Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.939
1.
Sci Rep ; 14(1): 11020, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745067

The absence of stimulator of interferon genes (STING) in 129.B6.Fcgr2b-deficient mice rescue lupus phenotypes. The administration of a STING inhibitor (ISD017) into the young 129.B6.Fcgr2b-deficient mice prevents lupus nephritis development. This study mainly aimed to evaluate the effects of STING inhibition (ISD107) on established SLE in mice to prove that ISD017 could be a good therapeutic drug to reverse the already set-up autoimmunity and kidney impairment. Twenty-four-week-old Fcgr2b-deficient mice were treated with cyclophosphamide (25 mg/kg, intraperitoneal, once per week), ISD017 (10 mg/kg, intraperitoneal, three times per week), or control vehicle for 8 weeks, and were analyzed for phenotypes. Both ISD017 and cyclophosphamide treatment increased long-term survival and reduced the severity of glomerulonephritis in Fcgr2b-deficient mice. While cyclophosphamide reduced activated B cells (B220+GL-7+), ISD017 decreased activated T cells (CD4+CD69+) and neutrophils (Ly6c+Ly6g+) in Fcgr2b-deficient mice. In addition, ISD017 reduced IL-1ß and interferon-inducible genes. In summary, ISD017 treatment in symptomatic 129.B6.Fcgr2b-deficient mice reduced the severity of glomerulonephritis and increased long-term survival. ISD017 worked comparably to cyclophosphamide for treating lupus nephritis in 129.B6.Fcgr2b-deficient mice. ISD017 reduced activated T cells and neutrophils, while cyclophosphamide targeted activated B cells. These results suggested that STING inhibitors can potentially be a new therapeutic drug for treating lupus.


Cyclophosphamide , Membrane Proteins , Receptors, IgG , Animals , Mice , Membrane Proteins/genetics , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Cyclophosphamide/pharmacology , Receptors, IgG/genetics , Receptors, IgG/metabolism , Lupus Nephritis/drug therapy , Lupus Nephritis/pathology , Glomerulonephritis/drug therapy , Mice, Knockout , Female , Disease Models, Animal , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/genetics , Mice, Inbred C57BL
2.
CNS Neurosci Ther ; 30(5): e14761, 2024 05.
Article En | MEDLINE | ID: mdl-38739094

BACKGROUND: This study aims to establish and validate a predictive nomogram for the short-term clinical outcomes of myasthenia gravis (MG) patients treated with low-dose rituximab. METHODS: We retrospectively reviewed 108 patients who received rituximab of 600 mg every 6 months in Huashan Hospital and Tangdu Hospital. Of them, 76 patients from Huashan Hospital were included in the derivation cohort to develop the predictive nomogram, which was externally validated using 32 patients from Tangdu Hospital. The clinical response is defined as a ≥ 3 points decrease in QMG score within 6 months. Both clinical and genetic characteristics were included to screen predictors via multivariate logistic regression. Discrimination and calibration were measured by the area under the receiver operating characteristic curve (AUC-ROC) and Hosmer-Lemeshow test, respectively. RESULTS: Disease duration (OR = 0.987, p = 0.032), positive anti-muscle-specific tyrosine kinase antibodies (OR = 19.8, p = 0.007), and genotypes in FCGR2A rs1801274 (AG: OR = 0.131, p = 0.024;GG:OR = 0.037, p = 0.010) were independently associated with clinical response of post-rituximab patients. The nomogram identified MG patients with clinical response with an AUC-ROC (95% CI) of 0.875 (0.798-0.952) in the derivation cohort and 0.741(0.501-0.982) in the validation cohort. Hosmer-Lemeshow test showed a good calibration (derivation: Chi-square = 3.181, p = 0.923; validation: Chi-square = 8.098, p = 0.424). CONCLUSIONS: The nomogram achieved an optimal prediction of short-term outcomes in patients treated with low-dose rituximab.


