Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.891
1.
Proc Natl Acad Sci U S A ; 121(21): e2319595121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739786

As a global problem, fine particulate matter (PM2.5) really needs local fixes. Considering the increasing epidemiological relevance to anxiety and depression but inconsistent toxicological results, the most important question is to clarify whether and how PM2.5 causally contributes to these mental disorders and which components are the most dangerous for crucial mitigation in a particular place. In the present study, we chronically subjected male mice to a real-world PM2.5 exposure system throughout the winter heating period in a coal combustion area and revealed that PM2.5 caused anxiety and depression-like behaviors in adults such as restricted activity, diminished exploratory interest, enhanced repetitive stereotypy, and elevated acquired immobility, through behavioral tests including open field, elevated plus maze, marble-burying, and forced swimming tests. Importantly, we found that dopamine signaling was perturbed using mRNA transcriptional profile and bioinformatics analysis, with Drd1 as a potential target. Subsequently, we developed the Drd1 expression-directed multifraction isolating and nontarget identifying framework and identified a total of 209 compounds in PM2.5 organic extracts capable of reducing Drd1 expression. Furthermore, by applying hierarchical characteristic fragment analysis and molecular docking and dynamics simulation, we clarified that phenyl-containing compounds competitively bound to DRD1 and interfered with dopamine signaling, thereby contributing to mental disorders. Taken together, this work provides experimental evidence for researchers and clinicians to identify hazardous factors in PM2.5 and prevent adverse health outcomes and for local governments and municipalities to control source emissions for diminishing specific disease burdens.


Anxiety , Depression , Particulate Matter , Receptors, Dopamine D1 , Animals , Particulate Matter/toxicity , Mice , Male , Anxiety/metabolism , Depression/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/genetics , Air Pollutants/toxicity , Behavior, Animal/drug effects , Molecular Docking Simulation
2.
Addict Biol ; 29(5): e13397, 2024 May.
Article En | MEDLINE | ID: mdl-38711205

Neuronal ensembles in the medial prefrontal cortex mediate cocaine self-administration via projections to the nucleus accumbens. We have recently shown that neuronal ensembles in the prelimbic cortex form rapidly to mediate cocaine self-administration. However, the role of neuronal ensembles within the nucleus accumbens in initial cocaine-seeking behaviour remains unknown. Here, we sought to expand the current literature by testing the necessity of the cocaine self-administration ensemble in the nucleus accumbens core (NAcCore) 1 day after male and female rats acquire cocaine self-administration by using the Daun02 inactivation procedure. We found that disrupting the NAcCore ensembles after a no-cocaine reward-seeking test increased subsequent cocaine seeking, while disrupting NAcCore ensembles following a cocaine self-administration session decreased subsequent cocaine seeking. We then characterized neuronal cell type in the NAcCore using RNAscope in situ hybridization. In the no-cocaine session, we saw reduced dopamine D1 type neuronal activation, while in the cocaine self-administration session, we found preferential dopamine D1 type neuronal activity in the NAcCore.


Cocaine , Drug-Seeking Behavior , Neurons , Nucleus Accumbens , Self Administration , Animals , Nucleus Accumbens/drug effects , Cocaine/pharmacology , Male , Female , Rats , Drug-Seeking Behavior/drug effects , Neurons/drug effects , Reward , Dopamine Uptake Inhibitors/pharmacology , Reinforcement, Psychology , Receptors, Dopamine D1 , Cocaine-Related Disorders/physiopathology , Rats, Sprague-Dawley , Prefrontal Cortex/drug effects
3.
Psychopharmacology (Berl) ; 241(6): 1111-1124, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702473

