Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.082
1.
PLoS Pathog ; 20(5): e1011820, 2024 May.
Article En | MEDLINE | ID: mdl-38718306

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.


Cryptosporidiosis , Interferon-gamma , Intestinal Mucosa , Mice, Knockout , Animals , Interferon-gamma/metabolism , Interferon-gamma/immunology , Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , Mice , Intestinal Mucosa/parasitology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Cryptosporidium , Epithelial Cells/parasitology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Enterocytes/parasitology , Enterocytes/metabolism , Enterocytes/immunology , Mice, Inbred C57BL , Interferon gamma Receptor , STAT1 Transcription Factor/metabolism , Receptors, Interferon/metabolism , Receptors, Interferon/genetics , Signal Transduction
2.
J Virol ; 98(5): e0049324, 2024 May 14.
Article En | MEDLINE | ID: mdl-38578092

CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE: CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.


CD4-Positive T-Lymphocytes , Herpesviridae Infections , Interferon-gamma , Killer Cells, Natural , Receptors, Interferon , Rhadinovirus , Animals , CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Killer Cells, Natural/immunology , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Rhadinovirus/immunology , Mice, Inbred C57BL , Interferon gamma Receptor , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/virology , CD8-Positive T-Lymphocytes/immunology , CD11c Antigen/metabolism , CD11c Antigen/immunology , Lung/immunology , Lung/virology
3.
Curr Opin Immunol ; 86: 102413, 2024 Feb.
Article En | MEDLINE | ID: mdl-38608537

Type I and type III interferons (IFNs) are major components in activating the innate immune response. Common to both are two distinct receptor chains (IFNAR1/IFNAR2 and IFNLR1/IL10R2), which form ternary complexes upon binding their respective ligands. This results in close proximity of the intracellularly associated kinases JAK1 and TYK2, which cross phosphorylate each other, the associated receptor chains, and signal transducer and activator of transcriptions, with the latter activating IFN-stimulated genes. While there are clear similarities in the biological responses toward type I and type III IFNs, differences have been found in their tropism, tuning of activity, and induction of the immune response. Here, we focus on how these differences are embedded in the structure/function relations of these two systems in light of the recent progress that provides in-depth information on the structural assembly of these receptors and their functional implications and how these differ between the mouse and human systems.


Interferon Type I , Interferons , Humans , Animals , Mice , Receptors, Interferon/metabolism , Receptor, Interferon alpha-beta/genetics , Signal Transduction/genetics , Immunity, Innate , Interferon Type I/metabolism
4.
Sci Signal ; 16(806): eadf5494, 2023 10 10.
Article En | MEDLINE | ID: mdl-37816090

Interferons (IFNs) play crucial roles in antiviral defenses. Despite using the same Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling cascade, type I and III IFN receptors differ in the magnitude and dynamics of their signaling in terms of STAT phosphorylation, gene transcription, and antiviral responses. These differences are not due to ligand-binding affinity and receptor abundance. Here, we investigated the ability of the intracellular domains (ICDs) of IFN receptors to differentiate between type I and III IFN signaling. We engineered synthetic, heterodimeric type I and III IFN receptors that were stably expressed at similar amounts in human cells and responded to a common ligand. We found that our synthetic type I IFN receptors stimulated STAT phosphorylation and gene expression to greater extents than did the corresponding type III IFN receptors. Furthermore, we identified short "box motifs" within ICDs that bind to JAK1 that were sufficient to encode differences between the type I and III IFN receptors. Together, our results indicate that specific regions within the ICDs of IFN receptor subunits encode different downstream signaling strengths that enable type I and III IFN receptors to produce distinct signaling outcomes.