Myasthenia Gravis , Nomograms , Rituximab , Humans , Rituximab/therapeutic use , Rituximab/administration & dosage , Myasthenia Gravis/drug therapy , Myasthenia Gravis/diagnosis , Male , Female , Middle Aged , Adult , Retrospective Studies , Immunologic Factors/administration & dosage , Immunologic Factors/therapeutic use , Treatment Outcome , Aged , Young Adult , Receptors, IgG/genetics
3.
J Med Virol ; 96(5): e29646, 2024 May.
Article En | MEDLINE | ID: mdl-38699988

Elite controllers (ECs) are an exceptional group of people living with HIV (PLWH) that control HIV replication without therapy. Among the mechanisms involved in this ability, natural killer (NK)-cells have recently gained much attention. We performed an in-deep phenotypic analysis of NK-cells to search for surrogate markers associated with the long term spontaneous control of HIV. Forty-seven PLWH (22 long-term EC [PLWH-long-term elite controllers (LTECs)], 15 noncontrollers receiving antiretroviral treatment [ART] [PLWH-onART], and 10 noncontrollers cART-naïve [PLWH-offART]), and 20 uninfected controls were included. NK-cells homeostasis was analyzed by spectral flow cytometry using a panel of 15 different markers. Data were analyzed using FCSExpress and R software for unsupervised multidimensional analysis. Six different subsets of NK-cells were defined on the basis of CD16 and CD56 expression, and the multidimensional analysis revealed the existence of 68 different NK-cells clusters based on the expression levels of the 15 different markers. PLWH-offART presented the highest disturbance of NK-cells homeostasis and this was not completely restored by long-term ART. Interestingly, long term spontaneous control of HIV (PLWH-LTEC group) was associated with a specific profile of NK-cells homeostasis disturbance, characterized by an increase of CD16dimCD56dim subset when compared to uninfected controls (UC) group and also to offART and onART groups (p < 0.0001 for the global comparison), an increase of clusters C16 and C26 when compared to UC and onART groups (adjusted p-value < 0.05 for both comparisons), and a decrease of clusters C10 and C20 when compared to all the other groups (adjusted p-value < 0.05 for all comparisons). These findings may provide clues to elucidate markers of innate immunity with a relevant role in the long-term control of HIV.


HIV Infections , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , HIV Infections/immunology , HIV Infections/drug therapy , HIV Infections/virology , Male , Adult , Female , Middle Aged , Flow Cytometry , HIV Long-Term Survivors , CD56 Antigen/analysis , Biomarkers , Immunophenotyping , Receptors, IgG , Phenotype , HIV-1/immunology , GPI-Linked Proteins
4.
J Vis Exp ; (206)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38738886

Monoclonal antibody-based immunotherapy targeting tumor antigens is now a mainstay of cancer treatment. One of the clinically relevant mechanisms of action of the antibodies is antibody-dependent cellular cytotoxicity (ADCC), where the antibody binds to the cancer cells and engages the cellular component of the immune system, e.g., natural killer (NK) cells, to kill the tumor cells. The effectiveness of these therapies could be improved by identifying adjuvant compounds that increase the sensitivity of the cancer cells or the potency of the immune cells. In addition, undiscovered drug interactions in cancer patients co-medicated for previous conditions or cancer-associated symptoms may determine the success of the antibody therapy; therefore, such unwanted drug interactions need to be eliminated. With these goals in mind, we created a cancer ADCC model and describe here a simple protocol to find ADCC-modulating drugs. Since 3D models such as cancer cell spheroids are superior to 2D cultures in predicting in vivo responses of tumors to anticancer therapies, spheroid co-cultures of EGFP-expressing HER2+ JIMT-1 breast cancer cells and the NK92.CD16 cell lines were set up and induced with Trastuzumab, a monoclonal antibody clinically approved against HER2-positive breast cancer. JIMT-1 spheroids were allowed to form in cell-repellent U-bottom 96-well plates. On day 3, NK cells and Trastuzumab were added. The spheroids were then stained with Annexin V-Alexa 647 to measure apoptotic cell death, which was quantitated in the peripheral zone of the spheroids with an automated microscope. The applicability of our assay to identify ADCC-modulating molecules is demonstrated by showing that Sunitinib, a receptor tyrosine kinase inhibitor approved by the FDA against metastatic cancer, almost completely abolishes ADCC. The generation of the spheroids and image acquisition and analysis pipelines are compatible with high-throughput screening for ADCC-modulating compounds in cancer cell spheroids.