RATIONALE: Evidence on the effect of dopamine D1-like and D2-like receptor antagonists on licking microstructure and the forced swimming response led us to suggest that (i) dopamine on D1-like receptors plays a role in activating reward-directed responses and (ii) the level of response activation is reboosted based on a process of evaluation of response efficacy requiring dopamine on D2-like receptors. A main piece of evidence in support of this hypothesis is the observation that the dopamine D2-like receptor antagonist raclopride induces a within-session decrement of burst number occurring after the contact with the reward. The few published studies with a detailed analysis of the time-course of this measure were conducted in our laboratory. OBJECTIVES: The aim of this review is to recapitulate and discuss the evidence in support of the analysis of the within-session burst number as a behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and its relevance in the analysis of drug effects on ingestion. CONCLUSIONS: The evidence gathered so far suggests that the analysis of the within-session time-course of burst number provides an important behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and might provide decisive evidence in the analysis of the effects of drugs on ingestion. However, further evidence from independent sources is necessary to validate the use and the proposed interpretation of this measure.


Dopamine , Receptors, Dopamine D1 , Receptors, Dopamine D2 , Dopamine/metabolism , Animals , Humans , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/drug effects , Time Factors , Dopamine Antagonists/pharmacology , Reward , Eating/drug effects , Eating/physiology , Drinking Behavior/drug effects , Drinking Behavior/physiology , Dopamine D2 Receptor Antagonists/pharmacology , Dopamine D2 Receptor Antagonists/administration & dosage
4.
Eur J Neurosci ; 59(10): 2535-2548, 2024 May.
Article En | MEDLINE | ID: mdl-38720367

The maturation of forebrain dopamine circuitry occurs over multiple developmental periods, extending from early postnatal life until adulthood, with the precise timing of maturation defined by the target region. We recently demonstrated in the adult mouse brain that axon terminals arising from midbrain dopamine neurons innervate the anterior corpus callosum and that oligodendrocyte lineage cells in this white matter tract express dopamine receptor transcripts. Whether corpus callosal dopamine circuitry undergoes maturational changes between early adolescence and adulthood is unknown but may be relevant to understanding the dramatic micro- and macro-anatomical changes that occur in the corpus callosum of multiple species during early adolescence, including in the degree of myelination. Using quantitative neuroanatomy, we show that dopamine innervation in the forceps minor, but not the rostral genu, of the corpus callosum, is greater during early adolescence (P21) compared to adulthood (>P90) in wild-type mice. We further demonstrate with RNAscope that, as in the adult, Drd1 and Drd2 transcripts are expressed at higher levels in oligodendrocyte precursor cells (OPCs) and decline as these cells differentiate into oligodendrocytes. In addition, the number of OPCs that express Drd1 transcripts during early adolescence is double the number of those expressing the transcript during early adulthood. These data further implicate dopamine in axon myelination and myelin regulation. Moreover, because developmental (activity-independent) myelination peaks during early adolescence, with experience-dependent (activity-dependent) myelination greatest during early adulthood, our data suggest that potential roles of dopamine on callosal myelination shift between early adolescence and adulthood, from a developmental role to an experience-dependent role.


Corpus Callosum , Mice, Inbred C57BL , Receptors, Dopamine D1 , Receptors, Dopamine D2 , Animals , Mice , Corpus Callosum/metabolism , Corpus Callosum/growth & development , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , Male , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Oligodendrocyte Precursor Cells/metabolism , Female
5.
Neuropharmacology ; 253: 109971, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38705568

The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.


Dopamine , Ethanol , Nucleus Accumbens , Oxytocin , Receptors, Dopamine D1 , Receptors, Oxytocin , Reward , Animals , Oxytocin/metabolism , Oxytocin/analogs & derivatives , Male , Ethanol/pharmacology , Ethanol/administration & dosage , Mice , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Dopamine/metabolism , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Environment , Hypothalamus/metabolism , Hypothalamus/drug effects , Central Nervous System Depressants/pharmacology , Social Dominance , Social Behavior , Motivation/physiology , Motivation/drug effects
6.
Neurosci Lett ; 832: 137805, 2024 May 29.
Article En | MEDLINE | ID: mdl-38705453

