risk education in the weeks following an uncomplicated pregnancy.


Biomarkers , Placenta , Postpartum Period , Pre-Eclampsia , Female , Humans , Pregnancy , Pre-Eclampsia/immunology , Pre-Eclampsia/diagnosis , Pre-Eclampsia/blood , Biomarkers/blood , Adult , Placenta/immunology , Placenta/metabolism , Postpartum Period/immunology , Cytokines/blood , Cytokines/metabolism , Antigens, CD , Receptors, Cell Surface/metabolism
12.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38569016

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Alzheimer Disease , Microglia , Humans , Mice , Animals , Microglia/metabolism , Antibodies/metabolism , Receptors, Cell Surface/metabolism , Amyloid/metabolism , Disease Models, Animal , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apolipoproteins E , Leukocytes/metabolism , Mice, Transgenic , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
13.
Cells ; 13(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38607073

Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.


Glioblastoma , Renin-Angiotensin System , Humans , Renin-Angiotensin System/genetics , Up-Regulation/genetics , Glioblastoma/genetics , Tumor Microenvironment , Receptors, Cell Surface/metabolism , Prorenin Receptor
14.
Ann Clin Transl Neurol ; 11(5): 1267-1279, 2024 May.
Article En | MEDLINE | ID: mdl-38651547

OBJECTIVE: The pathological features of immune-mediated necrotizing myopathy (IMNM) are dominated by the infiltration of macrophages. We aimed to perform a histopathologic semiquantitative analysis to investigate the relationship between macrophage markers and prognosis. METHODS: Semiquantitative analysis of histologic features was performed in 62 samples of IMNM. Independent risk factors were identified through univariate and multivariate regression analysis. Cluster analysis was performed using the partitioning around the medoids (PAM) method. Decision tree modeling was utilized to efficiently determine cluster labels for IMNM patients. The validity of the developmental cohort was assessed by accuracy in comparison with the validation cohort. RESULTS: The most enriched groups in patients with IMNM were macrophages expressing CD206 and CD163. In the multivariate logistic regression model, the high density of CD163+ macrophages in perimysial connective tissue increased the risk of unfavorable prognosis (p = 0.025, OR = 1.463, 95% CI: 1.049-2.041). In cluster analysis, patients in Cluster 1, with lower CD163+ macrophage density and inflammatory burden, had a more favorable prognosis. Conversely, patients in Cluster 3, which were enriched for CD163+ macrophages in the perimysial connective tissue, had the most severe clinical features and the worst prognosis. Correlations were found between the density of CD163+ macrophages in connective tissue and symptom duration (R2 = 0.166, p < 0.001), dysphagia (p = 0.004), cardiac involvement (p = 0.021), CK (R2 = 0.067, p = 0.042), CRP (R2 = 0.117, p < 0.001), and ESR (R2 = 0.171, p < 0.001). CONCLUSION: The density of CD163+ macrophages in perimysial connective tissue may serve as a potential marker for the prediction of IMNM prognosis.


Antigens, CD , Antigens, Differentiation, Myelomonocytic , Macrophages , Receptors, Cell Surface , Humans , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Male , Macrophages/pathology , Macrophages/immunology , Female , Receptors, Cell Surface/metabolism , Prognosis , Middle Aged , Adult , Connective Tissue/pathology , Connective Tissue/immunology , Aged , Myositis/pathology , Myositis/immunology
15.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38673902

Lectin-like transcript-1 (LLT1) expression is detected in different cancer types and is involved in immune evasion. The present study investigates the clinical relevance of tumoral and stromal LLT1 expression in oral squamous cell carcinoma (OSCC), and relationships with the immune infiltrate into the tumor immune microenvironment (TIME). Immunohistochemical analysis of LLT1 expression was performed in 124 OSCC specimens, together with PD-L1 expression and the infiltration of CD20+, CD4+, and CD8+ lymphocytes and CD68+ and CD163+-macrophages. Associations with clinicopathological variables, prognosis, and immune cell densities were further assessed. A total of 41 (33%) OSCC samples showed positive LLT1 staining in tumor cells and 55 (44%) positive LLT1 in tumor-infiltrating lymphocytes (TILs). Patients harboring tumor-intrinsic LLT1 expression exhibited poorer survival, suggesting an immunosuppressive role. Conversely, positive LLT1 expression in TILs was significantly associated with better disease-specific survival, and also an immune-active tumor microenvironment highly infiltrated by CD8+ T cells and M1/M2 macrophages. Furthermore, the combination of tumoral and stromal LLT1 was found to distinguish three prognostic categories (favorable, intermediate, and adverse; p = 0.029, Log-rank test). Together, these data demonstrate the prognostic relevance of tumoral and stromal LLT1 expression in OSCC, and its potential application to improve prognosis prediction and patient stratification.