Antibody-Dependent Cell Cytotoxicity , Spheroids, Cellular , Humans , Antibody-Dependent Cell Cytotoxicity/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/immunology , Drug Discovery/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Cell Line, Tumor , Receptors, IgG/immunology , Antineoplastic Agents, Immunological/pharmacology , Trastuzumab/pharmacology
5.
Immunogenetics ; 76(3): 213-217, 2024 Jun.
Article En | MEDLINE | ID: mdl-38602517

There is tremendous interindividual and interracial variability in the outcome of SARS-CoV-2 infection, suggesting the involvement of host genetic factors. Here, we investigated whether IgG allotypes GM (γ marker) 3 and GM 17, genetic markers of IgG1, contributed to the severity of COVID-19. IgG1 plays a pivotal role in response against SARS-CoV-2 infection. We also investigated whether these GM alleles synergistically/epistatically with IGHG3 and FCGR2A alleles-which have been previously implicated in COVID-19-modulated the extent of COVID-19 severity. The study population consisted of 316 COVID-19 patients who needed treatment in the intensive care unit of Hospital Universitario Central de Asturias. All individuals were genotyped for GM 3/17, IGHG3 hinge length, and FCGR2A rs1801274 A/G polymorphisms. Among the 316 critical patients, there were 86 deaths. The risk of death among critical patients was significantly higher in subjects with GM 17 (IgG1) and short hinge length (IgG3). GM 17-carriers were at almost three-fold higher risk of death than non-carriers (p < 0.001; OR = 2.86, CI 1.58-5.16). Subjects with short hinge length of IgG3 had a two-fold higher risk of death than those with medium hinge length (p = 0.01; OR = 2.16, CI 1.19-3.90). GM 3/3 and IGHG3 (MM) genotypes were less frequent among death vs. survivors (9% vs 36%, p < 0.001) and associated with protective effect (OR = 0.18, 95% CI = 0.08-0.39). This is the first report implicating IgG1 allotypes in COVID-19-spurred death. It needs to be replicated in an independent study population.


COVID-19 , Immunoglobulin G , Receptors, IgG , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/genetics , COVID-19/immunology , COVID-19/mortality , Male , Female , Middle Aged , Aged , SARS-CoV-2/immunology , Receptors, IgG/genetics , Immunoglobulin Gm Allotypes/genetics , Genotype , Polymorphism, Single Nucleotide , Adult , Genes, Immunoglobulin , Alleles
6.
Mol Med ; 30(1): 53, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649840

OBJECTIVE: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS: Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS: In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION: Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.


Acute Lung Injury , Disease Models, Animal , Endothelial Cells , Lipopolysaccharides , Receptors, IgG , Respiratory Distress Syndrome , ets-Domain Protein Elk-1 , Animals , Male , Rats , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Acute Lung Injury/chemically induced , Acute Lung Injury/etiology , Endothelial Cells/metabolism , ets-Domain Protein Elk-1/metabolism , ets-Domain Protein Elk-1/genetics , Lung/pathology , Lung/metabolism , Rats, Wistar , Receptors, IgG/metabolism , Receptors, IgG/genetics , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/genetics , Th17 Cells/metabolism , Th17 Cells/immunology , Transcription, Genetic
7.
Cell Rep Med ; 5(4): 101483, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38579727

Immune cell phenotyping frequently detects lineage-unrelated receptors. Here, we report that surface receptors can be transferred from primary macrophages to CD4 T cells and identify the Fcγ receptor CD32 as driver and cargo of this trogocytotic transfer. Filamentous CD32+ nanoprotrusions deposit distinct plasma membrane patches onto target T cells. Transferred receptors confer cell migration and adhesion properties, and macrophage-derived membrane patches render resting CD4 T cells susceptible to infection by serving as hotspots for HIV-1 binding. Antibodies that recognize T cell epitopes enhance CD32-mediated trogocytosis. Such autoreactive anti-HIV-1 envelope antibodies can be found in the blood of HIV-1 patients and, consistently, the percentage of CD32+ CD4 T cells is increased in their blood. This CD32-mediated, antigen-independent cell communication mode transiently expands the receptor repertoire and functionality of immune cells. HIV-1 hijacks this mechanism by triggering the generation of trogocytosis-promoting autoantibodies to gain access to immune cells critical to its persistence.