BACKGROUND CONTEXT: The medial prefrontal cortex (mPFC) has been implicated in modulating anxiety and depression. Manipulation of Drd1 neurons in the mPFC resulted in variable neuronal activity and, consequently, strikingly different behaviors. The acute regulation of anxiety- and depression-like behaviors by Drd1 neurons, a major neuronal subtype in the mPFC, has not yet been investigated. PURPOSE: The purpose of this study was to investigate whether acute manipulation of Drd1 neurons in the mPFC affects anxiety- and depression-like behaviors. STUDY DESIGN: Male Drd1-Cre mice were injected with an adeno-associated virus (AAV) expressing hM3DGq or hM4DGi. Clozapine-n-oxide (CNO, 1 mg/kg, i.p.) was injected 30 min before the behavioral tests. METHODS: Male Drd1-Cre mice were injected with AAV-Ef1α-DIO-hM4DGi-mCherry-WPRE-pA, AAV-Ef1α-DIO-hM3DGq-mCherry-WPRE-pA or AAV-Ef1α-DIO-mCherry-WPRE-pA. Three weeks later, whole-cell recordings after CNO (5 µM) were applied to the bath were used to validate the functional expression of hM4DGi and hM3DGq. Four groups of mice underwent all the behavioral tests, and after each of the tests, the mice were allowed to rest for 3-4 days. CNO (1 mg/kg) was injected intraperitoneally 30 min before the behavior test. Anxiety-like behaviors were evaluated by the open field test (OFT), the elevated plus maze test (EPMT), and the novelty-suppressed feeding test (NSFT). Depression-like behaviors were evaluated by the sucrose preference test (SPT) and force swimming test (FST). For all experiments, coronal sections of the targeted brain area were used to confirm virus expression. RESULTS: Whole-cell recordings from brain slices demonstrated that infusions of CNO (5 µM) into mPFC slices dramatically increased the firing activity of hM3DGq-mCherry+ neurons and abolished the firing activity of hM4DGi-mCherry+ neurons. Acute chemogenetic activation of Drd1 neurons in the mPFC increased the time spent in the central area in the OFT, increased the time spent in the open arms in the EMPT, decreased the latency to bite the food in the NSFT, increased the sucrose preference in the SPT, and decreased the immobility time in the FST. Acute chemogenetic inhibition of Drd1 neurons in the mPFC decreased the time spent in the central area in the OFT, decreased the time spent in the open arms in the EMPT, increased the latency to bite the food in the NSFT, decreased the sucrose preference in the SPT, and increased the immobility time in the FST. CONCLUSIONS: The present study showed that acute activation of Drd1 neurons in the mPFC produced rapid anxiolytic- and antidepressant-like effects, and acute inhibition had the opposite effect, revealing that Drd1 neurons in the mPFC bidirectionally regulate anxiety- and depression-like behaviors. CLINICAL SIGNIFICANCE: The findings of the present study regarding the acute effects of stimulating Drd1 neurons in the mPFC on anxiety and depression suggest that Drd1 neurons in the mPFC are a focus for the treatment of anxiety disorders and depression.


Anxiety , Depression , Prefrontal Cortex , Receptors, Dopamine D1 , Animals , Prefrontal Cortex/metabolism , Receptors, Dopamine D1/metabolism , Male , Mice , Neurons/metabolism , Behavior, Animal/physiology , Clozapine/analogs & derivatives , Clozapine/pharmacology
8.
Behav Pharmacol ; 35(4): 193-200, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38567425

Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.


Benzazepines , Dopamine Agonists , Mice, Inbred C57BL , Nucleus Accumbens , Prefrontal Cortex , Prepulse Inhibition , Receptors, Dopamine D1 , Animals , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Dopamine Agonists/pharmacology , Mice , Benzazepines/pharmacology , Male , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/metabolism , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Reflex, Startle/drug effects , Sensory Gating/drug effects , Dopamine Antagonists/pharmacology
9.
Behav Neurosci ; 138(2): 85-93, 2024 Apr.
Article En | MEDLINE | ID: mdl-38661668

Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing representation in behavioral neuroscience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Time Perception , Female , Male , Animals , Time Perception/physiology , Time Perception/drug effects , Humans , Sex Characteristics , Dopamine/metabolism , Rats , Receptors, Dopamine D2/metabolism , Sulpiride/pharmacology , Quinpirole/pharmacology , Dopamine Agonists/pharmacology , Dopamine Agonists/administration & dosage , Dopamine Antagonists/pharmacology , Dopamine Antagonists/administration & dosage , Adult , Reaction Time/drug effects , Reaction Time/physiology , Benzazepines/pharmacology , Young Adult , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Memory, Short-Term/physiology , Memory, Short-Term/drug effects
10.
Dis Model Mech ; 17(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38616770

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Corpus Striatum , Disease Models, Animal , Dystonia , Interneurons , Parvalbumins , Proto-Oncogene Proteins c-fos , Receptors, Dopamine D2 , Animals , Interneurons/metabolism , Interneurons/drug effects , Parvalbumins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Dystonia/pathology , Dystonia/metabolism , Dystonia/physiopathology , Corpus Striatum/pathology , Corpus Striatum/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D1/metabolism , Cerebellum/pathology , Cerebellum/metabolism , Ouabain/pharmacology , Mice, Inbred C57BL , Mice , Male
11.
Proc Natl Acad Sci U S A ; 121(18): e2307090121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38648487

G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.


Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Humans , Mice , HEK293 Cells , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/metabolism , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-2/genetics , Receptor, Muscarinic M2/agonists , Receptor, Muscarinic M2/metabolism , Isoproterenol/pharmacology , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Morphine/pharmacology , Brain/metabolism , Brain/drug effects , Brain/diagnostic imaging , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Biosensing Techniques/methods
12.
Elife ; 122024 Mar 25.
Article En | MEDLINE | ID: mdl-38526916

The striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice. Healthy animals showed balanced limb phase-locking between D1 and D2 MSNs, while dopamine depletion led to stronger phase-locking in D2 MSNs. These findings indicate that striatal neurons represent gait on a single-limb and step basis, and suggest that elevated limb phase-locking of D2 MSNs may underlie some of the gait impairments associated with dopamine loss.


Dopamine , Receptors, Dopamine D1 , Mice , Animals , Receptors, Dopamine D1/metabolism , Corpus Striatum/physiology , Neostriatum/physiology , Gait , Mice, Transgenic
13.
Comput Biol Med ; 173: 108283, 2024 May.
Article En | MEDLINE | ID: mdl-38552278

Allosteric drugs hold the promise of addressing many challenges in the current drug development of GPCRs. However, the molecular mechanism underlying their allosteric modulations remain largely elusive. The dopamine D1 receptor (DRD1), a member of Class A GPCRs, is critical for treating psychiatric disorders, and LY3154207 serves as its promising positive allosteric modulator (PAM). In the work, we utilized extensive Gaussian-accelerated molecular dynamics simulations (a total of 41µs) for the first time probe the diverse binding modes of the allosteric modulator and their regulation effects, based on the DRD1 and LY3154207 as representative. Our simulations identify four binding modes of LY3154207 (one boat mode, two metastable vertical modes and a novel cleft-anchored mode), in which the boat mode is the most stable while there three modes are similar in the stability. However, it is interesting to observed that the most stable boat mode inversely exhibits the weakest positive allosteric effect on influencing the orthosteric ligand binding and maintaining the activity of the transducer binding site. It should result from its induced weaker correlation between the allosteric site and the orthosteric site, and between the orthosteric site and the transducer binding site than the other three binding modes, as well as its weakened interaction between a crucial activation-related residue (S2025.46) and the orthosteric ligand (dopamine). Overall, the work offers atomic-level information to advance our understanding of the complex allosteric regulation on GPCRs, which is beneficial to the allosteric modulator design and development.


Receptors, Dopamine D1 , Humans , Allosteric Regulation/physiology , Allosteric Site , Binding Sites , Ligands , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/metabolism
14.
Neuropharmacology ; 249: 109893, 2024 May 15.
Article En | MEDLINE | ID: mdl-38428482

Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.