Lectins, C-Type , Receptors, Cell Surface , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Adult , Female , Humans , Male , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophages/metabolism , Macrophages/immunology , Mouth Neoplasms/pathology , Mouth Neoplasms/immunology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/mortality , Prognosis , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/immunology
16.
BMC Pediatr ; 24(1): 285, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678170

BACKGROUND: Kawasaki disease (KD) is a pediatric systemic vasculitis characterized by endothelial cell dysfunction. Semaphorin 7A (Sema7A) has been reported to regulate endothelial phenotypes associated with cardiovascular diseases, while its role in KD remains unknown. This study aims to investigate the effect of Sema7A on endothelial permeability and inflammatory response in KD conditions. METHODS: Blood samples were collected from 68 KD patients and 25 healthy children (HC). The levels of Sema7A and A Disintegrin and Metalloprotease 17 (ADAM17) in serum were measured by enzyme-linked immunosorbent assay (ELISA), and Sema7A expression in blood cells was analyzed by flow cytometry. Ex vivo monocytes were used for Sema7A shedding assays. In vitro human coronary artery endothelial cells (HCAECs) were cultured in KD sera and stimulated with Sema7A, and TNF-α, IL-1ß, IL-6, and IL-18 of HCAECs were measured by ELISA and qRT-PCR. HCAECs monolayer permeability was measured by FITC-dextran. RESULTS: The serum level of Sema7A was significantly higher in KD patients than in HC and correlated with disease severity. Monocytes were identified as one of the source of elevated serum Sema7A, which implicates a process of ADAM17-dependent shedding. Sera from KD patients induced upregulation of plexin C1 and integrin ß1 in HCAECs compared to sera from HC. Sema7A mediated the proinflammatory cytokine production of HCAECs in an integrin ß1-dependent manner, while both plexin C1 and integrin ß1 contributed to Sema7A-induced HCAEC hyperpermeability. CONCLUSIONS: Sema7A is involved in the progression of KD vasculitis by promoting endothelial permeability and inflammation through a plexin C1 and integrin ß1-dependent pathway. Sema7A may serve as a potential biomarker and therapeutic target in the prognosis and treatment of KD.


Antigens, CD , Integrin beta1 , Mucocutaneous Lymph Node Syndrome , Receptors, Cell Surface , Semaphorins , Child , Child, Preschool , Female , Humans , Infant , Male , ADAM17 Protein/metabolism , Antigens, CD/metabolism , Capillary Permeability , Case-Control Studies , Cells, Cultured , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , GPI-Linked Proteins , Inflammation/metabolism , Integrin beta1/metabolism , Monocytes/metabolism , Mucocutaneous Lymph Node Syndrome/metabolism , Mucocutaneous Lymph Node Syndrome/blood , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/blood , Semaphorins/metabolism , Semaphorins/blood
17.
Sci Rep ; 14(1): 9321, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653789

ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.


Alopecia , Anodontia , Cellular Senescence , Fibroblasts , Growth Disorders , Microfilament Proteins , Humans , Fibroblasts/metabolism , Cellular Senescence/genetics , Alopecia/metabolism , Alopecia/pathology , Alopecia/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/deficiency , Optic Atrophies, Hereditary/genetics , Optic Atrophies, Hereditary/metabolism , Actins/metabolism , Progeria/genetics , Progeria/pathology , Progeria/metabolism
18.
Free Radic Res ; 58(4): 261-275, 2024.
Article En | MEDLINE | ID: mdl-38599240