HIV Infections , HIV Seropositivity , HIV-1 , Humans , CD4-Positive T-Lymphocytes , Receptors, IgG/metabolism , Autoantibodies/metabolism , Trogocytosis
8.
Viruses ; 16(4)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38675937

Antibodies that specifically bind to individual human fragment crystallizable γ receptors (FcγRs) are of interest as research tools in studying immune cell functions, as well as components in bispecific antibodies for immune cell engagement in cancer therapy. Monoclonal antibodies for human low-affinity FcγRs have been successfully generated by hybridoma technology and are widely used in pre-clinical research. However, the generation of monoclonal antibodies by hybridoma technology that specifically bind to the high-affinity receptor FcγRI is challenging. Monomeric mouse IgG2a, IgG2b, and IgG3 bind human FcγRI with high affinity via the Fc part, leading to an Fc-mediated rather than a fragment for antigen binding (Fab)-mediated selection of monoclonal antibodies. Blocking the Fc-binding site of FcγRI with an excess of human IgG or Fc during screening decreases the risk of Fc-mediated interactions but can also block the potential epitopes of new antibody candidates. Therefore, we replaced hybridoma technology with phage display of a single-chain fragment variable (scFv) antibody library that was generated from mice immunized with FcγRI-positive cells and screened it with a cellular panning approach assisted by next-generation sequencing (NGS). Seven new FcγRI-specific antibody sequences were selected with this methodology, which were produced as Fc-silent antibodies showing FcγRI-restricted specificity.


Antibodies, Monoclonal , Receptors, IgG , Receptors, IgG/immunology , Receptors, IgG/metabolism , Animals , Mice , Humans , Antibodies, Monoclonal/immunology , Immunoglobulin G/immunology , Immunization , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Peptide Library , Cell Surface Display Techniques , Hybridomas , Antibody Specificity , Female , Mice, Inbred BALB C
9.
Front Immunol ; 15: 1341013, 2024.
Article En | MEDLINE | ID: mdl-38655263

Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.


Factor VIII , GPI-Linked Proteins , Immunoglobulin Fc Fragments , Killer Cells, Natural , Lymphocyte Activation , Receptors, IgG , Recombinant Fusion Proteins , Humans , Cell Degranulation/immunology , Factor VIII/chemistry , Factor VIII/immunology , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Hemophilia A/immunology , Hemophilia A/drug therapy , Immunoglobulin Fc Fragments/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Lymphocyte Activation/drug effects , Protein Binding , Receptors, IgG/metabolism , Receptors, IgG/immunology
10.
Front Immunol ; 15: 1355315, 2024.
Article En | MEDLINE | ID: mdl-38558807

Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.


Macrophage Activation Syndrome , MicroRNAs , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Receptors, IgG/genetics , Macrophage Activation Syndrome/genetics , Phagocytosis/genetics , Interleukin-12
11.
Sci Rep ; 14(1): 7938, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575779

Natural killer (NK) cells destroy tissue that have been opsonized with antibodies. Strategies to generate or identify cells with increased potency are expected to enhance NK cell-based immunotherapies. We previously generated NK cells with increased antibody-dependent cell mediated cytotoxicity (ADCC) following treatment with kifunensine, an inhibitor targeting mannosidases early in the N-glycan processing pathway. Kifunensine treatment also increased the antibody-binding affinity of Fc γ receptor IIIa/CD16a. Here we demonstrate that inhibiting NK cell N-glycan processing increased ADCC. We reduced N-glycan processing with the CRIPSR-CAS9 knockdown of MGAT1, another early-stage N-glycan processing enzyme, and showed that these cells likewise increased antibody binding affinity and ADCC. These experiments led to the observation that NK cells with diminished N-glycan processing capability also revealed a clear phenotype in flow cytometry experiments using the B73.1 and 3G8 antibodies binding two distinct CD16a epitopes. We evaluated this "affinity profiling" approach using primary NK cells and identified a distinct shift and differentiated populations by flow cytometry that correlated with increased ADCC.


Killer Cells, Natural , Receptors, IgG , Humans , Receptors, IgG/metabolism , Flow Cytometry , Antibody-Dependent Cell Cytotoxicity , Polysaccharides/metabolism
12.
Mult Scler Relat Disord ; 86: 105600, 2024 Jun.
Article En | MEDLINE | ID: mdl-38579568