Interferon Type I , Receptors, Interferon , Humans , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Ligands , Interferons/metabolism , Signal Transduction , Interferon Type I/genetics , Interferon Type I/metabolism , Janus Kinases/metabolism , Phosphorylation , Antiviral Agents/pharmacology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
5.
J Interferon Cytokine Res ; 43(9): 427-434, 2023 09.
Article En | MEDLINE | ID: mdl-37725010

Biliary atresia (BA) is a life-threatening cholangiopathy occurring in infancy, the most common indication for pediatric liver transplantation. The etiology of BA remains unknown; however, a viral etiology has been proposed as multiple viruses have been detected in explants of infants afflicted with BA. In the murine model of BA, Rhesus rotavirus (RRV) infection of newborn BALB/c pups results in a cholangiopathy that mirrors human BA. Infected BALB/c pups experience 100% symptomatology and mortality, while C57BL/6 mice are asymptomatic. Interferon-λ (IFN-λ) is an epithelial cytokine that provides protection against viral infection. We demonstrated that IFN-λ is highly expressed in C57BL/6, leading to reduced RRV replication. RRV-infection of C57BL/6 IFN-λ receptor knockout (C57BL/6 IFN-λR KO) pups resulted in 90% developing obstructive symptoms and 45% mortality with a higher viral titer in bile ducts and profound periportal inflammation compared to C57BL/6. Histology revealed complete biliary obstruction in symptomatic C57BL/6 IFN-λR KO pups, while C57BL/6 ducts were patent. These findings suggest that IFN-λ is critical in preventing RRV replication. Deficiency in IFN-λ permits RRV infection, which triggers the inflammatory cascade causing biliary obstruction. Further IFN-λ study is warranted as it may play an important role in infant susceptibility to BA.


Biliary Atresia , Cholestasis , Receptors, Interferon , Animals , Mice , Biliary Atresia/genetics , Disease Models, Animal , Interferon Lambda/metabolism , Interferons , Mice, Inbred C57BL , Receptors, Interferon/genetics , Receptors, Interferon/metabolism
6.
J Interferon Cytokine Res ; 43(7): 287-298, 2023 07.
Article En | MEDLINE | ID: mdl-37428556

Diet-induced obesity triggers elevation of circulating pro-inflammatory cytokines and acute-phase proteins, including interferons (IFNs). IFNs strongly contribute to low-grade inflammation associated with obesity-related complications, such as nonalcoholic fat liver disease and diabetes. In this study, AG129 mice model (double-knockout strain for IFN α/ß/γ receptors) was fed with a high-fat high-sucrose (HFHS) diet (Western diet) for 20 weeks aiming to understand the impact of IFN receptor ablation on diet-induced obesity, insulin resistance, and nonalcoholic fat liver disease. Mice were responsive to the diet, becoming obese after 20 weeks of HFHS diet which was accompanied by 2-fold increase of white adipose tissues. Moreover, animals developed glucose and insulin intolerance, as well as dysregulation of insulin signaling mediators such as Insulin Receptor Substrate 1 (IRS1), protein kinase B (AKT), and S6 ribosomal protein. Liver increased interstitial cells, and lipid accumulation was also found, presenting augmented fibrotic markers (transforming growth factor beta 1 [Tgfb1], Keratin 18 [Krt18], Vimentin [Vim]), yet lower expression on IFN receptor downstream proteins (Toll-like receptor [TLR] 4, nuclear factor kappa-light-chain-enhancer of activated B cells [NFκB], and cAMP response element-binding protein [CREB]). Thus, IFN receptor ablation promoted effects on NFκB and CREB pathways, with no positive effects on systemic homeostasis in diet-induced obese mice. Therefore, we conclude that IFN receptor signaling is not essential for promoting the complications of diet-induced obesity and thus cannot be correlated with metabolic diseases in a noninfectious condition.


Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Insulin Resistance/physiology , Diet, Western , Obesity/complications , Liver/metabolism , Insulin/metabolism , Non-alcoholic Fatty Liver Disease/complications , Diet, High-Fat/adverse effects , Receptors, Interferon/metabolism , Mice, Inbred C57BL
7.
In Vitro Cell Dev Biol Anim ; 59(5): 366-380, 2023 May.
Article En | MEDLINE | ID: mdl-37353697