Cannabidiol , Mice , Animals , Male , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Dopamine/pharmacology , Mice, Inbred C57BL , Receptors, Dopamine D2/metabolism , Nucleus Accumbens , Pain , Receptors, Dopamine D1/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Mice, Transgenic
15.
Nat Commun ; 15(1): 2543, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38514654

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.


Nucleus Accumbens , Receptors, Dopamine D2 , Mice , Male , Animals , Nucleus Accumbens/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Neurons/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Energy Metabolism
16.
J Neurosci ; 44(18)2024 May 01.
Article En | MEDLINE | ID: mdl-38485256

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Basal Forebrain , Cocaine , Neural Pathways , Reward , Animals , Mice , Basal Forebrain/physiology , Male , Cocaine/pharmacology , Cocaine/administration & dosage , Female , Neural Pathways/physiology , Mice, Inbred C57BL , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , Ventral Tegmental Area/physiology , Ventral Tegmental Area/cytology
17.
Arch Pharm Res ; 47(4): 360-376, 2024 Apr.
Article En | MEDLINE | ID: mdl-38551761

Novel psychoactive substances (NPSs) are new psychotropic drugs designed to evade substance regulatory policies. 25E-NBOMe (2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine) has recently been identified as an NPS, and its recreational misuse has been reported to be rapidly increasing. However, the psychopharmacological effects and mechanisms of 25E-NBOMe have not been studied. We examined the abuse potential of 25E-NBOMe using the conditioned place preference in male mice and self-administration paradigms in male rats. Additionally, immunoblot assay, enzyme-linked immunosorbent assay, and microdialysis were used to determine the molecular effects of 25E-NBOMe in the nucleus accumbens (NAc). Our data demonstrated that 25E-NBOMe induces conditioned place preference, and the dopaminergic signaling in the NAc mediates these. Following 25E-NBOMe administration, expression of dopamine transporter and dopamine D1 receptor (D1DR) were enhanced in the NAc of male mice, and NAc dopamine levels were reduced in both male mice and rats. Induction of intracellular dopaminergic pathways, DARPP32, and phosphorylation of CREB in the NAc of male mice was also observed. Significantly, pharmacological blockade of D1DR or chemogenetic inhibition of D1DR-expressing medium spiny neurons in the NAc attenuated 25E-NBOMe-induced conditioned place preference in male mice. We also examined the hallucinogenic properties of 25E-NBOMe using the head twitch response test in male mice and found that this behavior was mediated by serotonin 2A receptor activity. Our findings demonstrate that D1DR signaling may govern the addictive potential of 25E-NBOMe. Moreover, our study provides new insights into the potential mechanisms of substance use disorder and the improvement of controlled substance management.


Nucleus Accumbens , Psychotropic Drugs , Receptors, Dopamine D1 , Reward , Signal Transduction , Animals , Male , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D1/agonists , Mice , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Signal Transduction/drug effects , Rats , Psychotropic Drugs/pharmacology , Rats, Sprague-Dawley , Mice, Inbred C57BL , Phenethylamines/pharmacology , Self Administration , Dopamine/metabolism
18.
Behav Brain Res ; 463: 114914, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38368953

Previous studies have shown that various receptors, including dopamine receptors, are expressed in the hippocampal dentate gyrus (DG). Besides, indicatively, dopamine receptors play an essential role in the modulation of pain perception. On the other hand, stressful experiences can produce analgesia, termed stress-induced analgesia (SIA). The current study examined the probable role of dopamine receptors within the DG in antinociception induced by restraint stress (RS). Ninety-seven male albino Wistar rats were unilaterally implanted with a cannula in the DG. Animals received intra-DG microinjections of SCH23390 or Sulpiride (0.25, 1, and 4 µg/rat) as D1-and D2-like dopamine receptor antagonists, respectively, five minutes before RS. Ten minutes after the end of the induction of RS for three hours, 50 µl 2.5% formalin was injected subcutaneously into the plantar surface of the hind paw to induce persistent inflammatory pain. Pain scores were evaluated at 5-minute intervals for 60 minutes. These findings showed that; exposure to RS for three hours produced SIA in both phases of the formalin test, while this RS-induced analgesia was attenuated in the early and late phases of the formalin test by intra-DG microinjection of SCH23390 and Sulpiride. The results of the present study suggested that both D1- and D2-like dopamine receptors in the DG have a considerable role in the induced analgesia by RS.