BACKGROUND: Rituximab (RTX), an anti-CD20 monoclonal antibody, has shown promise in managing neuromyelitis optica spectrum disorders (NMOSD) by depleting B cells and reducing relapses. However, there is no consensus on the optimal RTX dosing regimen, and genetic factors, such as FCGR3A-V158F polymorphism, may influence treatment outcomes. This study investigates how FCGR3A-V158F genotypes influence RTX efficacy in Chinese NMOSD patients under varying dosing regimens and aims to optimize treatment protocols. METHODS: We conducted a retrospective analysis of 25 Chinese NMOSD patients treated with RTX, grouped into standardized and low-dosage regimens. FCGR3A-V158F genotypes were determined, and treatment responses were evaluated, including relapse rates, time to first relapse (TFR), B-cell depletion, dose adjustments, and treatment retention. RESULTS: Among all patients, 15 received standardized dosages, while 10 received varied induction doses (500 mg to 1200 mg) in low-dose regimens. For FCGR3A-V158F genotypes, 15 had the FF genotype, and 10 were V carriers (3 VV genotype, 7 VF genotype). Regardless of dosing, FF genotype patients had a higher relapse rate post-RTX treatment compared to V carriers (P < 0.05). None of the 3 VV genotype patients in either dose group experienced relapses post-RTX. In both dose groups, FF genotype patients had significantly shorter TFR and required more RTX dose adjustments post-RTX treatment compared to V carriers in the standardized dosage group (P < 0.05). FF genotype patients in the low dosage group were more likely to experience insufficient B-cell depletion, had lower treatment retention rates, and more discontinuations than V carriers in the standardized dosage group (P < 0.05). Insufficient B-cell depletion significantly predicted clinical relapses after RTX treatment (P < 0.05). In survival analysis, FF genotype patients, regardless of dosing, experienced earlier relapses post-RTX treatment (P < 0.05). CONCLUSIONS: This study highlights the importance of RTX dosage selection in NMOSD treatment, particularly for FCGR3A-FF genotype patients. Standard-dose RTX therapy with vigilant monitoring of peripheral blood B-cell levels is recommended for these individuals to optimize treatment efficacy.


Immunologic Factors , Neuromyelitis Optica , Receptors, IgG , Rituximab , Humans , Neuromyelitis Optica/drug therapy , Neuromyelitis Optica/genetics , Receptors, IgG/genetics , Rituximab/administration & dosage , Female , Adult , Male , Retrospective Studies , Middle Aged , Immunologic Factors/administration & dosage , Young Adult , China , Genotype , Polymorphism, Single Nucleotide , East Asian People
13.
Front Immunol ; 15: 1360615, 2024.
Article En | MEDLINE | ID: mdl-38646521

Introduction: Malignant ascites indicates ovarian cancer progression and predicts poor clinical outcome. Various ascites components induce an immunosuppressive crosstalk between tumor and immune cells, which is poorly understood. In our previous study, imbalanced electrolytes, particularly high sodium content in malignant ascites, have been identified as a main immunosuppressive mechanism that impaired NK and T-cell activity. Methods: In the present study, we explored the role of high concentrations of ascites proteins and immunoglobulins on antitumoral NK effector functions. To this end, a coculture system consisting of healthy donor NK cells and ovarian cancer cells was used. The anti-EGFR antibody Cetuximab was added to induce antibody-dependent cellular cytotoxicity (ADCC). NK activity was assessed in the presence of different patient ascites samples and immunoglobulins that were isolated from ascites. Results: Overall high protein concentration in ascites impaired NK cell degranulation, conjugation to tumor cells, and intracellular calcium signaling. Immunoglobulins isolated from ascites samples competitively interfered with NK ADCC and inhibited the conjugation to target cells. Furthermore, downregulation of regulatory surface markers CD16 and DNAM-1 on NK cells was prevented by ascites-derived immunoglobulins during NK cell activation. Conclusion: Our data show that high protein concentrations in biological fluids are able to suppress antitumoral activity of NK cells independent from the mechanism mediated by imbalanced electrolytes. The competitive interference between immunoglobulins of ascites and specific therapeutic antibodies could diminish the efficacy of antibody-based therapies and should be considered in antibody-based immunotherapies.