Astrocytes play essential roles in the central nervous system (CNS), such as the regulation of glutamate metabolism, antioxidant defenses, and inflammatory/immune responses. Moreover, hypothalamic astrocytes seem to be crucial in the modulation of inflammatory processes, including those related to type I interferon signaling. In this regard, the polyphenol resveratrol has emerged as an important glioprotective molecule to regulate astrocyte functions. Therefore, this study aimed to investigate the immunomodulatory and protective effects of resveratrol in hypothalamic astrocyte cultures obtained from mouse depleted of type I interferon receptors (INF-α/ß-/-), a condition that can impair immune and inflammatory functions. Resveratrol upregulated glutamate transporter and glutamine synthetase gene expression, as well as modulated the release of wide range of cytokines and genes involved in the control of inflammatory response, besides the expression of adenosine receptors, which display immunomodulatory functions. Resveratrol also increased genes associated with redox balance, mitochondrial processes, and trophic factors signaling. The putative genes associated with glioprotective effects of resveratrol, including nuclear factor erythroid derived 2 like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), and phosphoinositide 3-kinase (PI3K)/Akt, were further upregulated by resveratrol. Thus, our data show that resveratrol was able to modulate key genes associated with glial functionality and inflammatory response in astrocyte cultures derived from IFNα/ßR-/- mice. These data are in agreement with previous results, reinforcing its glioprotective effects even in hypothalamic astrocytes with altered inflammatory and immune signaling. Finally, this polyphenol can prepare astrocytes to better respond to injuries, including those associated with neuroimmunology defects.


Astrocytes , Receptors, Interferon , Rats , Animals , Mice , Resveratrol/pharmacology , Resveratrol/metabolism , Astrocytes/metabolism , Receptors, Interferon/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats, Wistar , Cells, Cultured
8.
Cell Mol Life Sci ; 80(6): 154, 2023 May 19.
Article En | MEDLINE | ID: mdl-37204469

Inflammation can impair intestinal barrier, while increased epithelial permeability can lead to inflammation. In this study, we found that the expression of Tspan8, a tetraspanin expressed specifically in epithelial cells, is downregulated in mouse model of ulcerative disease (UC) but correlated with those of cell-cell junction components, such as claudins and E-cadherin, suggesting that Tspan8 supports intestinal epithelial barrier. Tspan8 removal increases intestinal epithelial permeability and upregulates IFN-γ-Stat1 signaling. We also demonstrated that Tspan8 coalesces with lipid rafts and facilitates IFNγ-R1 localization at or near lipid rafts. As IFN-γ induces its receptor undergoing clathrin- or lipid raft-dependent endocytosis and IFN-γR endocytosis plays an important role in Jak-Stat1 signaling, our analysis on IFN-γR endocytosis revealed that Tspan8 silencing impairs lipid raft-mediated but promotes clathrin-mediated endocytosis of IFN-γR1, leading to increased Stat1 signaling. These changes in IFN-γR1 endocytosis upon Tspan8 silencing correlates with fewer lipid raft component GM1 at the cell surface and more clathrin heavy chain in the cells. Our findings indicate that Tspan8 determines the IFN-γR1 endocytosis route, to restrain Stat1 signaling, stabilize intestine epithelium, and subsequently prevent intestine from inflammation. Our finding also implies that Tspan8 is needed for proper endocytosis through lipid rafts.


Intestinal Mucosa , Receptors, Interferon , Tetraspanins , Animals , Mice , Clathrin/metabolism , Endocytosis/physiology , Inflammation/metabolism , Interferons/metabolism , Intestinal Mucosa/metabolism , Receptors, Interferon/metabolism , Tetraspanins/genetics , Tetraspanins/metabolism
9.
Viruses ; 15(3)2023 02 25.
Article En | MEDLINE | ID: mdl-36992341