Receptors, Dopamine , Sulpiride , Rats , Male , Animals , Sulpiride/pharmacology , Pain Measurement , Receptors, Dopamine/physiology , Analgesics/adverse effects , Pain/chemically induced , Rats, Wistar , Dentate Gyrus/metabolism , Hippocampus/metabolism , Receptors, Dopamine D1/metabolism , Benzazepines/pharmacology
19.
J Neurochem ; 168(3): 312-327, 2024 03.
Article En | MEDLINE | ID: mdl-38317429

To survive, individuals must learn to associate cues in the environment with emotionally relevant outcomes. This association is partially mediated by the nucleus accumbens (NAc), a key brain region of the reward circuit that is mainly composed by GABAergic medium spiny neurons (MSNs), that express either dopamine receptor D1 or D2. Recent studies showed that both populations can drive reward and aversion, however, the activity of these neurons during appetitive and aversive Pavlovian conditioning remains to be determined. Here, we investigated the relevance of D1- and D2-neurons in associative learning, by measuring calcium transients with fiber photometry during appetitive and aversive Pavlovian tasks in mice. Sucrose was used as a positive valence unconditioned stimulus (US) and foot shock was used as a negative valence US. We show that during appetitive Pavlovian conditioning, D1- and D2-neurons exhibit a general increase in activity in response to the conditioned stimuli (CS). Interestingly, D1- and D2-neurons present distinct changes in activity after sucrose consumption that dynamically evolve throughout learning. During the aversive Pavlovian conditioning, D1- and D2-neurons present an increase in the activity in response to the CS and to the US (shock). Our data support a model in which D1- and D2-neurons are concurrently activated during appetitive and aversive conditioning.


Nucleus Accumbens , Receptors, Dopamine D1 , Animals , Mice , Nucleus Accumbens/metabolism , Receptors, Dopamine D1/metabolism , Conditioning, Classical , Neurons/metabolism , Avoidance Learning/physiology , Sucrose/pharmacology
20.
Eur J Neurosci ; 59(7): 1558-1566, 2024 Apr.
Article En | MEDLINE | ID: mdl-38308520

The excitation-inhibition imbalance manifesting as epileptic activities in Alzheimer's disease is gaining more and more attention, and several potentially involved cellular and molecular pathways are currently under investigation. Based on in vitro studies, dopamine D1-type receptors in the anterior cingulate cortex and the hippocampus have been proposed to participate in this peculiar co-morbidity in mouse models of amyloidosis. Here, we tested the implication of dopaminergic transmission in vivo in the Tg2576 mouse model of Alzheimer's disease by monitoring epileptic activities via intracranial EEG before and after treatment with dopamine antagonists. Our results show that neither the D1-like dopamine receptor antagonist SCH23390 nor the D2-like dopamine receptor antagonist haloperidol reduces the frequency of epileptic activities. While requiring further investigation, our results indicate that on a systemic level, dopamine receptors are not significantly contributing to epilepsy observed in vivo in this mouse model of Alzheimer's disease.


Alzheimer Disease , Amyloidosis , Epilepsy , Mice , Animals , Dopamine Antagonists/pharmacology , Alzheimer Disease/drug therapy , Receptors, Dopamine D2/metabolism , Benzazepines/pharmacology , Benzazepines/therapeutic use , Receptors, Dopamine D1/metabolism , Epilepsy/drug therapy , Disease Models, Animal , Amyloidosis/drug therapy
...