Antibody-Dependent Cell Cytotoxicity , Ascites , Killer Cells, Natural , Ovarian Neoplasms , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ascites/immunology , Female , Antibody-Dependent Cell Cytotoxicity/immunology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Immunoglobulins/metabolism , Receptors, IgG/metabolism , Receptors, IgG/immunology , Cell Degranulation/immunology , Cell Degranulation/drug effects , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Cetuximab/pharmacology
14.
Expert Opin Pharmacother ; 25(3): 281-294, 2024 Feb.
Article En | MEDLINE | ID: mdl-38465524

INTRODUCTION: Fcγ-receptors (FcγR) are membrane receptors expressed on a variety of immune cells, specialized in recognition of the Fc part of immunoglobulin G (IgG) antibodies. FcγRIIA-dependent platelet activation in platelet factor 4 (PF4) antibody-related disorders have gained major attention, when these antibodies were identified as the cause of the adverse vaccination event termed vaccine-induced immune thrombocytopenia and thrombosis (VITT) during the COVID-19 vaccination campaign. With the recognition of anti-PF4 antibodies as cause for severe spontaneous and sometimes recurrent thromboses independent of vaccination, their clinical relevance extended far beyond heparin-induced thrombocytopenia (HIT) and VITT. AREAS COVERED: Patients developing these disorders show life-threatening thromboses, and the outcome is highly dependent on effective treatment. This narrative literature review summarizes treatment options for HIT and VITT that are currently available for clinical application and provides the perspective toward new developments. EXPERT OPINION: Nearly all these novel approaches are based on in vitro, preclinical observations, or case reports with only limited implementation in clinical practice. The therapeutic potential of these approaches still needs to be proven in larger cohort studies to ensure treatment efficacy and long-term patient safety.


COVID-19 Vaccines , Heparin , Receptors, IgG , Thrombocytopenia , Thrombosis , Humans , Anticoagulants/adverse effects , COVID-19/complications , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Heparin/adverse effects , Platelet Activation/drug effects , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Receptors, IgG/metabolism , Receptors, IgG/immunology , Thrombocytopenia/chemically induced , Thrombocytopenia/immunology , Thromboinflammation/drug therapy , Thrombosis/drug therapy , Thrombosis/immunology
15.
J Physiol ; 602(7): 1341-1369, 2024 Apr.
Article En | MEDLINE | ID: mdl-38544414

Intervertebral disc degeneration (IDD) poses a significant health burden, necessitating a deeper understanding of its molecular underpinnings. Transcriptomic analysis reveals 485 differentially expressed genes (DEGs) associated with IDD, underscoring the importance of immune regulation. Weighted gene co-expression network analysis (WGCNA) identifies a yellow module strongly correlated with IDD, intersecting with 197 DEGs. Protein-protein interaction (PPI) analysis identifies ITGAX, MMP9 and FCGR2A as hub genes, predominantly expressed in macrophages. Functional validation through in vitro and in vivo experiments demonstrates the pivotal role of FCGR2A in macrophage polarization and IDD progression. Mechanistically, FCGR2A knockdown suppresses M1 macrophage polarization and NF-κB phosphorylation while enhancing M2 polarization and STAT3 activation, leading to ameliorated IDD in animal models. This study sheds light on the regulatory function of FCGR2A in macrophage polarization, offering novel insights for IDD intervention strategies. KEY POINTS: This study unveils the role of FCGR2A in intervertebral disc (IVD) degeneration (IDD). FCGR2A knockdown mitigates IDD in cellular and animal models. Single-cell RNA-sequencing uncovers diverse macrophage subpopulations in degenerated IVDs. This study reveals the molecular mechanism of FCGR2A in regulating macrophage polarization. This study confirms the role of the NF-κB/STAT3 pathway in regulating macrophage polarization in IDD.


Intervertebral Disc Degeneration , Receptors, IgG , Animals , Gene Expression Profiling , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Macrophages , NF-kappa B/genetics , NF-kappa B/metabolism , Nucleus Pulposus/metabolism , Humans , Rats , Receptors, IgG/metabolism
16.
Front Immunol ; 15: 1343602, 2024.
Article En | MEDLINE | ID: mdl-38455048