Interferon lambdas (IFNLs) are innate immune cytokines that induce antiviral cellular responses by signaling through a heterodimer composed of IL10RB and the interferon lambda receptor 1 (IFNLR1). Multiple IFNLR1 transcriptional variants are expressed in vivo and are predicted to encode distinct protein isoforms whose function is not fully established. IFNLR1 isoform 1 has the highest relative transcriptional expression and encodes the full-length functional form that supports canonical IFNL signaling. IFNLR1 isoforms 2 and 3 have lower relative expression and are predicted to encode signaling-defective proteins. To gain insight into IFNLR1 function and regulation, we explored how altering relative expression of IFNLR1 isoforms influenced the cellular response to IFNLs. To achieve this, we generated and functionally characterized stable HEK293T clones expressing doxycycline-inducible FLAG-tagged IFNLR1 isoforms. Minimal FLAG-IFNLR1 isoform 1 overexpression markedly increased IFNL3-dependent expression of antiviral and pro-inflammatory genes, a phenotype that could not be further augmented by expressing higher levels of FLAG-IFNLR1 isoform 1. Expression of low levels of FLAG-IFNLR1 isoform 2 led to partial induction of antiviral genes, but not pro-inflammatory genes, after IFNL3 treatment, a phenotype that was largely abrogated at higher FLAG-IFNLR1 isoform 2 expression levels. Expression of FLAG-IFNLR1 isoform 3 partially augmented antiviral gene expression after IFNL3 treatment. In addition, FLAG-IFNLR1 isoform 1 significantly reduced cellular sensitivity to the type-I IFN IFNA2 when overexpressed. These results identify a unique influence of canonical and non-canonical IFNLR1 isoforms on mediating the cellular response to interferons and provide insight into possible pathway regulation in vivo.


Interferon Lambda , Receptors, Interferon , Humans , HEK293 Cells , Interferon Lambda/metabolism , Interferons , Protein Isoforms/genetics , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Antiviral Restriction Factors
10.
Immunity ; 55(11): 2074-2084.e5, 2022 11 08.
Article En | MEDLINE | ID: mdl-36243008

Down syndrome (DS) is typically caused by triplication of chromosome 21. Phenotypically, DS presents with developmental, neurocognitive, and immune features. Epidemiologically, individuals with DS have less frequent viral infection, but when present, these infections lead to more severe disease. The potent antiviral cytokine type I Interferon (IFN-I) receptor subunits IFNAR1 and IFNAR2 are located on chromosome 21. While increased IFNAR1/2 expression initially caused hypersensitivity to IFN-I, it triggered excessive negative feedback. This led to a hypo-response to subsequent IFN-I stimuli and an ensuing viral susceptibility in DS compared to control cells. Upregulation of IFNAR2 expression phenocopied the DS IFN-I dynamics independent of trisomy 21. CD14+ monocytes from individuals with DS exhibited markers of prior IFN-I exposure and had muted responsiveness to ex vivo IFN-I stimulation. Our findings unveil oscillations of hyper- and hypo-response to IFN-I in DS, predisposing individuals to both lower incidence of viral disease and increased infection-related morbidity and mortality.


Down Syndrome , Interferon Type I , Humans , Interferon Type I/metabolism , Down Syndrome/genetics , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Antiviral Agents , Disease Susceptibility , Receptors, Interferon/metabolism
11.
Biomed Pharmacother ; 155: 113683, 2022 Nov.
Article En | MEDLINE | ID: mdl-36095965

IFN-γ, a soluble cytokine being produced by T lymphocytes, macrophages, mucosal epithelial cells, or natural killer cells, is able to bind to the IFN-γ receptor (IFNγR) and in turn activate the Janus kinase (JAK)-signal transducer and transcription protein (STAT) pathway and induce expression of IFN-γ-stimulated genes. IFN-γ is critical for innate and adaptive immunity and aberrant IFN-γ expression and functions have been associated with different human diseases. However, the IFN-γ/IFNγR signaling could be a double-edged sword in cancer development because the tissue microenvironments could determine its anti- or pro-tumorigenic activities. The IFNγR protein consists of two IFNγR1 and IFNγR2 chains, subunits of which play different roles under certain conditions. This review assessed IFNγR polymorphisms, expression and functions in development and progression of various human diseases in an IFN-γ-dependent or independent manner. This review also discussed tumor microenvironment, microbial infection, and vital molecules in the IFN-γ upstream signaling that might regulate IFNγR expression, drug resistance, and druggable strategy, to provide evidence for further application of IFNγR.