Iron is essential for all the lives and mitochondria integrate iron into heme and Fe-S clusters for diverse use as cofactors. Here, we screened mitochondrial proteins in KU812 human chronic myelogenous leukemia cells by glutathione S-transferase pulldown assay with PCBP2 to identify mitochondrial receptors for PCBP2, a major cytosolic Fe(II) chaperone. LC-MS analyses identified TOM20, sideroflexin-3 (SFXN3), SFXN1 and TOM70 in the affinity-score sequence. Stimulated emission depletion microscopy and proteinase-K digestion of mitochondria in HeLa cells revealed that TOM20 is located in the outer membrane of mitochondria whereas SFXN3 is located in the inner membrane. Although direct association was not observed between PCBP2 and SFXN3 with co-immunoprecipitation, proximity ligation assay demonstrated proximal localization of PCBP2 with TOM20 and there was a direct binding between TOM20 and SFXN3. Single knockdown either of PCBP2 and SFXN3 in K562 leukemia cells significantly decreased mitochondrial catalytic Fe(II) and mitochondrial maximal respiration. SFXN3 but not MFRN1 knockout (KO) in mouse embryonic fibroblasts decreased FBXL5 and heme oxygenase-1 (HO-1) but increased transferrin uptake and induced ferritin, indicating that mitochondrial iron entry through SFXN3 is distinct. MFRN1 KO revealed more intense mitochondrial Fe(II) deficiency than SFXN3 KO. Insufficient mitochondrial heme synthesis was evident under iron overload both with SFXN3 and MFRN KO, which was partially reversed by HO-1 inhibitor. Conversely, SFXN3 overexpression caused cytosolic iron deficiency with mitochondrial excess Fe(II), which further sensitized HeLa cells to RSL3-induced ferroptosis. In conclusion, we discovered a novel pathway of iron entry into mitochondria from cytosol through PCBP2-TOM20-SFXN3 axis.


Iron , Mitochondria , RNA-Binding Proteins , Humans , Mitochondria/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Iron/metabolism , Animals , Receptors, Cell Surface/metabolism , Mice , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , HeLa Cells , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics
19.
Viruses ; 16(4)2024 03 24.
Article En | MEDLINE | ID: mdl-38675840

The ability of recombinant, SARS-CoV-2 Spike (S) protein to modulate the production of two COVID-19 relevant, pro-inflammatory cytokines (IL-6 and IFN-γ) in PBMC cultures of healthy, pre-COVID-19 subjects was investigated. We observed that cytokine production was largely and diversely modulated by the S protein depending on antigen or mitogen stimulation, as well as on the protein source, insect (S-in) or human (S-hu) cells. While both proteins co-stimulated cytokine production by polyclonally CD3-activated T cells, PBMC activation by the mitogenic lectin Concanavalin A (Con A) was up-modulated by S-hu protein and down-modulated by S-in protein. These modulatory effects were likely mediated by the S glycans, as demonstrated by direct Con A-S binding experiments and use of yeast mannan as Con A binder. While being ineffective in modulating memory antigenic T cell responses, the S proteins and mannan were able to induce IL-6 production in unstimulated PBMC cultures and upregulate the expression of the mannose receptor (CD206), a marker of anti-inflammatory M2 macrophage. Our data point to a relevant role of N-glycans, particularly N-mannosidic chains, decorating the S protein in the immunomodulatory effects here reported. These novel biological activities of the S glycan ectodomain may add to the comprehension of COVID-19 pathology and immunity to SARS-CoV-2.


COVID-19 , Interleukin-6 , Lectins, C-Type , Leukocytes, Mononuclear , Mannose Receptor , Mannose-Binding Lectins , Receptors, Cell Surface , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Mannose-Binding Lectins/metabolism , Interleukin-6/metabolism , Cytokines/metabolism , Interferon-gamma/metabolism , Cells, Cultured , Polysaccharides/metabolism , Healthy Volunteers , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation , Concanavalin A/metabolism
20.
Asian Pac J Cancer Prev ; 25(4): 1357-1362, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38679997

OBJECTIVE: The aim of this study is to examine the M1 and M2 macrophages distribution in the rat's colon of DMH-induced inflammation associated colorectal cancer. METHODS: Colon tissue of three groups of 4 rats that induced using 1,2 dimethylhydrazine (DMH) at 30 mg/kg bw every week for 9, 11, and 13 weeks were used. The M1 and M2 distribution was examined by using antibody anti iNOS for M1 and anti-CD163 for M2 with immunohistochemistry method. The data was presents in figure and table in the form of percentage. RESULT: M1 macrophage was found in all groups in the low distribution level (25% - 50%), while M2 macrophage was observed in all groups with 100% distribution. In the longer period of DMH induction, M2 macrophages was distributed more abundant. CONCLUSION: All of the rat's colon showing chronic inflammation that led to the tumorigenesis.


1,2-Dimethylhydrazine , Colon , Colorectal Neoplasms , Inflammation , Macrophages , Animals , Rats , Colorectal Neoplasms/pathology , Colorectal Neoplasms/chemically induced , Macrophages/pathology , Macrophages/metabolism , Inflammation/chemically induced , Inflammation/pathology , Colon/pathology , Colon/metabolism , Male , Nitric Oxide Synthase Type II/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Carcinogens/toxicity , Receptors, Cell Surface/metabolism
...