Introduction: Single nucleotide variations (SNVs) are specific genetic variations that commonly occur in a population and often do not manifest phenotypically. However, depending on their location and the type of nucleotide exchanged, an SNV can alter or inhibit the function of the gene in which it occurs. Immunoglobulin G (IgG) receptor genes have exhibited several polymorphisms, including rs1801274, which is found in the FcgRIIa gene. The replacement of A with T results in a Histidine (H) to Arginine (R) substitution, altering the affinity of the IgG receptor for IgG subtypes and C-reactive protein (CRP). In this study, we analyzed rs1801274 and its functional implications concerning L. Infantum uptake and cytokine production. Methods: We genotyped 201 individuals from an endemic area for visceral leishmaniasis to assess the presence of rs1801274 using Taqman probes for a candidate gene study. Additionally, we included seventy individuals from a non-endemic area for a functional study. Subsequently, we isolated and cultivated one-week adherent mononuclear cells (AMCs) derived from the peripheral blood of participants residing in the non-endemic region in the presence of L. infantum promastigotes, with and without antigen-specific IgG and/or CRP. We analyzed the rate of phagocytosis and the production of nitric oxide (NO), tumor necrosis factor (TNF)-a, interleukin (IL)-10, IL-12 p70, IL-1b, IL- 6, and IL-8 in the culture supernatants. Results and discussion: In participants from the endemic region, the A/G (H/R isoform) heterozygous genotype was significantly associated with susceptibility to the disease. Furthermore, SNVs induced a change in the phagocytosis rate in an opsonin-dependent manner. Opsonization with IgG increased the production of IL-10, TNF-a, and IL-6 in AMCs with the H/R isoform, followed by a decrease in NO production. The results presented here suggest that the rs1801274 polymorphism is linked to a higher susceptibility to visceral leishmaniasis.


Leishmania infantum , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/genetics , Leishmania infantum/genetics , Receptors, IgG/genetics , Interleukin-12 , Tumor Necrosis Factor-alpha , Nucleotides , Protein Isoforms , Genetic Variation , Immunoglobulin G
17.
Front Immunol ; 15: 1347871, 2024.
Article En | MEDLINE | ID: mdl-38469305

The antibody- FcγRIIIa interaction triggers key immunological responses such as antibody dependent cellular cytotoxicity (ADCC), making it highly important for therapeutic mAbs. Due to the direct glycan-glycan interaction with FcγRIIIa receptor, differences in antibody glycosylation can drastically influence the binding affinity. Understanding the differential binding of mAb glycoforms is a very important, yet challenging task due to the co-existence of multiple glycoforms in a sample. Affinity liquid chromatography (AC) and affinity capillary electrophoresis (ACE) hyphenated with mass spectrometry (MS) can provide glycoform-resolved affinity profiles of proteins based on their differences in either dissociation (AC) or equilibrium (ACE) constants. To cross-validate the affinity ranking provided by these complementary novel approaches, both techniques were benchmarked using the same FcγRIIIa constructs. Both approaches were able to assess the mAb - FcγRIIIa interaction in a glycoform selective manner and showed a clear increase in binding for fully versus hemi-fucosylated mAbs. Also, other features, such as increasing affinity with elevated galactosylation or the binding affinity for high mannose glycoforms were consistent. We further applied these approaches to assess the binding towards the F158 allotype of FcγRIIIa, which was not reported before. The FcγRIIIa F158 allotype showed a very similar profile compared to the V158 receptor with the strongest increase in binding due to afucosylation and only a slight increase in binding with additional galactosylation. Both techniques showed a decrease of the binding affinity for high mannose glycoforms for FcγRIIIa F158 compared to the V158 variant. Overall, both approaches provided very comparable results in line with orthogonal methods proving the capabilities of separation-based affinity approaches to study FcγR binding of antibody glycoforms.


Immunoglobulin G , Receptors, IgG , Receptors, IgG/metabolism , Immunoglobulin G/metabolism , Mannose , Benchmarking , Antibodies, Monoclonal/metabolism , Polysaccharides/metabolism , Mass Spectrometry
18.
J Immunother Cancer ; 12(3)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38458776