Interferon-gamma , Neoplasms , Humans , Interferon-gamma/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Janus Kinases/metabolism , Neoplasms/genetics , STAT1 Transcription Factor/metabolism , Tumor Microenvironment , Interferon gamma Receptor
12.
Hum Immunol ; 83(8-9): 656-661, 2022.
Article En | MEDLINE | ID: mdl-35792002

Interferon-γ (IFN-γ) is an essential pro-inflammatory cytokine against tuberculosis (TB). To initiate immune response, IFN-γ binds to its receptor complex which consists of two subunits IFN-γ receptor 1 (IFN-γR1) and IFN-γ receptor 2 (IFN-γR2). The deficiency in either receptor subunit can alter IFN-γ signalling thus influencing host susceptibility to TB. In the present study IFN-γ receptor expression at transcriptional and translational level was analysed in pulmonary TB patients from North India. A total of 46 pulmonary TB patients (at 0 day of anti-tuberculosis therapy) and 48 healthy controls (HCs) were recruited. It was found that the mRNA expression of IFN-γR1 was decreased in male TB patients (p = 0.003). The surface expression of IFN-γR1 (p = 0.0005) and IFN-γR2 (p = 0.024) was also found to be decreased in male TB patients. In conclusion, we found sex-dependent regulation of IFN-γR1 and IFN-γR2 expression in pulmonary TB patients of studied population.


Receptors, Interferon , Sex Factors , Tuberculosis, Pulmonary , Cell Membrane/metabolism , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Male , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Tuberculosis, Pulmonary/genetics , Interferon gamma Receptor
13.
Cytokine ; 156: 155892, 2022 08.
Article En | MEDLINE | ID: mdl-35653895

The intestinal mucosa protects the body from physical damage, pathogens, and antigens. However, inflammatory bowel diseases (IBDs) patients suffer from poor mucosal tissue function, including the lack of an effective cellular and/or mucus barrier. We investigated the mucus producing human colonic epithelial cell line HT29-MTX E12 to study its suitability as an in vitro model of cell/mucus barrier adaption during IBD. It was found that the proinflammatory cytokine interferon-gamma (IFN-γ), but not tumor necrosis factor-alpha (TNF-α), reduced cell viability. IFN-γ and TNF-α were found to synergize to decrease barrier function, as measured by trans-epithelial electric resistance (TER) and molecular flux assays. Cells cultured under an air-liquid interface produced an adherent mucus layer, and under these conditions reduced barrier function was found after cytokine exposure. Furthermore, IFN-γ, but not TNF-α treatment, upregulated the IFN-γ receptor 1 (IFNGR1) and TNF-α receptor super family 1A (TNFRSF1A) subunit mRNA in vitro. Co-stimulation resulted in increased mRNA expression of CLDN 2 and 5, two gene known to play a role in epithelial barrier integrity. Analysis of IBD patient samples revealed IFNGR1 and TNFRSF mRNA increased coincidently with guanylate binding protein 1 (GBP1) expression, an indicator of NFkB activity. Lastly, CLDN2 was found at higher levels in IBD patients while HNF4a was suppressed with disease. In conclusion, IFN-γ and TNF-α degrade epithelial/mucus barriers coincident with changes in CLDN gene and cytokine receptor subunit mRNA expression in HT29-MTX E12 cells. These changes largely reflect those observed in IBD patient samples.


Inflammatory Bowel Diseases , Interferon-gamma , Cytokines/metabolism , HT29 Cells , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Intestinal Mucosa/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytokine/metabolism , Receptors, Interferon/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interferon gamma Receptor
14.
Front Immunol ; 13: 862764, 2022.
Article En | MEDLINE | ID: mdl-35392096

Teleost type I interferons (IFNs) are categorized into group I and II subgroups that bind to distinct receptors to activate antiviral responses. However, the interaction between ifn ligands and receptors has not fully been understood. In this study, the crystal structure of grass carp [Ctenopharyngodon idella (Ci)] IFNa has been solved at 1.58Å and consists of six helices. The CiIFNa displays a typical structure of type I IFNs with a straight helix F and lacks a helix element in the AB loop. Superposition modeling identified several key residues involved in the interaction with receptors. It was found that CiIFNa bound to cytokine receptor family B (CRFB) 1, CRFB2, and CRFB5, and the three receptors could form heterodimeric receptor complexes. Furthermore, mutation of Leu27, Glu103, Lys117, and His165 markedly decreased the phosphorylation of signal transducer and activator of transcription (STAT) 1a induced by CiIFNa in the Epithelioma papulosum cyprini (EPC) cells, and Glu103 was shown to be required for the CiIFNa-activated antiviral activity. Interestingly, wild-type and mutant CiIFNa proteins did not alter the phosphorylation levels of STAT1b. Our results demonstrate that fish type I IFNs, although structurally conserved, interact with the receptors in a manner that may differ from mammalian homologs.


Carps , Interferon Type I , Animals , Antiviral Agents , Carps/metabolism , Carrier Proteins/genetics , Interferon Type I/metabolism , Interferon-alpha/metabolism , Phylogeny , Receptors, Interferon/metabolism
15.
Nat Commun ; 13(1): 1923, 2022 04 08.
Article En | MEDLINE | ID: mdl-35395848

The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This is corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response is increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells, but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome.


Interferon-gamma , Neoplasms , Receptors, Interferon , Ubiquitin-Protein Ligases , Humans , Immune Checkpoint Inhibitors , Interferon-gamma/metabolism , Neoplasms/immunology , Receptors, Interferon/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Interferon gamma Receptor
16.
Clin Transl Med ; 12(2): e716, 2022 02.
Article En | MEDLINE | ID: mdl-35184395

BACKGROUND: Immunotransmitters (e.g., neurotransmitters and neuromodulators) could orchestrate diverse immune responses; however, the elaborated mechanism by which melatonergic activation governs inflammation remains less defined. METHODS: Primary macrophages, various cell lines, and Pasteurella multocida (PmCQ2)-infected mice were respectively used to illustrate the influence of melatonergic signalling on inflammation in vitro and in vivo. A series of methods (e.g., RNA-seq, metabolomics, and genetic manipulation) were conducted to reveal the mechanism whereby melatonergic signalling reduces macrophage inflammation. RESULTS: Here, we demonstrate that melatonergic activation substantially lessens interleukin (IL)-1ß-dependent inflammation. Treatment of macrophages with melatonin rewires metabolic program, as well as remodels signalling pathways which depends on interferon regulatory factor (IRF) 7. Mechanistically, melatonin acts via membrane receptor (MT) 1 to increase heat shock factor (Hsf) 1 expression through lowering the inactive glycogen synthase kinase (GSK3) ß, thereby transcriptionally inhibiting interferon (IFN)-γ receptor (IFNGR) 2 and ultimately causing defective canonical signalling events [Janus kinase (JAK) 1/2-signal transducer and activator of transcription (STAT) 1-IRF7] and lower IL-1ß production in macrophages. Moreover, we find that melatonin amplifies host protective responses to PmCQ2 infection-induced pneumonia. CONCLUSIONS: Our conceptual framework provides potential therapeutic targets to prevent and/or treat inflammatory diseases associating with excessive IL-1ß production.


Inflammation/drug therapy , Interleukin-1beta/antagonists & inhibitors , Peptide Fragments/antagonists & inhibitors , Receptors, Interferon/drug effects , Animals , China , Disease Models, Animal , Inflammation/physiopathology , Inflammation/prevention & control , Mice , Receptors, Interferon/metabolism , Signal Transduction/drug effects
17.
Elife ; 112022 02 09.
Article En | MEDLINE | ID: mdl-35137688

Interferon-lambda (IFN-λ) protects intestinal epithelial cells (IECs) from enteric viruses by inducing expression of antiviral IFN-stimulated genes (ISGs). Here, we find that bacterial microbiota stimulate a homeostatic ISG signature in the intestine of specific pathogen-free mice. This homeostatic ISG expression is restricted to IECs, depends on IEC-intrinsic expression of IFN-λ receptor (Ifnlr1), and is associated with IFN-λ production by leukocytes. Strikingly, imaging of these homeostatic ISGs reveals localization to pockets of the epithelium and concentration in mature IECs. Correspondingly, a minority of mature IECs express these ISGs in public single-cell RNA sequencing datasets from mice and humans. Furthermore, we assessed the ability of orally administered bacterial components to restore localized ISGs in mice lacking bacterial microbiota. Lastly, we find that IECs lacking Ifnlr1 are hyper-susceptible to initiation of murine rotavirus infection. These observations indicate that bacterial microbiota stimulate ISGs in localized regions of the intestinal epithelium at homeostasis, thereby preemptively activating antiviral defenses in vulnerable IECs to improve host defense against enteric viruses.