BACKGROUND: Cancer immunotherapy relies on using the immune system to recognize and eradicate cancer cells. Adaptive immunity, which consists of mainly antigen-specific cytotoxic T cells, plays a pivotal role in controlling cancer progression. However, innate immunity is a necessary component of the cancer immune response to support an immunomodulatory state, enabling T-cell immunosurveillance. METHODS: Here, we elucidated and exploited innate immune cells to sustain the generation of antigen-specific T cells on the use of our cancer vaccine platform. We explored a previously developed oncolytic adenovirus (AdCab) encoding for a PD-L1 (Programmed-Death Ligand 1) checkpoint inhibitor, which consists of a PD-1 (Programmed Cell Death Protein 1) ectodomain fused to an IgG/A cross-hybrid Fc. We coated AdCab with major histocompatibility complex (MHC-I)-restricted tumor peptides, generating a vaccine platform (named PeptiCab); the latter takes advantage of viral immunogenicity, peptide cancer specificity to prime T-cell responses, and antibody-mediated effector functions. RESULTS: As proof of concept, PeptiCab was used in murine models of melanoma and colon cancer, resulting in tumor growth control and generation of systemic T-cell-mediated antitumor responses. In specific, PeptiCab was able to generate antitumor T effector memory cells able to secrete various inflammatory cytokines. Moreover, PeptiCab was able to polarize neutrophils to attain an antigen-presenting phenotype by upregulating MHC-II, CD80 and CD86 resulting in an enhanced T-cell expansion. CONCLUSION: Our data suggest that exploiting innate immunity activates T-cell antitumor responses, enhancing the efficiency of a vaccine platform based on oncolytic adenovirus coated with MHC-I-restricted tumor peptides.


Neoplasms , Receptors, IgG , Humans , Animals , Mice , Adaptive Immunity , T-Lymphocytes, Cytotoxic , Cytokines/metabolism , Neoplasms/therapy , Neoplasms/pathology
19.
Sci Rep ; 14(1): 5684, 2024 03 07.
Article En | MEDLINE | ID: mdl-38454100

The link between antibodies and bone mass is debated. Activated IgG, which interacts directly with Fc gamma receptors, stimulates osteoclastogenesis in vitro, and local injection in immune-activated mice leads to bone loss. Multiple myeloma patients with high serum IgG levels have induced osteoclast activation and display bone loss. In addition, bone loss has been linked to serum autoantibodies in autoimmune diseases, including anti-citrullinated protein antibodies (ACPA) in individuals with rheumatoid arthritis (RA). Whether serum IgG or autoantibodies regulate bone mass under healthy conditions is poorly studied. In elderly men, neither serum levels of polyclonal IgG nor autoantibody were associated with areal bone mineral density in the MrOS Sweden study. Repetitive systemic injections of high-dose polyclonal IgG complexes in mice did not exert any discernible impact on bone mineral density. However, repetitive local intra-articular injection of the same IgG complexes led to a localized reduction of trabecular bone density. These results indicate antibodies may only impact bone density when close to the bone, such as within the synovial joint.


Arthritis, Rheumatoid , Male , Humans , Animals , Mice , Aged , Arthritis, Rheumatoid/metabolism , Autoantibodies , Anti-Citrullinated Protein Antibodies , Receptors, IgG/metabolism , Immunoglobulin G
20.
J Immunol ; 212(10): 1564-1578, 2024 May 15.
Article En | MEDLINE | ID: mdl-38551350

HIV-1 infection greatly alters the NK cell phenotypic and functional repertoire. This is highlighted by the expansion of a rare population of FcRγ- NK cells exhibiting characteristics of traditional immunologic memory in people with HIV (PWH). Although current antiretroviral therapy (ART) effectively controls HIV-1 viremia and disease progression, its impact on HIV-1-associated NK cell abnormalities remains unclear. To address this, we performed a longitudinal analysis detailing conventional and memory-like NK cell characteristics in n = 60 PWH during the first 4 y of ART. Throughout this regimen, a skewed repertoire of cytokine unresponsive FcRγ- memory-like NK cells persisted and accompanied an overall increase in NK surface expression of CD57 and KLRG1, suggestive of progression toward immune senescence. These traits were linked to elevated serum inflammatory biomarkers and increasing Ab titers to human CMV, with human CMV viremia detected in approximately one-third of PWH at years 1-4 of ART. Interestingly, 40% of PWH displayed atypical NK cell subsets, representing intermediate stages of NK-poiesis based on single-cell multiomic trajectory analysis. Our findings indicate that NK cell irregularities persist in PWH despite long-term ART, underscoring the need to better understand the causative mechanisms that prevent full restoration of immune health in PWH.


CD57 Antigens , HIV Infections , HIV-1 , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , HIV Infections/immunology , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/immunology , Male , Female , CD57 Antigens/immunology , Adult , Middle Aged , Immunologic Memory/immunology , Lectins, C-Type/immunology , Receptors, Immunologic , Viremia/immunology , Viremia/drug therapy , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/drug therapy , Receptors, IgG/immunology , Longitudinal Studies , Anti-Retroviral Agents/therapeutic use
...