Enterovirus/physiology , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/immunology , Receptors, Interferon/genetics , Animals , Bacterial Physiological Phenomena , Female , Homeostasis , Male , Mice , Receptors, Interferon/metabolism
18.
Nat Commun ; 13(1): 999, 2022 02 22.
Article En | MEDLINE | ID: mdl-35194032

Interferons (IFNs) are critical soluble factors in the immune system and are composed of three types, (I, II and III) that utilize different receptor complexes IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively. Here we identify IFN-υ from the genomic sequences of vertebrates. The members of class II cytokine receptors, IFN-υR1 and IL-10R2, are identified as the receptor complex of IFN-υ, and are associated with IFN-υ stimulated gene expression and antiviral activity in zebrafish (Danio rerio) and African clawed frog (Xenopus laevis). IFN-υ and IFN-υR1 are separately located at unique and highly conserved loci, being distinct from all other three-type IFNs. IFN-υ and IFN-υR1 are phylogenetically clustered with class II cytokines and class II cytokine receptors, respectively. Therefore, the finding of this IFN ligand-receptor system may be considered as a type IV IFN, in addition to the currently recognized three types of IFNs in vertebrates.


Interferons , Interleukin-10 Receptor beta Subunit , Receptors, Cytokine , Receptors, Interferon , Animals , Antiviral Agents , Interleukin-10 Receptor beta Subunit/genetics , Interleukin-10 Receptor beta Subunit/metabolism , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Zebrafish
19.
Adv Sci (Weinh) ; 9(11): e2105170, 2022 04.
Article En | MEDLINE | ID: mdl-35166455

The cytokine interferon-gamma (IFN-γ) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-γ exerts it signaling action by binding to a specific cell surface receptor, the IFN-γ receptor (IFN-γR), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-γR signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-γR2 chains into plasma membrane lipid nanodomains, orchestrating IFN-γR oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-γR transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFNγR2 interaction may represent a potential therapeutic strategy for various IFN-γ-dependent diseases.


Receptors, Interferon , Signal Transduction , Animals , Binding Sites , Cholesterol , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Lipids , Mammals/metabolism , Receptors, Interferon/metabolism , Interferon gamma Receptor
20.
Oncogene ; 41(10): 1421-1433, 2022 03.
Article En | MEDLINE | ID: mdl-35027670

Programmed death-ligand 1 (PD-L1) is an important immunosuppressive molecule highly expressed on the surface of cancer cells. IFNγ triggered cancer cell immunosuppression against CD8+ T cell surveillance via up-regulation of PD-L1. Histone demethylase JMJD2D promotes colorectal cancer (CRC) progression; however, the role of JMJD2D in cancer immune escape is unknown. Here, we report that both PD-L1 and JMJD2D are frequently overexpressed in human CRC specimens with a significant positive correlation. Genetic ablation of JMJD2D in CRC cells attenuated the expression of PD-L1 and stalled tumor growth in mice, accompanied by the elevated number and effector function of tumor infiltrating CD8+ T cells. Mechanistically, JMJD2D coactivated SP-1 to promote the expression of IFNGR1, which elevated STAT3-IRF1 signaling and promoted PD-L1 expression. Again, JMJD2D is a major coactivator for STAT3-IRF1 axis to enhance PD-L1 transcription in a demethylation activity dependent manner. Furthermore, pharmacological inhibition of JMJD2D conduced to improve the anti-tumor efficacy of PD-L1 antibody as demonstrated by slower tumor growth and higher infiltration and function of CD8+ T cells in the combination of JMJD2D inhibitor 5-c-8HQ and PD-L1 antibody group compared with monotherapy with either agent. These results demonstrate that JMJD2D promotes CRC immune escape by enhancing PD-L1 expression to inhibit the activation and tumor infiltration of CD8+ T cells; targeting JMJD2D has the potential role in promoting the efficacy of anti-PD-1/PD-L1 immunotherapy.


B7-H1 Antigen , Colorectal Neoplasms , Jumonji Domain-Containing Histone Demethylases/metabolism , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Colorectal Neoplasms/pathology , Humans , Interferon Regulatory Factor-1/metabolism , Mice , Receptors, Interferon/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/genetics , Interferon gamma Receptor
...